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The Brownian diffusion of micron-scale inclusions in freely suspended smectic A liquid crystal films
a few nanometers thick and several millimeters in diameter depends strongly on the air surround-
ing the film. Near atmospheric pressure, the three-dimensionally coupled film/gas system is well
described by Hughes/Pailthorpe/White hydrodynamic theory but at lower pressure (p . 70 torr),
the diffusion coefficient increases substantially, tending in high vacuum toward the two-dimensional
limit where it is determined by film size. In the absence of air, the films are found to be a nearly
ideal physical realization of a two-dimensional, incompressible Newtonian fluid.

PACS numbers: 47.57.Lj, 83.80.Xz, 68.15.+e, 83.60.Bc

Theoretical hydrodynamics has progressed historically
through the invention of a series of abstract fluids (per-
fect, inviscid, incompressible, and so on) that enable
the tractable description of certain physical aspects of
three-dimensional (3D) fluid systems [1]. Among the
most useful of these idealizations has been that of the
incompressible Newtonian fluid, which is used, for ex-
ample, in modeling the low-Reynolds number flow of
simple and weakly-associated liquids. While there are
many physical realizations of such fluids in 3D, there has
been none which satisfies the basic requirements of being
homogeneous in density and viscosity, and obeying the
laws of conservation of mass, energy, and momentum in
2D. Currently studied 2D fluids include soap films [2],
which are highly compressible in-plane due their facile
response to stress (resulting in thickness changes); and
few-nanometer thick, freely suspended, fluid smectic liq-
uid crystal films [3] which in contrast, by virtue of their
lamellar structure, are quantized in thickness to an inte-
gral number of layers, stabilizing hydrodynamic parame-
ters such as density and viscosity to an extent compara-
ble to that of 3D fluids. Both systems exchange momen-
tum and energy with a surrounding gas but, as we will
show below, the low vapor pressure [4, 5] of smectic films
enables the possibility of pressure reduction to the mi-
crotorr regime and thereby the approach to, and study
of, the ideal incompressible, isotropic, Newtonian limit
of 2D fluids. The experiments on smectic films reported
here explore the evolution to this hydrodynamic regime
as the surrounding gas pressure is reduced and investi-
gate the anomalies arising from reduced dimensionality
in this limit.

Hydrodynamic behavior in 2D has received extensive
theoretical attention [6] and is of broad interest in the
context of flows with two-dimensional character in 3D
systems, generated for example by wires falling in 3D
viscous fluids [7] and in the large scale motion of oceans
and the atmosphere [8]. There is increasing interest in the
flow of 2D films per se in connection with understanding
the dynamical behavior of defects [9, 10], textures [11, 12]
and inclusions [13–15] in smectic films, and transport in
biological membranes [16, 17], all of which benefit from
experimental information at or near the ideal 2D fluid

limit. As an example, the recent experiments of May et
al. [18] reveal a dramatic alteration of the shape dynam-
ics of free-floating bubbles (where a 2D smectic fluid is
confined to a thin spherical shell) as a result of a partial
suppression of in-plane compressibility.

The coupling of an incompressible Newtonian 2D fluid
to the surrounding media was first treated by Saffman
and Delbrück (SD) [19], who developed a continuum hy-
drodynamic model to describe the mobility µ of an inclu-
sion of radius a, in a fluid film of viscosity η, surrounded
by bulk fluid of different viscosity η′. They showed that
flow in the film about a moving inclusion falls off slowly
within a radius on the film of characteristic dimension
lS = ηh/η′, known as the Saffman length, and beyond
this falls off more rapidly. SD treated the case a < lS ,
finding that the mobility of the inclusion is controlled by
the film viscosity and that the film exhibits 2D flow as if
bounded at lS . Hughes, Pailthorpe, and White (HPW)
[20] extended SD theory to describe inclusions of arbi-
trary radius, showing that for large inclusions (a > lS),
the mobility µ is determined by friction with the sur-
rounding fluid, exhibiting something more like 3D Stokes
behavior (µ ∼ 1/a) [13]. Aspects of the SD/HPW pre-
dictions for such quasi-2D fluids have since been verified
experimentally [13, 21–23]. In the absence of surrounding
fluid the film flow behavior should be truly 2D in char-
acter, marked by extremely long-ranged hydrodynamic
interactions and inclusion mobilities that depend loga-
rithmically on system size.

In this paper, we describe the Brownian diffusion of
silicone oil droplet inclusions in smectic films as the am-
bient air pressure is varied from atmospheric pressure
(633 torr) down to 10−4 torr. The experiments confirm
that, while at atmospheric pressure the mobilities are
limited by the surrounding gas, in the high vacuum limit
the hydrodynamics are controlled by film size, with a de-
pendence of inclusion mobility on distance from the film
boundary that is described well by 2D fluid theory.

Since friction from the air plays such an important
role in determining the hydrodynamic behavior of inclu-
sions in freely suspended smectic films, understanding
how the inclusion-air interactions can be tuned by vary-
ing the ambient pressure is of fundamental interest. As
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the air pressure is reduced, the mean free path λ of the
air molecules is expected to increase. At sufficiently low
pressure, the surrounding air can not be regarded sim-
ply as an incompressible, continuous fluid and the well-
established SD/HPW model based on low Reynolds num-
ber hydrodynamics can no longer be used to predict the
mobilities of inclusions. We will see below that as the air
is removed, this system evolves from a pseudo-3D regime
where coupling to the air is dominant to a regime in which
the hydrodynamics are determined by confinement at the
boundaries, as predicted for an ideal 2D fluid.

FIG. 1. (Color online) Experimental apparatus for observing
inclusions in smectic liquid crystal films at low pressure. A
resistive filament coated with silicone oil is briefly heated with
an electric current to generate an oil vapor, part of which then
condenses as droplets on the film. The buffer chamber shields
the partially evacuated film chamber from sudden changes in
pressure.

Homogeneous smectic films a few molecular layers
thick are robust preparations [3] providing an ideal plat-
form for studying hydrodynamics in reduced dimensions
[9]. In previous experiments, we described the Brownian
motion of silicone oil droplets embedded in such films
with the ambient air at atmospheric pressure [15]. The
oil droplets form lens-shaped [24] inclusions which are in-
soluble in liquid crystal and whose size remains constant
over long time intervals, typically for more than half an
hour, which far exceeds the time required to perform a
typical measurement.

The liquid crystal material used in our experiment is
8CB (4′-n-octyl-4′-cyanobiphenyl), which is in the fluid
smectic A phase at room temperature. The saturation
vapor pressure of 8CB is very low (around 10−7 torr
[4]), and we are able to maintain stable films of constant
thickness over a wide range of air pressures (from atmo-
spheric pressure to 10−6 torr), enabling us to study the
microrheology of inclusions in the film over a wide range
of reduced mean free path, given by the Knudsen number
λreduced = λ/(2R). The density and viscosity of 8CB are

ρ ≈ 0.96 g/cm
3

[25] and η = 0.052 Pa · s [26] respectively.
Each smectic layer is 3.17 nm thick [27]. Freely suspended
films were formed by spreading a small amount of the liq-
uid crystal across a 4 mm-diameter hole in a glass cover

slip and the films were observed using reflected light video
microscopy. The film thickness h, an integral number N
of smectic layers (typically 2 ≤ N ≤ 6), is determined
precisely by comparing the reflectivity of the film with
black glass [28]; at atmospheric pressure, the correspond-
ing Saffman lengths are in the range 9 . lS . 27 µm.
In our experimental setup (Fig. 1), a resistive filament
coated in silicone vacuum pump oil (Welch 1407K Du-
oSeal) is then electrically heated in order to generate an
oil vapor, some of which makes its way to the film where
it eventually condenses and forms visible droplets, such
as those shown in Fig. 2a. The droplets have radii in the
range 2 . a . 50 µm and are between about 0.2 and
4 µm thick.

FIG. 2. (Color online) Oil droplets on smectic films. (a) Oil
droplets on a three-layer, freely suspended liquid crystal film
viewed in reflection. (b) Interference fringes in a large oil
droplet. (c) Cartoon of an oil droplet of radius a near the
center of a film of radius R. (d) Cartoon of the cross-section
of an oil droplet deposited on a thin smectic film. The relative
thickness of the film is greatly exaggerated here.

The shape and thickness of the oil droplets is measured
by analyzing the interference fringes formed in monochro-
matic light (Fig. 2b) [29]. The profile of an oil droplet
deposited on a film is indicated schematically in Fig. 2d.
Even though the oil droplets are lens-shaped and are sig-
nificantly thicker than the smectic film, they have mobili-
ties that are described well by SD theory for flat, cylindri-
cal inclusions of the same radius[15]. The locations of the
droplet boundaries and the film edges can be determined
precisely (with sub-micron resolution) by image analysis.
Since the in-plane viscosity is proportional to thickness,
and the background film is ultrathin, both the inclusion
and the meniscus become essentially rigid within 0.5 µm
or less of the film edge, effectively limiting hydrodynamic
coupling to the film to a small boundary region of the
thicker domains near their edges (see Appendix).

Once oil droplets appear on the film, the chamber is
carefully tilted in order to maneuver a droplet of desired
radius a into the center of the film (of radius R), after
which the film is leveled to minimize gravitational drift.
During a typical experiment, we capture several thousand
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images of the film at a video frame rate of 24 fps while
the droplet is in the field of view and far from the film
boundaries, as shown schematically in Fig. 2(c).

After reducing the pressure of the film chamber to 10−4

torr, closing the valve between the pump and the vacuum
buffer chamber allows us to maintain quasi-constant pres-
sure in the film chamber for dozens of minutes, during
which we are able to record the droplet motion. The
pressure is then gradually increased by injecting small
amounts of air into the system, allowing us to obtain
a series of movies showing the Brownian motion of the
droplet as the chamber pressure increases from 3× 10−4

torr to 633 torr. These movies are decomposed into se-
quential images and the size and position of the droplet
are determined using Canny’s method for edge detection
[30] and Taubin’s method for object identification [31].

FIG. 3. (Color online) Mean squared displacement of an oil
droplet (a = 8 µm) near the center of a film (R = 2 mm, N =
3 layers) as a function of time for different surrounding air
pressures (symbols). The solid lines are fits whose slopes give
the corresponding diffusion coefficients. The black, dashed
line is the theoretical limit corresponding to two-dimensional
diffusion confined by the film boundary.

The diffusion coefficient D of a single droplet can be
determined by measuring its mean squared displacement
(MSD) after analytically removing any drift [13]

MSD = 〈(r(t)− r0)2〉 , (1)

where r0 is the original position at time t=0, and r(t) the
position of the particle at a later time t. Since the MSD
and the diffusion coefficient D for Brownian motion in
two dimensions are related [32, 33] by

MSD = 4Dt , (2)

we can obtain the corresponding diffusion coefficient D
by fitting the MSD vs. t data with a straight line passing
through the origin, as shown in Fig. 3.

FIG. 4. (Color online) Effect of surrounding air pressure and
film size on droplet diffusion. (a) Diffusion coefficient of a sin-
gle droplet (a = 8µm) near the center of a film (R = 2 mm,
N = 3 layers) as a function of surrounding air pressure (sym-
bols). The green curve corresponds to SD/HPW theory. The
black curve shows the diffusion predicted by a model assum-
ing free air molecules impinging on the film. The horizontal
dashed red line shows the 2D confinement limit predicted by
Saffman for vanishingly small air viscosity and no-slip bound-
aries. The dashed black line shows the mean free path of
the air molecules (right axis) scaled by the film diameter
(λreduced = λ/(2R)) as a function of pressure. The back-
ground shading indicates three distinct behavioral regimes
corresponding to different air pressure ranges: free molecules,
slip and continuity. (b) Reduced mobility m = 4πηhµ of
single oil droplets in a film in high vacuum as a function of
reduced film radius. The model curve is Saffman’s prediction
for a 2D fluid with no-slip boundaries.

The diffusion coefficient of a typical droplet near the
center of the film is plotted as a function of ambi-
ent pressure in Fig. 4(a). As the pressure is reduced
from atmospheric, it is evident that the diffusion coef-
ficient increases and eventually saturates at low pres-
sure. At atmospheric pressure, where lS is much smaller
than the film radius R, the mobility is given by the
Petrov/Schwille approximation [23] to the HPW model
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µ =
1

4πηh

[
ln( 2

ε )− γ + 4ε
π −

ε2

2 ln( 2
ε )

1− ε3

π ln( 2
ε ) + c1εb1

1+c2εb2

]
, (3)

where ε = a/lS is the reduced inclusion radius and c1 =
0.73761, b1 = 2.74819, c2 = 0.52119, b2 = 0.61465 are
constants.

Since the viscosity of a dilute gas is independent of
pressure in the hydrodynamic regime, where the molec-
ular mean free path is small compared with the relevant
feature sizes, reducing the pressure has little effect on lS
or D for pressures down to P ≈ 1 torr (Fig. 4d). As the
pressure is lowered further, however, the mean free path
grows larger than the inclusion and film sizes, and the
effective air viscosity falls to zero. The Saffman length,
which is much smaller than R at 1 atm, thus increases
as the pressure drops, becoming larger than R at suffi-
ciently low pressure. DHPW increases monotonically with
increasing lS until, in the limit lS > R, the flow in the
film no longer dissipates energy in the gas and the diffu-
sion coefficient is determined by confinement by the film
boundary [19]

Dconfinement =
kBT

4πηh
[ln(R/a)− 0.5] , (4)

where kB is the Boltzmann constant and T the temper-
ature.

The green curve DHPW shows the predictions of
SD/HPW theory with the air viscosity corrected for pres-
sure [34]. The observed variation of diffusion coefficient
is well described by this model at pressures close to atmo-
spheric (p & 70 torr) but the experimental data deviate
significantly from the theory at lower pressure, increas-
ing monotonically as the pressure is reduced before sat-
urating at very high vacuum, at the predicted limit cor-
responding to 2D boundary confinement (horizontal red
dashed line in Fig. 4(a)). The observed behavior falls
in three distinct hydrodynamic regimes: (1) Near atmo-
spheric pressure (p & 70 torr), the mean free path of the
air molecules (λ ∼ 7µm) is much less than the diameter
of the film. In this regime, the air may be regarded as a
continuous fluid and diffusion is described by SD/HPW
theory [13]. (2) Below about 70 torr, the viscosity of
the air decreases as the pressure falls, a phenomenon at-
tributable to slip of the air layers [34] over the surfaces
of the film and oil droplet. (3) At very low pressure
(p . 0.02 torr), the mean free path is several mm long, a
distance comparable to the diameter of the film. In this
regime, the ambient air can be regarded as an ensemble
of collisionless molecules that obey a Maxwell-Boltzmann
velocity distribution [35, 36].

In order to model the mobility of droplets at the low-
est pressures, we may approximate the total drag force
F as the sum of two terms, one arising from confine-
ment by the boundaries and the other due to friction
from the air, or F = Fb + Fair. The confinement term

is given by Fb = 4πηhU/(ln(R/a)− 0.5) [19]. The air
drag on an inclusion moving in the film at speed U
depends on both direct frictional force resulting from
the impingement of air molecules on the inclusion, and
on indirect frictional forces resulting from changes of
streamlines in the film caused by collisions with air
molecules. Calculations based on kinetic theory [37] indi-
cate that the unit frictional force as a function of droplet
speed U and surrounding air pressure p may be written
Fair = p

√
πm0/(2kBT )U , where m0 is the mass of an air

molecule. The net inverse droplet mobility may then be
written as 1/µ = 1/µb+1/µair. Since µb = Fb/U is inde-
pendent of pressure, the mobility can be expressed in the
form µ = 1/(µ−1

b + const×p), where the constant can be
found by fitting the experimental data at low pressure.
This model is plotted as the black curve in Fig. 4(a).

In an ideal 2D fluid of finite size, therefore, the only
drag experienced by a disk-like inclusion in the absence of
a bounding gas should come from confinement forces aris-
ing from long-range hydrodynamic interactions with the
fluid boundaries. Our experiments confirm that in high
vacuum (p . 0.003 torr), the frictional drag from the re-
maining air molecules is indeed much smaller than the
hydrodynamic confinement force and can be neglected.
In this regime, the freely suspended SmA liquid crys-
tal film approaches a true 2D fluid and exhibits purely
2D hydrodynamics. To verify that we were really in the
2D limit, we analyzed the Brownian motion under high
vacuum of droplets of different sizes in films of different
radii. The reduced mobility m = 4πηhµ of these inclu-
sions as a function of reduced film radius R/a is plotted in
Fig. 4(b). The observed mobility follows the predictions
of SD theory quite well, increasing logarithmically with
inclusion size as expected for a system with 2D hydro-
dynamic behavior. The observed mobilities are slightly
larger than predicted by the model, an effect which might
be due to small deviations from ideal, no-slip boundary
conditions resulting from the presence of a meniscus [38]
(see Appendix).

In both 3D [39, 40] and 2D fluids, inclusions near a
rigid boundary experience a “wall effect” which reduces
their mobility. In the 1940s, White studied 2D wall ef-
fects by measuring the drag on metal wires falling on
their sides through viscous liquids confined between two
vertical bounding plates and found that at low Reynolds
number, the presence of the walls affected the mobility
of the wires even when they were many hundreds of wire
diameters away, with the mobility depending logarithmi-
cally on the ratio of wall separation to wire radius [7].
Recent measurements of inclusion mobility in very thick
smectic films, in which the Saffman length is greater than
the film size and the influence of the air is relatively small,
also showed the effects of confinement by the boundary
[41].

Eliminating the environmental drag on a thin smectic
film by removing the ambient air seemed a promising
way of studying wall effects in an ideal 2D fluid. We
therefore measured the mobilities of included oil droplets
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FIG. 5. (Color online) Reduced mobility of oildrop inclusions
diffusing parallel (red) and perpendicular (blue) to a straight
film boundary in high vacuum. a is the radius of the in-
clusion and d the distance from the boundary. The model
curves are analytical predictions from Eq. 5. The two mobili-
ties show distinct behavior, as predicted by theory, increasing
logarithmically with distance from the boundary as expected
in 2D. In these experiments, the oildrop radii were in the
range 3 < a < 20 µm.

both parallel and perpendicular to a straight boundary
in high vacuum. The experimental observations, shown
in Fig. 5, were compared with the model of Jeffrey and
Onishi [42], who solved the Navier-Stokes equations for
2D flow around a translating cylinder a distance d from a
planar boundary, assuming small Reynolds number flow.
For translation respectively parallel and perpendicular to
the wall, the predicted reduced mobilities are:

m‖ = 4πηhµ‖= ln

[
d+
√
d2 − a2

a

]
, (5a)

m⊥ = 4πηhµ⊥= ln

[
d+
√
d2 − a2

a

]
−
√
d2 − a2

d
.(5b)

For large values of d/a, these expressions simplify to
m‖ ≈ ln[2d/a] and m⊥ ≈ ln[2d/a] − 1. In contrast
to 3D fluids, where the wall effect on mobility decays
within a few dozen inclusion radii [43], the influence of
the boundary extends a long distance into a 2D fluid and
the hydrodynamic behavior of inclusions is expected to
remain anisotropic at large distances from the wall. Our
experimental results confirm the predicted behavior, as
seen in Fig. 5. The measured mobilities are on average
slightly higher than the theory but are generally in good
agreement with the model, except very close to the wall.
This may be due to deviations from true no-slip boundary
conditions [44] at the meniscus, as mentioned previously.

In summary, we have described the Brownian motion
of single inclusions in freely suspended smectic A liquid
crystal films as the pressure of the surrounding air is
reduced from one atmosphere to a high vacuum. The in-

clusion mobility was characterized in three hydrodynamic
regimes: near atmospheric pressure (where diffusion fol-
lows HPW theory), in partial vacuum (the slip regime),
and in high vacuum (where we observe motion limited by
2D confinement effects). The parallel and perpendicular
mobilities of an inclusion in high vacuum near the edge
of the film increase logarithmically with distance from
the boundary as predicted for an ideal 2D fluid, with an
anisotropic character that persists far into the film. The
observations suggest that thin, freely suspended smectic
films in high vacuum are a nearly ideal experimental real-
ization of an incompressible two-dimensional fluid. This
work opens the way for more general hydrodynamic stud-
ies in this limit, of such phenomena as driven flow, high
Reynolds number turbulence, energy cascades, and jets.

This work was supported by NASA Grant NNX-
13AQ81G, and by the Soft Materials Research Center
under NSF MRSEC Grants DMR-0820579 and DMR-
1420736.
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Appendix: Hydrodynamics of Boundary Regions

1. Experimental Studies of Thickness/Viscosity
Near the Film-Droplet Boundary

The background 8CB films have constant layer num-
ber but the overall thickness increases substantially in
the meniscus at the film boundary and at the oildrop in-
clusions. The inclusion and meniscus thickness, inferred
from the positions of interference fringes in monochro-
matic light, are typically already 5 times the background
film thickness within 0.5 µm of the optical edge, while the
areal viscosity is typical 10 times greater, as indicated in
Fig. 6.

2. Flow near the Film–Meniscus/Droplet
Boundaries

The tremendous increase of the areal viscosity in the
boundary regions allows the velocity field of the film to
penetrate only a very short distance into the thicker re-
gions, allowing us for all practical purposes to approx-
imate the meniscus and silicone oil drop inclusions as
being essentially solid. This assumption is justified as
follows.

Since the film meniscus and oil droplet inclusions are in
fact fluid objects, there will generally be some slip of the
flow field of the smectic film at their boundaries. In order
to evaluate how much slip there is, we consider separately
the cases of transverse slip (for the component of the flow
velocity parallel to the boundary) and of normal slip (for
the component of the flow velocity normal to the bound-
ary). For these purposes, we model the film/inclusion
boundary as shown in Fig. 7, as a background film (smec-
tic film, blue) in contact with a wedge of additional fluid
(yellow) whose thickness increases linearly with distance
from a contact line (black dot at x = 0) that is oriented
normal to the plane of the drawing.

a. Transverse Slip

We first consider velocity v(x) parallel to the boundary.
We assume that everywhere on the film and in the thicker

areas there is a uniform shear force per unit length, σ,
transmitted across the system in the x direction, that is
constant in time and which, for x < 0, induces a constant
transverse velocity gradient ∂v/∂x = σ/(ηh). Here η is
the background film viscosity and h its thickness. Trans-
verse slip occurs when this resulting linear variation of
velocity extrapolates to zero velocity at a finite distance
lslip beyond the contact line (Fig. 7). For x > 0, the sys-
tem presents an x-dependent effective viscosity-thickness
product, such that ∂v/∂x = σ/(ηh + ηDαx), where ηD
is the viscosity of the fluid in the added (yellow) thicker
wedge and x its thickness. The quantity ηDαx corre-
sponds to the areal viscosity of the thicker wedge. Tak-
ing v(x) = 0 at x = L, with L representing the width
of the meniscus or the radius of a droplet, and integrat-
ing gives the expressions for the velocity shown in Fig. 7,
where ξ ≡ ηh/(ηDα) is the characteristic distance into
the droplet or meniscus by which the additional viscosity
is equal to that of the background film. lslip is essentially
this distance, apart from a logarithmic correction that
depends on L. For the typical viscosities in our experi-
ments, we find ξ ∼ 0.02 µm, which is much smaller than
the optical resolution of the boundary position and thus
completely negligible. This is a direct consequence of the
background film being only a few nanometers thick.

b. Normal Slip

Since normal flow through the meniscus is blocked, it
must be converted to transverse flow. Its penetration
is then comparable to ξ, as shown in the previous sec-
tion. A moving droplet, on the other hand, produces a
pressure difference between its front and rear boundaries
that sets up a pair of counter-rotating vortices inside the
droplet as for a droplet moving in a viscous 3D fluid.
These vortices circulate fluid from the front to the rear of
the droplet, enabling normal flow into the boundary. In
the present case, however, the effective droplet viscosity-
thickness product L/ξ is more than 200 times larger than
that of the background film. The corresponding reduc-
tion of velocity within the droplet forces normal flow at
the boundary to be converted to transverse flow, again
with a penetration length comparable to ξ.

[1] H. Lamb, Hydrodynamics (Dover, New York, 1945).
[2] H. Kellay and W. I. Goldburg, Rep. Prog. Phys. 65, 845

(2002).
[3] C. Young, R. Pindak, N. Clark, and R. Meyer, Phys.

Rev. Lett. 40, 773 (1978).
[4] J. Deschamps, J. P. Trusler, and G. Jackson, J. Phys.

Chem. B 112, 3918 (2008).
[5] P. Poole, C. Andereck, D. Schumacher, R. Daskalova,

S. Feister, K. George, C. Willis, K. Akli, and E. Chowd-
hury, Phys. Plasmas 21, 063109 (2014).

[6] J. Veysey, II and N. Goldenfeld, Rev. Mod. Phys. 79, 883
(2007).

[7] C. White, Proc. R. Soc. A 186, 472 (1946).
[8] G. Boffetta and R. E. Ecke, Annu. Rev. Fluid Mech. 44,

427 (2012).
[9] C. Muzny and N. Clark, Phys. Rev. Lett. 68, 804 (1992).

[10] A. N. Pargellis, P. Finn, J. W. Goodby, P. Panizza,
B. Yurke, and P. E. Cladis, Phys. Rev. A 46, 7765 (1992).

[11] J.-B. Lee, D. Konovalov, and R. Meyer, Phys. Rev. E 73,
051705 (2006).



7

[12] P. V. Dolganov and P. Cluzeau, Phys. Rev. E 90, 062501
(2014).

[13] Z. H. Nguyen, M. Atkinson, C. S. Park, J. Maclennan,
M. Glaser, and N. Clark, Phys. Rev. Lett. 105, 268304
(2010).

[14] B. Schulz, M. G. Mazza, and C. Bahr, Phys. Rev. E 90,
040501 (2014).

[15] Z. Qi, Z. H. Nguyen, C. S. Park, M. A. Glaser, J. E.
Maclennan, N. A. Clark, T. Kuriabova, and T. R. Powers,
Phys. Rev. Lett. 113, 128304 (2014).

[16] K. Simons and E. Ikonen, Nature 387, 569 (1997).
[17] T. T. Hormel, S. Q. Kurihara, M. K. Brennan, M. C.

Wozniak, and R. Parthasarathy, Phys. Rev. Lett. 112,
188101 (2014).

[18] K. May, K. Harth, T. Trittel, and R. Stannarius, Euro-
phys. Lett. 100, 16003 (2012).

[19] P. G. Saffman and M. Delbrück, Proc. Natl. Acad. Sci.
USA 72, 3111 (1975).

[20] B. D. Hughes, B. A. Pailthorpe, and L. R. White, J. Fluid
Mech. 110, 349 (1981).

[21] P. Cicuta, S. L. Keller, and S. L. Veatch, J. Phys. Chem.
B Lett. 111, 3328 (2007).

[22] C. Cheung, Y. H. Hwang, X.-l. Wu, and H. J. Choi, Phys.
Rev. Lett. 76, 2531 (1996).

[23] E. P. Petrov, R. Petrosyan, and P. Schwille, Soft Matter
8, 7552 (2012).

[24] C. Hui and A. Jagota, Soft Matter 11, 8960 (2015).
[25] A. J. Leadbetter, J. L. A. Durrant, and M. Rugman, Mol.

Cryst. Liq. Cryst. 34, 231 (1976).
[26] F. Schneider, Phys. Rev. E 74, 021709 (2006).
[27] D. Davidov, C. R. Safinya, M. Kaplan, S. S. Dana,

R. Schaetzing, R. J. Birgeneau, and J. D. Litster, Phys.
Rev. B 19, 1657 (1979).

[28] E. B. Sirota, P. S. Pershan, L. B. Sorensen, and J. Collett,
Phys. Rev. A 36, 2890 (1987).
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FIG. 6. (Color online) Hydrodynamic boundaries of freely
suspended liquid crystal films and oil droplets. The fluid
thickness and areal viscosity both increase linearly at the
boundaries of the SmA film with the outer meniscus (a) and
with oil droplets (c). Reflected light microscope image of a
silicone oil droplet in a thin, freely suspended liquid crystal
film near the meniscus at a straight boundary. The fringes
are from optical interference caused by a steady increase in
thickness (a and c, right). The effective viscosity in both the
meniscus and the oil drop increases by several orders of mag-
nitude within a short distance of the film boundary (a and
c, left). The boundaries are indicated here by dashed red
lines. Note that the viscosity and thickness are plotted on
logarithmic and linear scales respectively.
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for x > 0

ξ = ηh/αηD ~ 0.02 m 

vslip(L) =  Sξ ln(1 + L/ξ) 

lslip = vslip/S =  ξ ln(1 + L/ξ) 

for x < 0 
 

v(x) = Sx + vslip 

S =   v/  x = σ/ηh  

smectic film
x = 0

v = 0
x = L

x

oil droplet 
or 

meniscus

η α ηD

v(x)

vslip

lslip
v, σ

v(x) =  vslip - Sξ ln(1 + x/ξ)

FIG. 7. (Color online) Film velocity profile near a boundary.
The transverse velocity v in the film (blue region, x < 0)
falls off linearly on approaching an oil droplet or the film
meniscus, penetrating a distance lslip into the thicker region
(yellow wedge, x > 0). The velocity normal to the boundary
is identically zero. The smectic film and meniscus/droplet
have viscosities η and ηD respectively.


