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Enzymatic “machines,” such as catalytic rods or colloids, can self-propel and interact by gener-
ating gradients of their substrates. We theoretically investigate the behaviors of such machines in
a chemically active environment where their catalytic substrates are continuously synthesized and
destroyed, as occurs in living cells. We show how the kinetic properties of the medium modulate
self-propulsion and pairwise interactions between machines, with the latter controlled by a tunable
characteristic interaction range analogous to the Debye screening length in an electrolytic solution.
Finally, we discuss the effective force arising between interacting machines and possible biological
applications, such as partitioning of bacterial plasmids.
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I. INTRODUCTION

The interior of a living cell is a nonequilibrium medium
that continuously produces and destroys high-energy
molecules. These high-energy “solute” molecules may be
bound and processed by enzymatic (biocatalytic) “ma-
chines.” Gradients of the solute molecules may affect
the self-organization of these catalytic cellular machines.
Intriguingly, the biochemical activity of the underlying
medium could alter such gradients, and thus modulate
the behavior these machines.
Self-propulsion and self-organization of catalytic col-

loidal particles through chemical gradients have previ-
ously been explored in synthetic systems without ambi-
ent chemical activity. Patterned catalytic particles can
self-propel as artificial micro-/nano-motors by generat-
ing concentration gradients through chemical reactions
at their surfaces [1–9]. Catalytic particles can also self-
organize into a variety of nonequilibrium phases by in-
teracting with the chemical gradients generated by other
catalytic particles [10–13].
Additionally, the dynamics of protein catalysts (en-

zymes) can be altered in vitro by the presence of their
substrates. Experiments have shown that the diffu-
sion of enzyme molecules is enhanced when enzymes
catalyze their substrates and that these molecular ma-
chines translocate up substrate gradients towards high
substrate concentration [14–17]. These phenomena may
have phoretic origins, although the precise mechanisms
of are not yet fully understood [14–18].
Phoretic effects of this general type are thought to play

a role in organizing cellular structures and processes in

vivo [19–24]. The cellular interior is a nonequilibrium
environment with ambient chemical activity or passive
biomolecule degradation, but previous studies have gen-
erally only considered an “inert” medium. In an in-
ert environment, the medium itself neither creates nor
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destroys the substrate required for the machines’ cat-
alytic behavior. However, molecular dynamics simula-
tions have shown that the chemical activity of the un-
derlying environment may alter diffusiophoresis [25, 26].
Those simulations illustrate that background chemical
activity can reduce the self-propulsion speed [25]. Here,
we analyze how the chemical activity of the environment
controls self-propulsion and interactions of catalytically
active machines.
In Section II we introduce a simple first-order kinetic

model of catalysis by the environment, which immedi-
ately leads to a characteristic length scale, λ, set by the
balance of solute diffusion and destruction, analogous to
the Debye screening length in electrostatics. We inves-
tigate phoretic self-propulsion of the machines, and find
that asymmetric machines self-propel with a velocity that
scales in a way that is dependent on the ratio of machine
size to λ, as well as other factors. In Section III we an-
alyze the pairwise interactions between machines. The
magnitude and range of these interactions is regulated by
the screening length found in Section II, and interactions
can be tuned to be repulsive or attractive and strong or
weak by chemical properties of the medium itself. Ad-
ditionally, we construct a simulation of discrete solute
particles and catalytic machines to demonstrate the va-
lidity of our continuous-field approach, and show that an
effective potential can be used to describe machine inter-
actions in the appropriate physical regime. In Section IV
we discuss the application of our model to a biological
subcellular spatial organization problem of current inter-
est, namely the partitioning of plasmid DNA molecules
within a bacterium.

II. SELF-PROPULSION

A. Theoretical model

We consider diffusiophoresis of enzymatic particles in
a chemically active medium which generates reactant so-
lute at rate k+ and destroys it at rate of k−c, where c
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is the local reactant concentration. The system is over-
damped; the solute species diffuses with constant Ds,
and spherical catalytic particles of radius r0 diffuse slowly
with constant Dc ≪ Ds. The catalytic particles interact
with the solute species chemically by creating or destroy-
ing solute and physically by attracting or repelling solute.
The model predicts that bulk biochemical activity alters
self-propulsion and controls the range, strength, and sign
of interactions between catalytic particles.
We first analyze the model in the continuum limit for

the case of a single catalytic particle. As in the analysis of
the inert medium (where k+ = k− = 0) in [3], we deter-
mine the solute concentration near the catalytic particle.
Since Dc ≪ Ds, we assume a steady-state concentration
profile. Thus, we solve a reaction-diffusion equation:

Ds∇2c− k−c+ k+ = 0, (1)

which accounts for both diffusion and the chemical ac-
tivity of the medium.
At the surface of the catalytic particle, we consider

two distinct scenarios. In the first, solute concentration
is sufficiently high so that the surface catalysis rate is
reaction-limited, and thus independent of the local solute
concentration [3]. We also consider a diffusion-limited
case where the surface catalysis rate grows linearly with
local solute concentration; this case only has a non-trivial
steady-state in a chemically active medium. These cases
correspond to two different boundary conditions:

−r̂Ds· ~∇c
∣

∣

r0
=

{

α(θ) reaction-limited (2a)

γ(θ)c
∣

∣

r0
diffusion-limited (2b)

where the catalytic activity of the particle is given by
the surface flux, α(θ), or the surface flux per unit so-
lute concentration, γ(θ). These quantities are positive or
negative for, respectively, solute creation or destruction,
and may vary with the polar angle θ on the particle (we
assume azimuthal symmetry). We assume c|∞ = k+/k−

is the bulk steady state far from the catalytic particle.
Solving Eq. (1) in three dimensions (see Appendix A

for results in dimensions d = 1 and d = 2), we find the
series:

c(r, θ) =
k+

k−
+

∞
∑

ℓ=0

bℓkℓ(
r
λ)Pℓ(cos θ), (3)

where kℓ is the ℓth modified spherical Bessel function of
the second kind [27, 28], Pℓ is the ℓth Legendre poly-
nomial, bℓ is a coefficient, and the decay length λ =
√

Ds/k− is the typical distance that solute diffuses be-
fore being destroyed.
The perturbation of the solute concentration field due

to the catalytic particle decays as

c(r)− k+

k−
∼

{

1
r r ≪ λ (4a)

e−r/λ r ≫ λ (4b)

On short length scales, the concentration field is simi-
lar to that of the inert medium [3], but on length scales

longer than the decay length, the concentration field de-
cays exponentially due to the activity of the medium.
We determine the coefficients, {bℓ}, from Eq. (2) by

expanding the surface activity in Legendre polynomials
[3]. In the reaction-limited case,

bℓ =
αℓ(2ℓ+ 1)√

Dsk−(ℓkℓ−1(
r0
λ ) + (ℓ+ 1)kℓ+1(

r0
λ ))

, (5)

where αℓ is the ℓth coefficient in the expansion of α(θ).
In the diffusion-limited case, bℓ is determined by solving
the system of equations:

Dsbℓ
λ(2ℓ+1)

(

ℓkℓ−1

(

r0
λ

)

+ (ℓ+ 1)kℓ+1

(

r0
λ

))

=

γℓ
k+

k−
+
∑

n,m

γnbmkm
(

r0
λ

)

cnmℓ,
(6)

with cnmℓ =
∫ 1

−1
Pn(x)Pm(x)Pℓ(x)dx given by [29]. The

infinite set of equations in Eq. (6) can be solved in closed
form to any desired precision by setting bℓ = 0 for ℓ larger
than a cutoff ℓ∗ in the expansion of γ [30].
When the catalytic activity of the particle is asymmet-

ric, it can self-propel. To determine the self-propulsion
speed we calculate the slip velocity, vs(θ) [3]. vs is the
difference between the particle velocity and the velocity
of the ambient fluid at the surface of the particle [31]; this
slip is responsible for net particle propulsion [3, 31, 32].
vs arises from the tangential component of the concen-
tration gradient at the particle surface [3, 31]:

~vs(θ) = µ(θ)~∇||c
∣

∣

r0
, (7)

where µ(θ) is the mobility coefficient [3, 31].
Using a version of the low Reynolds number reciprocal

theorem [3, 32, 33], we find that the propulsion velocity,
~v, is the slip velocity averaged over the surface of the
particle (see Appendix B):

~v = − 1

4πr20

∫

~vsdS. (8)

Substituting for the slip velocity, ~vs, and integrating, we
have:

~v =
−ẑ

r0

∞
∑

ℓ=1

bℓkℓ
(

r0
λ

)ℓ(ℓ+ 1)

2ℓ+ 1

(

µℓ−1

2ℓ− 1
− µℓ+1

2ℓ+ 3

)

, (9)

where {µℓ} are the coefficients of the Legendre polyno-
mials in the expansion of µ(θ).

B. Reaction-limited case

For the reaction-limited case, there are two scaling
regimes for the propulsion speed, v:

v ∼
{

µα
Ds

λ ≫ r0
µα

r0
√

Dsk−

λ ≪ r0
(10)
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The speed is proportional to the catalytic activity of the
particle and the strength of the physical interaction be-
tween the particle and the solute species.
In the limit of slow bulk solute degradation, the ac-

tivity of the medium is negligible over the length of the
catalytic particle, which is small compared to solute de-
cay length. Thus, v scales as in the inert medium, where
self-propulsion is independent of particle size [3] because
the concentration profile is scale-free on the scale of r0.
When the catalytic particle is larger than the decay

length, medium chemical activity qualitatively alters par-
ticle self-propulsion by perturbing the solute concentra-
tion. Thus, v decreases as particle size, r0, and/or the
bulk solute degradation rate, k−, increase. Unlike the
size-dependence that arises with Michaelis-Menten sur-
face kinetics [34], the r0-dependence here arises from the
importance of the activity of the underlying medium over
length scales > λ. Eq. (10) demonstrates that the chem-
ical properties of the medium – in addition to its physi-
cal properties such as viscosity, η ∝ 1/Ds – control self-
propulsion of catalytic particles.

C. Diffusion-limited case

For diffusion-limited systems, self-propulsion depends
on the chemical properties of the medium for all par-
ticle sizes. For the simplest case with self-propulsion,
we consider the minimal asymmetric model with γ(θ) =
γ0 + γ1P1(cos θ).
To simply describe the system, we reduce the parame-

ters by non-dimensionalizing the reaction-diffusion equa-
tion by rescaling lengths by λ =

√

Ds/k− and concen-
trations by c0 = k+/k−:

∇2c− c+ 1 = 0. (11)

Thus, the boundary condition, Eq. (2b), is written as:

−r̂· ~∇c
∣

∣

r=R
= (g0 + g1 cos θ)c

∣

∣

r=R
(12)

where R = r0/λ is the dimensionless particle size, and
g0 = γ0/

√
Dsk− and g1 = γ1/

√
Dsk− are the dimension-

less catalysis rates.
The concentration is now written as:

c(r, θ) =

(

1 +

∞
∑

ℓ=0

b̃ℓkℓ(R)

)

c0 (13)

where b̃ℓ = bℓ/c0. Consequently, the self-propulsion
speed scales as:

v ∼ µ

r0
c0b̃1k1(R) (14)

where the coefficient b̃1 is found through a systematic
approximate solution to the system of equations, Eq. (6)
(see Appendix C).

For sufficiently small g0 and g1, defined approximately
as g0+

2
3 |g1| ≪ 1

R +1, the self-propulsion speed scales as
(see Appendix C):

v ∼
{

µγ1k
+

Dsk−
R ≪ min( 1

|g0| ,
1

|g1| , 1)
µγ1k

+

r0
√
Ds(k−)3/2

R ≫ 1
(15)

v is insensitive to γ0 at leading order, but it varies linearly
in γ0 for small γ0 and as 1/|γ0| for very negative γ0 (inset
to Fig. 1a). Thus, for slow surface catalysis, v scales as
in the reaction-limited case, Eq. (10), but multiplied by
the solute concentration, c0 = k+/k−, sustained by the
medium.
Rapid solute production by the catalytic particle can

overwhelm the destruction of solute by the medium. In
that case, the model assumptions are not compatible with
a nonequilibrium steady-state. As in Fig. 1a, v diverges
for large g0 and |g1|. Similarly, for large g0 and |g1|, v
diverges for large particles since the total surface catal-
ysis overwhelms background activity (Fig. 1b). Mathe-
matically, these divergences arise from the zeroes of the
denominator of the expression for the coefficient b̃1 (see
Eq. (C1)). In a real autocatalytic system (e.g., actin fil-
ament networks [35]), surface catalysis saturates at high
concentration, and thus, the system should transition to
a steady-state with the boundary condition in Eq. (2a)
and velocity in Eq. (10).

III. INTERACTIONS

A. Screening of interactions

Catalytic particles are capable of self-organization
through their interactions with the concentration fields
generated by other catalytic particles [10–13, 36]. In an
inert medium, these interactions are long-ranged, decay-
ing as 1/r (Eq. (4a)) [12, 13]. In a chemically active
medium, however, the solute distribution decays expo-
nentially (Eq. (4b)). A similar screening length arises
in the limit of many closely-packed catalytic particles
in the diffusion-limited (“unsaturated”) regime, which is
discussed in [13]. Thus, as with electrostatic interactions
in an ionic solution, diffusiophoretic interactions in an
active medium are exponentially screened.

B. Simulation model

To understand interactions in a biochemically active
medium, we developed a Brownian dynamics simulation
model in which catalytic particles chemically and physi-
cally interact with rapidly diffusing solute molecules. We
consider catalytic particles of radius r0 that repel each
other by excluded volume interactions in a periodic sys-
tem of size L. These particles act as potential wells for
diffusing solute molecules, binding solute within a dis-
tance r0 with energy ǫ. While bound, solute molecules
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are degraded by the catalytic particle at rate k−c . So-
lute particles diffuse with coefficient Ds = 1000Dc, are
degraded by the medium at rate k− when not bound to
a catalytic particle, and are produced by the medium
at rate k+. The coupling of physical and chemical in-
teractions models a collection of enzymes, each of which
must bind its substrate before catalyzing a reaction. Ad-
ditional model details are provided in Appendix D. Al-
though some details of the simulation differ from the the-
ory, the simulation can be described by the theory with
an appropriate choice of surface activity, as described in
Appendix E.

The interactions between two diffusiophoretic particles
depend on the whether the particles locally deplete or
enhance the solute concentration and whether they at-
tract or repel solute [12]. In the simulation, the effective
surface activity, α, is proportional to the ambient con-
centration k+/k− and the composite rate, k− − eβǫk−c ,
comparing solute degradation by the medium to solute
degradation and sequestration (binding) by the catalytic
particle (Eqs. (E9) and (E10)). Thus, enzyme-like ma-
chines in a biochemically active medium repel each other
when k− < k−c e

βǫ, attract when k− > k−c e
βǫ, and do not

interact when k− = k−c e
βǫ.

A catalytic particle locally depletes solute by binding
it with energy ǫ and degrading it at rate k−c . The con-
centration of solute bound to the catalytic particle is eβǫ

times larger than the local medium solute concentration;
this enhances the rate of solute depletion by the particle
by eβǫ. Thus, even if k−c < k−, solute can be depleted
from the medium if it only rarely unbinds from the cat-
alytic particle (large ǫ). However, if catalytic particles
degrade solute more slowly than the medium and the
binding time is short (small ǫ), the particle behaves as
solute source. This demonstrates that interactions, and
thus self-organization, may be altered through manipula-
tion of either the active medium or the catalytic particle
properties.

C. Simulation results and theoretical analysis

To quantify interactions, we construct an effective
equilibrium theory incorporating both excluded volume
and concentration-gradient-mediated interactions. For
simplicity, we consider the simplest case with symmet-
ric particles, which do not independently self-propel (i.e.,
only considering the ℓ = 0 terms of the Legendre polyno-
mial expansions of α(θ) and µ(θ)). However, the analysis
can be generalized to specific cases of asymmetric, self-
propulsive particles as well (by considering the ℓ > 0
terms in the expansions).

Excluded volume directly induces repulsive forces on
length scales r < 2r0, which leads to an effective entropic
repulsion over longer length scales. Catalytic particles
also interact through their concentration fields. Thus,

the effective interaction potential between particles is:

U(r) =

{

∞ r < 2r0
−ǫwc(r) r > 2r0

(16)

where c(r) is the single-particle concentration profile
(e.g., Eq. (E1) for d = 3 or Eq. (E11) for d = 1) and
w is the volume of the solute-binding region of the ma-
chine. Since the solute concentration is continuously in
steady state with respect to the catalytic particle posi-
tions, it acts as a static potential. The coefficient, ǫ, is
the binding energy.
For

√

Ds/Dc ≫ λ/r0, this approach is justified by the
separation of timescales between particle motions and
concentration profile perturbations. In particular, the
effective equilibrium approximation used to estimate in-
teractions between catalytic particles relies on the sep-
aration of the characteristic timescale, τc, for catalytic
particle motion from the lifetime, τs, of perturbations to
the solute concentration profile.
The timescale for catalytic particle motion is given by

the diffusion coefficient as: τc = r20/Dc. Since the parti-
cles are symmetric, they do not self-propel, so there is no
need to consider an effective temperature description [37]
based on the intrinsic velocity of the catalytic particles.
The lifetime for perturbations to the solute concentra-

tion profile can be calculated by considering linear per-
turbations to the reaction-diffusion equation (Eq. (1)):

∂tδc = Ds∇2δc− k−δc. (17)

Writing δc =
∑

δc̃(q, ω)ei(qr−ωt), we find iω = q2Ds+k−,
implying τs(q) = (q2Ds + k−)−1.
For the timescales to be comparable, we must have

q2Ds + k− ≈ Dc/r
2
0 . This is only satisfied for real q if

r0
√

Ds/Dc < λ; otherwise τc > τs(q) for all real q, as
desired for the equilibrium approximation. Since Ds ≫
Dc by assumption, τc ≈ τs(q) requires either the catalytic
particle to be very small or the bulk solute decay rate
to be very slow. Thus, the assumption of separation of
timescales valid if

√

Ds/Dc ≫ λ/r0. This is satisfied in

our simulations, where
√

Ds/Dc ≈ 32 and λ/r0 ≈ 2.2
(moreover, the slowest τs(q) is τs(q = 0) = 20, which is
much shorter than τc = 4000).
As a further consistency check, we consider the

timescale for particle motion due to the effects of the
concentration fields generated by other particles. This
time scale is τvc = r0/|v|, where the speed, |v|, is calcu-
lated as the magnitude of the effective force, F = wǫ|∇c|,
divided by the particle drag coefficient, kBT/Dc. Since
|∇c| . |α|/Ds and w = 2r0 in one dimension, we have
τvc ≈ (Ds/Dc)(kBT/2ǫ|α|).
From Eq. (E12), which gives the effective surface

catalysis rate in the simulation, we note that |α| <
k+ max(r0, λ). Since Ds/Dc ≫ 1, we also have τvc ≫ τs
unless ǫ, k+, r0, or λ is very large. For the simulations
considered, we have τvc > 231 compared to τs(q) ≤ 20.
To directly test the equilibrium approximation, we

compare the theory with the simulation in the case where
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the two machines are pushed together by an external
force, F . In the theory, the inter-particle force-distance
relation is given by the statistical-mechanical relation:

〈r〉 = − ∂ lnZ
∂(βF )

=

∫

0≤r≤L/2 re
−β(Fr+U(~r))ddr

∫

0≤r≤L/2 e
−β(Fr+U(~r))ddr

, (18)

which can be expressed exactly for the inert medium (see
Appendix F).

Distance fluctuations, 〈δr2〉 = 〈r2〉 − 〈r〉2, can be de-
rived in a similar manner (Eq. (F4)). As shown for the
one-dimensional examples in Fig. 2, the theory (lines)
agrees with the simulation (circles) provided that the
concentration near each particle is large enough that
the continuum approximation is valid and small num-
ber fluctuations are unimportant. This requires cmin ≈
min( k

+

k−

c
e−βǫ, k+

k−
) > 1/λd, similar to Debye-Huckel the-

ory.

Using the equilibrium theory, we studied how changes
in the underlying medium affect the mean distance, 〈r〉,
and fluctuations, 〈δr2〉, between interacting catalytic
particles in d = 1 (Fig. 3). 〈r〉 varies non-monotonically
with k− (Fig. 3a, solid line). For slow bulk degradation
(k− < k−c e

βǫ), particles are repulsive, so 〈r〉 is larger than
the zero-activity mean distance, L/4 + r0 (dotted line).
With fast bulk degradation (k− > k−c e

βǫ), particles are
attractive, so 〈r〉 decreases to 2r0. For very fast k−, the
solute concentration is low, so particle interactions vanish
and 〈r〉 approaches its non-interacting value.

Inter-particle distance fluctuations also vary non-
monotonically with k− (Fig. 3b, solid line). For k− such
that the attractions or repulsions are strong, fluctuations
are small, since the particles are tightly held in their
equilibrium positions. However, for k− ≈ k−c e

βǫ, the in-
teractions are weak, so 〈δr2〉 approaches the inert limit,
〈δr2〉 = (L−4r0)

2/48. The particles also interact weakly
and exhibit large distance fluctuations for large k−, when
the ambient concentration is low.

As the bulk production rate, k+, increases, interac-
tion strength grows linearly, and particles transition from
weakly to strongly interacting. However, changes to k+

cannot change the sign of interactions. Thus, 〈r〉 is nearly
the inert particle limit for small k+, but for large k+,
approaches maximum compression or separation for at-
tractive or repulsive interactions, respectively (Fig. 3c).

The increase in interaction strength with increasing k+

manifests as a power law decay in fluctuations (Fig. 3d).

For large k+,
√

〈δr2〉 ∼ 1/k+ for attractive interac-

tions and
√

〈δr2〉 ∼ 1/
√
k+ for repulsive interactions.

The power laws differ because attractive interactions are
dominated by the shape of the solute concentration field
at short length scales, whereas repulsive interactions are
dominated by its shape at long length scales.

D. Effective force

To determine whether diffusiophoretic interactions are
relevant in biological systems, we estimate the force aris-
ing from the d = 3 solute concentration profile (again
assuming separation of timescales). The effective force
due to diffusiophoretic interactions can be estimated by
considering the solute concentration profile generated by
the combined activity of the catalytic particles and the
underlying medium.
In d = 3, the concentration profile surrounding a cat-

alytic particle with surface activity α (in the reaction-
limited system) or γ (in the diffusion-limited system) is
given by Eq. (E1). In the reaction-limited case (see Ap-
pendix G for the diffusion-limited case), the resulting ra-
dial concentration gradient is:

∂rc = − αk1(r/λ)

λ2k−k1(r0/λ)
. (19)

We estimate the characteristic effective force, F ∗, due
to concentration-gradientmediated interactions by ǫw∂rc
at one screening length from the surface of the catalytic
particle (r = r0 + λ):

F ∗ = ǫw∂rc
∣

∣

r=r0+λ
. (20)

Estimating the volume of interaction between particle
and solute as w ≈ r30 (as in the simulation model), we
have:

F ∗ = − ǫαr50(r0 + 2λ)

eλ2k−(r0 + λ)3
. (21)

Thus, we find that F ∗ scales as:

F ∗ ∼
{

− ǫαr50k
−

D2
s

r0 ≪ λ

− ǫαr20
Ds

r0 ≫ λ
(22)

Assuming ǫ ≈ few kBT , Ds ≈ 1 µm2/s, k− = 0.1 s−1,
and α = 0.01 nm−2 s−1 (i.e., 1 enzyme with catalysis rate
1 s−1 per 100 nm2), F ∗ ≈ 1 pN for µm-sized particles.
We therefore conclude that diffusiophoretic interactions
can be important in biological systems.

IV. APPLICATION TO BACTERIAL PLASMID

PARTITIONING

Experiments and models suggest that chromosome
segregation, plasmid partitioning, and positioning of
organelle-like structures by the bacterial ParAB sys-
tem are phoretically driven by a ParA protein gradient
[21, 22, 24, 38–43]. In plasmid partitioning, the protein
ParB binds to parS -sites of plasmid DNA while ParA
binds the nucleoid. ParA molecules diffuse along the nu-
cleoid until dissociating into the cytoplasm. The ParB-
parS complex binds ParA, stimulating faster ParA disso-
ciation from the nucleoid. This system spaces plasmids
equally throughout the rod-shaped bacterium [44].



6

We interpret this as phoretic interactions between plas-
mids. Since ParB sequesters and dissociates ParA from
the surrounding nucleoid, it locally depletes ParA, as ob-
served in vivo [45] and in vitro [24, 40, 41]. This induces
effective repulsions between ParB-bound plasmids, which
move toward high ParA concentration. ParA polymeriza-
tion/depolymerization [46], may quantitatively, but not
qualitatively, alter this mechanism.
The bacterium is approximately a one-dimensional sys-

tem. For such a system, the effective force, F ∗ = ǫw∂xc,
may be derived from the one-dimensional concentra-
tion profile, approximately given by L → ∞ limit of
Eq. (E11). Thus, we estimate the effective force with
w = r0, as:

F ∗ = ǫw∂xc = −sgn(x)
ǫαr0
eDs

. (23)

For the ParAB plasmid partitioning system, where the
catalytic particle binds and degrades solute as described
for the simulation, the effective surface catalysis rate is
approximately given by the L → ∞ limit of Eq. (E12):

α =
(k+/k−)(k− − eβǫk−c )λce

r0/λc sinh
(

r0/λc

)

1 +
√

k−c /k−eβǫer0/λc sinh
(

r0/λc

)

. (24)

To estimate the interaction range and effective force,
we use measurements from in vitro and in vivo experi-
ments. We assumeDs = 0.85 µm2/s and k− = 0.032 s−1,
which were measured in vitro [41]. To estimate the as-
sociation rate, which is the effective production rate, we
estimate 2400 ParA molecules per nucleoid as measured
in [43] and estimate that the nucleoid is 3 µm in length.
We set this (d = 1) concentration equal to k+/k− in or-
der to arrive at k+ = 25 s−1µm−1, which is consistent
with the estimate in [43] and also the in vitro experi-
ments in [38, 40, 41]. We estimate that ǫ ≈ few kBT ,
consistent with the dynamics of ParA-ParB-parS com-
plexes observed in in vitro experiments [40, 41, 47]. We
estimate k−c ≈ 10k− which is approximately the rate at
which ParB-stimulated hydrolysis of ParA-ATP occurs in
vitro [47, 48]; however, we note that using a higher rate,
k−c , as in [43] increases α by an O(1) factor. Finally,
we estimate r0 ≈ 0.1 µm based on in vivo fluorescence
images such as those in [43].
We thus estimate an interaction range of λ ≈ 5 µm

and, by Eq. (23), we estimate an effective force of order
10 fN. λ is long enough to facilitate plasmid interac-
tions. F ∗ is comparable to the ≈ 10 fN viscous drag
that plasmids experience in vivo [49], and sufficient to
self-organize plasmids against thermal fluctuations.

V. CONCLUSION

Our model demonstrates a novel mechanism for con-
trolling self-propulsion and self-organization. The chem-
ical activity of the underlying medium affects these be-
haviors by altering the steady-state solute concentration

field. Tuning the background activity can change both
the strength and the sign of inter-particle interactions,
and define length scales of order λ, which may be much
larger than the size of the solute molecules or the enzy-
matic machines. For the ParAB bacterial plasmid par-
titioning system, our estimates suggest that the relevant
length scale, λ, is in the range of microns, and forces
on protein-coated plasmids are in the ten femtonewton
range. In general, the effective force generated by cat-
alytic machines in other in vivo scenarios could be as
large as a few piconewtons.
Our results suggest a number of general comments.

First, we anticipate that catalytic particle properties
(transport, interactions, and self-organization) within
cells might be controlled by altering the composition of
macromolecular complexes or post-translational protein
modifications (PTPMs, e.g., phosphorylation). Second,
since the behavior of the catalytic machines is dependent
on their environment and its activity as well, we expect
transport and interaction effects from changes in cyto-
plasmic properties. Such “medium” properties might be
manipulated by (over)expressing enzymes that degrade
reactant “solute” molecules. In terms of intracellular reg-
ulation, cells could change bulk concentrations and kinet-
ics of small biomolecules such as NTPs or proteins with
specific NTPs and PTPMs to modulate organization of
catalytic particles or organelles. Finally, we note that at
supracellular scales, chemotactic cells such as bacteria or
immune cells may utilize similar principles to those dis-
cussed in this paper to mediate swarming or dispersive
interactions.
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Appendix A: Reaction-diffusion equation in d = 1
and d = 2

In d = 1, the solution to Eq. (1)) is:

c±(x) =
k+

k−
+ b±e

−(|x|−r0)/λ, (A1)

where + and − subscripts respectively denote the solu-
tions for x > r0 and x < −r0.
In d = 2, we have:

c(r, θ) =

∞
∑

ℓ=0

Kℓ(r/λ)(b
c
ℓ cos(ℓθ) + bsℓ sin(ℓθ)), (A2)
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whereKℓ is a modified Bessel function of the second kind.

Appendix B: Derivation of the self-propulsion

velocity

As described in [32], the reciprocal theorem for low
Reynolds number hydrodynamics [33] may be used to
solve for the velocity, ~v, of self-propelled particle in terms

of the drag force, ~F acting against motion and the fluid
velocity, ~u, at the surface of the object:

~F ·~v = −
∫

n̂·σ· ~udS, (B1)

where σ is the stress on the particle surface due to motion
against the fluid and the integration is performed over the
surface of the particle.
In the model, the surface velocity, ~u, is the slip velocity,

~vs, arising from the tangential component of the concen-
tration gradient at the particle surface [3]. Thus, for a

spherical particle with ~F = 6πηr0~v and n̂·σ = − 3η
2r0

~v,
we find that the propulsion velocity is the slip velocity
averaged over the surface of the particle:

~v = − 1

4πr20

∫

~vsdS. (B2)

Substituting for the slip velocity, ~vs, we have:

~v = ẑ
4πr2

0

∫ 2π

0

dφ

∫ π

0

r20 sin
2 θdθ

∞
∑

ℓ=0

µℓPℓ(cos θ)
1
r0
∂θc

∣

∣

r=r0
,

(B3)
where we have expanded µ(θ) in Legendre polynomials.
Integrating this expression leads to Eq. (9).

Appendix C: Scaling of the self-propulsion velocity

in the diffusion-limited system

In order to approximately solve Eq. (6) in a systematic
manner, we assume that bℓ≥2 = 0. Thus, the coefficient

b̃1 is approximately:

b̃1 ≈ 3eRR3(3+R(3−g0))g1
18+9R(4−3g0)+R2(27−36g0+9g2

0
−4g2

1
)+R3(9−18g0+9g2

0
−4g2

1
)

(C1)
where R, g0, and g1 are reduced variables as described in
Section II C.
We first consider the limit of reduced catalysis rates,

g0 and g1, that are sufficiently small so that the catalysis
of the particle does not overwhelm the catalysis of the
medium. Thus, we only have physical solutions when
g0 is sufficiently small or negative and |g1| is sufficiently
small. The maximum values of these parameters is given
by the smallest real root of the denominator in Eq. (C1)

(i.e., the values of g0 and g1 for which b̃1 diverges).
There is a maximum value for g0; on the other hand, if

g0 is very negative, the catalytic particle destroys solute

very quickly, which leads to a valid steady-state with low
solute concentration. If g0 were too large, concentration-
dependent solute production by the catalytic particle
could overcome the concentration-dependent destruction
of solute in the medium.
For g1, there is an upper limit to its absolute value;

since P1(cos θ) = cos θ is positive for one half of the par-
ticle surface, but negative for the other half, g1 is related
to both destruction and production of solute, regardless
of its sign. Moreover, the expression for b̃1 is manifestly
odd in g1. Since the total rates of solute catalysis at the
particle surface by the ℓ = 1 term depend on the local so-
lute concentration, if |g1| is too large, production of solute
on one side of the catalytic particle can overwhelm solute
destruction on the other side of the particle and the entire
medium. In that case, there is no physically-meaningful
steady-state solution to the reaction-diffusion equation,
and the solute concentration grows without bound. We
note that in a real system, this unphysical behavior would
be cut off by physical effects not considered in this for-
mulation of the boundary condition, such as saturation
of the activity at the particle surface.
The denominator in Eq. (C1) is zero for

g0 =
9 + 12R+ 6R2 ±

√

9 + 16g21R
2(1 + 2R+R2)

6R(1 +R)
(C2)

and

g1 = ± 3
√

2+4R+3R2+R3−3Rg0−4R2g0−2R3g0+R2g2
0
+R3g2

0

2R
√
1+R

.

(C3)
As discussed above, g0 must be small enough or suffi-
ciently negative to overcome the solute production due
to g1, so g0 must be less than the “−” expression in
Eq. (C2). In contrast, since |g1| must be small, we re-
quire that g1 lie between the “+” and “−” solutions of
Eq. (C3).
To simplify these expressions, we first combine the

small and large R limits of Eq. (C2) to obtain an ap-
proximate threshold. This yields g0 + 2

3 |g1| < 1
R + 1,

which requires g0 and |g1| strictly less than the actual
thresholds in Eqs. (C2)-(C3).

Since |b̃1| → ∞ is unphysical (and moreover, Eq. (C1)
is approximate, with the approximation worsening near
the divergence in b̃1), we assume that g0 and g1 are small
enough that we are far from these threshold values.
With these assumptions, for R ≪ 1, we find:

b̃1 ≈ g1

(

1

2
R2 +

7

12
g0R

4 +
1

72

(

45g20 − 24g0 + 8g21)R
5

)

,

(C4)

which is the exact expression for b̃1 to O(R4). (The exact

expression for b̃1 to O(R6) may be found by calculating

b̃1 under the assumption b3 = 0, etc.)

Thus, for R ≪ 1, b̃1 ∼ g1R
3 provided that R < 6

7|g0| ≈
1

|g0| (so that the O(R4) does not dominate) and R <
3

g1
√
2
≈ 1

|g1| (so that O(R5) does not dominate if g0 ≈ 0).
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For R ≫ 1, we have:

b̃1 ≈ 3eRR(3− g0)g1
9− 18g0 + 9g20 − 4g21

, (C5)

which scales as b̃1 ∼ g1ReR for small g0 and |g1|.
By combining these scaling expressions with the scal-

ing of k1(R) with R, we arrive at Eq. (15).
Finally, the scaling with g0 can be extracted by noting

that near g0 = 0, ∂b̃1
∂g0

≈ constant > 0, whereas for g0 →
−∞, b̃1 ∼ 1/|α0|.

Appendix D: Simulation details

The catalytic particles of radius r0 effectively maintain
excluded volume interactions through a short-ranged har-

monic repulsion, which is given by:

UR(r) =
K

2
(r − 2r0)

2, (D1)

for r < 2r0 where K = 500kBT .

Catalytic particles bind solute particles with through
a Lennard-Jones-like potential, which is truncated at r =
rc so that energy and force are zero at the edge of the
potential well:

U(r) =























−ǫ+ ǫ
σ12−σ14

(

(

σ
rc

)12 −
(

σ
rc

)14
+ a

(

14σ14

r15c
− 12σ12

r13c

)

)

r < a

ǫ
σ12−σ14

(

(

σ
r

)14 −
(

σ
r

)12 −
(

σ
rc

)14
+
(

σ
rc

)12
+ r

(

14σ14

r15c
− 12σ12

r13c

)

)

a < r < rc

0 else

(D2)

where σ = a
√

6/7 fixes the minimum to a. The minimum
energy is approximately −ǫ. We set a = 1 and rc = r0 =
2 in our simulations.
All particles in the simulation are also subject to Brow-

nian noise, F (t), which is described by:

〈~F (t)〉 = 0 (D3)

〈~F (t)· ~F (t′)〉 = 2dkBTζδ(t− t′), (D4)

where ζ is the particle drag.
The equations of motion are given by [50]:

ζ~̇r = −~∇(UR + U) + ~F (t), (D5)

which we integrate using an Euler algorithm.

Appendix E: Mapping theory onto simulation

In the theoretical model described above, symmet-
ric catalytic particles produce the following steady-state
concentration fields:

c(r) =















k+

k−
+

α0k0(
r
λ )√

Dsk−k1(
r0
λ )

reaction-

limited

k+

k−

(

1 +
γ0k0(

r
λ )

(
√

Dsk−(1+
λ
r0

)−γ0)k0(
r0
λ )

)

diffusion-

limited

(E1)
The steady-state solute concentration distribution

in the simulation corresponds to the following set of

reaction-diffusion equations:

Ds∇2c− k−c+ k+ = 0 r > r0 (E2)

Ds∇2c− k−c c+ k+ = 0 r < r0 (E3)

The matching conditions at the boundary, r = r0 are
approximately given by:

c
∣

∣

r→r−
0

= eβǫc
∣

∣

r→r+
0

(E4)

∂rc
∣

∣

r→r−
0

= ∂rc
∣

∣

r→r+
0

. (E5)

Note that this is an approximation because the potential
given in Eq. (D2) is smooth rather than infinitely sharp
at r = r0.

In a system of infinite size in d = 3, the solution to
these equations is:

c(r) =

{

k+

k−

c
+B0i0

(

r
λc

)

r < r0
k+

k−
+ b0k0

(

r
λc

)

r > r0
(E6)

where λc =
√

Ds/k
−
c and i0 is the 0th modified spherical

Bessel function of the first kind (iℓ(x) =
√

π
2xIℓ+1/2(x)

[27]), and B0 and b0 are constants determined from the



9

matching conditions. These constants are:

B0 =
k+(eβǫk−c − k−)r0(r0 + λ)sech

(

r0
λc

)

k−k−c
(

r0λeβǫ + λc(r0 + λ(1 − eβǫ)) tanh
(

r0
λc

))

(E7)

b0 =
k+(k− − eβǫk−c )r0e

r0/λ
(

r0 − λc tanh
(

r0
λc

))

k−k−c
(

eβǫr0λ+ λc(r0 + λ(1− eβǫ)) tanh
(

r0
λc

)) .

(E8)

This solution (Eqs. (E6)-(E8)) can be rewritten in the
form of Eq. (E1). To do this, choose

α0 =
k+Ds(k

− − eβǫk−c )(r0 + λ)(r0 − λc tanh(
r0
λc
))

k−k−c r0(eβǫr0λ+ λc(r0 + λ− λeβǫ) tanh( r0λc
))

(E9)

for the solution to the reaction-limited system, or equiv-

alently, choose

γ0 =
Ds(k

− − eβǫk−c )(r0 + λ)(r0 − λc tanh(
r0
λc
))

r0(k−r0λ+ λc(r0 + λ− λeβǫ) tanh( r0λc
))

(E10)

for the diffusion-limited system. It can be shown that de-
nominator is not zero for any real positive Ds, k

−, k−c , ǫ,
and r0, so this mapping is well-behaved.

In a periodic system of size L in d = 1, corresponding
to the simulation examples given in the text, we have the
additional constraints that the concentration is periodic
in r (c(−L/2) = c(L/2)) and ∂rc

∣

∣

r=±L/2
= 0 so that

the concentration varies smoothly everywhere. Consid-
ering a catalytic particle centered on r = 0 and denoting
the effective surface catalysis rate (in the reaction-limited
scenario) as α, we have exponential solutions for the con-
centration profile:

c(x) =

{

k+

k−

c
− α cosh(x/λc)

λck
−

c sinh(r0/λc)
|x| < r0

k+

k−
+ α

λk−

(

sinh
( r0−|x|

λ

)

− coth
( r0−L/2

λ

)

cosh
( r0−|x|

λ

))

|x| > r0
(E11)

where the effective surface catalysis rate is:

α =
(k+/k−)(k− − eβǫk−c )λce

r0/λc sinh
(

r0
λc

)

1−
√

k−

c

k−
eβǫer0/λc sinh

(

r0
λc

)

coth
( r0−L/2

λ

)

. (E12)

Eqs. (E11)-(E12) completely describe the steady-state
solute concentration profile in d = 1 as a function of the
simulation parameters k+, k−, k−c , Ds, L, r0, and ǫ.

Appendix F: Calculation of the force-distance and

force-fluctuation relations

Here we consider the mean distance, 〈r〉, between two
thermally-diffusing, chemically-inert, hard particles of ra-

dius r0 pushed together by force F in a periodic system
of length L. The mean distance diverges as F−1 as the
force pushing the particles together approaches 0. Ac-
cording to equilibrium statistical mechanics, 〈r〉 can be
found by integrating:

〈r〉 = − ∂ lnZ
∂(βF )

=

∫

0≤r≤L/2 re
−βFrddr

∫

0≤r≤L/2 e
−βFrddr

. (F1)

Thus, we find:

〈r〉 =



































[

2r0 +
1
βF

]

+ e2βFr0 (L/2−2r0)
e2βFr0−eβFL/2 d = 1

[

2r0 +
2
βF − 2r0

1+2βFr0

]

+ βFe2βFr0(L/2−2r0)(L+4r0+2βFLr0
1+2βFr0)(e2βFr0(βFL+2)−2eβFL/2(2βFr0+1)

d = 2
[

2r0 +
3

βF
− 2r0(1 + 2βFr0)

1 + 2βFr0(1 + βFr0)

]

+
32r0e

βFL/2(1+2βFr0(1+βFr0))
2−e2βFr0 ((βFL)2L+2r0(2+βFL)(8+(βFL)2)+2βFr20(32+βFL(16+βFL(4+βFL))))

2(1+2βFr0(1+βFr0))(8eβFL/2(1+2βFr0(1+βFr0))−e2βFr0 (8+βFL(4+βFL)))

d = 3

(F2)

where the brackets contain the value of 〈r〉 in the L → ∞
limit. In general dimension, we can concisely write:

〈r〉 = Γ(d+ 1, βFL/2)− Γ(d+ 1, 2βFr0)

βF (Γ(d, βFL/2)− Γ(d, 2βFr0))
(F3)

where Γ(n, x) = (n − 1)!e−x
∑n−1

k=0
xk

k! is the incomplete
gamma function [27].
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Similarly, fluctuations can be calculated as

〈δr2〉 =
∫

0≤r≤L/2
(r − 〈r〉)2e−βFrddr

∫

0≤r≤L/2 e
−βFrddr

, (F4)

which diverges as 1/(βF )2 in the L → ∞ system.

Appendix G: Effective force in the diffusion-limited

case

In d = 3, the concentration profile surrounding a cat-
alytic particle with surface activity α (in the reaction-
limited system) or γ (in the diffusion-limited system) is
given by Eqs. (E1). In the reaction-limited case (see Ap-
pendix (G for the diffusion-limited case), the resulting

radial concentration gradient is:

∂rc = − γ(k+/k−)k1(r/λ)

λ(λk−(1 + λ/r0)− γ)k0(r0/λ)
. (G1)

Thus, using Eq. (20), we find the characteristic force int
he diffusion-limited case to be:

F ∗ = − ǫγr40(r0 + 2λ)(k+/k−)

eλ(λk−(1 + λ/r0)− γ)(r0 + λ)2
. (G2)

This force scales as:

F ∗ ∼







− ǫγr50k
+

(Ds−γr0)Ds
r0 ≪ λ

− ǫγr30k
+

(
√

Dsk−−γ)
√

Dsk−

r0 ≫ λ
(G3)
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FIG. 1. Scaling of v for diffusion-limited cases. a) v (in
units of µc0/r0) grows linearly in |g1| until diverging. Solid
and dashed lines show v with g0 = ±|g0|, respectively. Inset:
v for g0 > 0 with small |g1| (solid), g0 < 0 with small |g1|
(dashed), and g0 < 0 with large |g1| (dotted). v grows linearly
with |g0| for small |g0| if g1 is sufficiently small, but decays
as 1/|g0| for sufficiently negative g0 (dashed) or diverges for
large |g0| (solid). For large |g1|, steady-state v exists only
for sufficiently negative g0 (dotted). b) v is insensitive to R
at small R, but decays at large R as 1/R if g0 and |g1| are
sufficiently small (solid) and diverges otherwise (dashed).
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FIG. 2. Force-distance relation and distance fluctua-

tions from theory and simulation. a) Without chemi-
cal activity, particles pushed together with force F (units of
2kBT/r0) entropically repel (solid line). 〈r〉 as a function of
F is depressed for attractions in both the theory (dashed line)
and simulation (solid circles). 〈r〉 is larger for repulsions in
the theory (dash-dotted line) and simulation (open circles).
Dotted line shows 〈r〉 = 2r0 and L = 30. b) The correspond-
ing distance fluctuations.
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FIG. 3. Medium activity controls mean distance and

fluctuations. a) 〈r〉 varies non-monotonically with k− (solid
line). 〈r〉 ≈ L/2 for strong repulsions and 〈r〉 ≈ 2r0 for
strong attractions. For weak interactions, i.e., k− ≈ k−

c eβǫ

(vertical line) or large k−, 〈r〉 → L/4 + 2r0 (dotted). b)
√

〈δr2〉 is small for k− < k−
c eβǫ and k− & k−

c eβǫ, but large

for k− ≈ k−
c eβǫ and large k−. c) As k+ increases, 〈r〉

decreases/increases toward maximum compression/extension
for attractions/repulsions (solid/dashed). d) For large k+,
√

〈δr2〉 decreases as 1/k+ for attractions (solid) and 1/
√
k+

for repulsions (dashed). L = 50 in all panels.


