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Abstract

Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer

melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle

is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt

can be extracted under certain limitations using this technique. As shown before for unentangled

chains [Karim et al., Phys. Rev. E 86, 051501 (2012)], the frequency range of applicability

is substantially expanded when both particle and medium inertia are properly accounted for by

using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used

here introduces an entanglement length dT , in addition to those length scales already relevant:

monomer bead size d, probe size R, polymer radius of gyration Rg, simulation box size L, shear wave

penetration length ∆, and wave period Λ. Previously, we demonstrated a number of restrictions

necessary to obtain the relevant fluid properties: continuum approximation breaks down when

d & Λ; medium inertia is important and IGSER is required when R & Λ; and the probe should not

experience hydrodynamic interaction with its periodic images, L & ∆. These restrictions are also

observed here. A simple scaling argument for entangled polymers shows that the simulation box

size must scale with polymer molecular weight as M3
w. Continuum analysis requires the existence

of an added mass to the probe particle from the entrained medium, but was not observed in

the earlier work for unentangled chains. We confirm here that this added mass is necessary only

when the thickness LS of the shell around the particle that contains the added mass, LS > d.

We also demonstrate that the IGSER can be used to predict particle displacement over a given

time scale from knowledge of medium viscoelasticity; such ability will be of interest for designing

nanoparticle-based drug delivery.

∗ Email: rajesh.khare@ttu.edu
† Email: schieber@iit.edu
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I. INTRODUCTION

Microrheology has evolved as a reliable experimental technique to extract the linear

viscoelastic properties of complex fluids using either active or passive modes, and either

single-point or two-point statistics [1–3]. Single-point rheology tracks the motion of a single

spherical particle, whereas two-point rheology follows the hydrodynamic interaction of two

such particles. Passive techniques rely on thermal motion of particles to probe the sys-

tem, whereas active modes apply external oscillatory forces to move the particles. These

techniques have become sufficiently reliable that even commercial passive, single-point mi-

crorheometers are available. The particles can be tracked by diffusing wave spectroscopy

[4], laser interferometry [5], optical laser tweezers [6], or video tracking in either passive or

active modes [2].

Since the required sample size is order one microliter, microrheology is well suited for ex-

pensive or scarce materials. However, materials of high modulus (& 10kPa) are problematic

for passive microrheology, since probe motion is then hard to detect. This restriction is not a

concern for many important materials, which are sufficiently soft; one thus finds examples of

microrheology on colloidal suspensions [7–9], polymer gels [5], cells [10, 11], associated and

flexible polymer solutions [12, 13], micellar solutions [14] and biological polymer networks

like F-actin [15–17].

Rigorous data analysis for singe-point passive microrheology utilizes the generalized

Stokes-Einstein relation (GSER), or at sufficiently high frequencies, the inertial GSER

(IGSER) [18]. This relation assumes that (1) the probe particle sees the medium as a

continuum, (2) that deformations of the medium due to the particle displacement are suf-

ficiently small that the medium can be treated in the linear viscoelastic regime, (3) the

fluctuation-dissipation theorem applies, and (4) the probe particle experiences no hydro-

dynamic interaction with nearby surfaces. The first assumption requires that the material

microstructure be smaller than the probe diameter. However, the material may have het-

erogeneity (say polymer concentration fluctuations) on length scales larger than the probe

diameter, in which case the technique can be used to measure local properties in systems

such as intracellular compartments [19] and glassy materials [20]. This knowledge of local

linear viscoelasticity obtained from probe microrheology can be useful for predicting local

transport phenomena in practical applications such as the motion of drug carrying nanopar-
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ticles in mucus [21] and the motion of filler particles in polymer composite materials [22].

By definition, passive microrheology remains in the linear regime guaranteeing that assump-

tion (2) is valid. If active microrheology is used, the amplitude of the probe displacements

needs to remain much smaller than the probe size. As regards to the third assumption,

the fluctuation-dissipation theorem is otherwise very broadly applicable, but is not obeyed

for systems with molecular motors (so-called “active gels”), which convert chemical energy

into kinetic energy or force. The fourth assumption may be violated if there is a nearby

solid surface, or in simulations, if the periodic boundary conditions place image particles too

close to the probe. Two-point rheology analysis makes similar assumptions, but relies on

hydrodynamic interaction between two probes. This interaction cannot be handled exactly,

and various mathematical approximations can be employed with a high degree of accuracy

[23–25].

If the intention is to use probe rheology for capturing the bulk linear viscoelastic behavior,

then caution has to be exercised in the interpretation of the local linear viscoelasticity

determined in this case. The most important issue is the interplay of physics occurring on

different length scales. The length scales of interest for this purpose are: probe particle size,

material microstructural length i.e. polymer network mesh length and the chain size [15, 26].

For traditional microrheological analysis to be valid [27, 28], the probe size should be large

enough so that it can feel the surrounding medium as a continuum; this allows application

of the GSER [2]. In the other limit, if the probe is of comparable or smaller size than the

polymer segment, it will not sample the continuum properties of the medium [29].

On the theoretical side, an approach for determining the viscoelastic properties of a

medium by analyzing the velocity autocorrelation function of a suspended particle has been

proposed [30, 31]. On the other hand, some of us recently addressed several issues involv-

ing particle and medium inertia in single- and two-particle microrheology [24, 25, 32, 33].

For single-particle microrheology, a safe way of eliminating particle inertia was argued and

proper Brownian dynamics simulations for inertia-less particles were demonstrated for some

synthetic viscoelastic fluids [34]. For two-particle microrheology, effects of multiple wave

reflections between the trapped particles [24], compressibility of the medium [25], and finite

wave travel time [24, 25] were studied.

In our previous work [18], we studied probe rheology in a model unentangled polymer

melt by analyzing the molecular dynamics (MD) simulation data using continuum mechanics.
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We showed that the effects of particle and medium inertia need to be explicitly accounted

for in such analysis to reach agreement with linear viscoelasticity determined by Green-

Kubo or small-amplitude oscillatory flow. The key equation is the inertial Generalized

Stokes Einstein relation (IGSER), obtained by the solution of unsteady transient motion

of a spherical particle in a linear viscoelastic fluid [35, 36]; IGSER is used to extract the

viscoelastic moduli of the medium from the probe particle motion.

Kuhnhold and Paul [37, 38] also simulated both active and passive microrheology in

a melt of unentangled bead-spring chains. However, they observed disagreement between

the two approaches, and suggested that the inertial generalized Stokes relation (and by

inference, the GSR) is incorrect, since it does not incorporate rheological memory effects.

However, the generalized Stokes relation is not an assumption, but rather the result of

a mathematical theorem utilizing the correspondence principle [35, 36]. It exploits the

convolution theorem in taking the Fourier transform of the memory integral that exists in

linear viscoelastic theory. As a result, the generalized Stokes relation has a form identical to

that arising from the Newtonian constitutive equation in the frequency domain, and includes

all necessary memory effects. Its strongest, maybe only, assumption is that the probe bead

experiences a continuum with a well-defined dynamic modulus—an assumption implicit in

their work. There is another, more likely, reason for their observed discrepancy. First, their

simulation box had edge length only one sixth of our simulation, so would contain artifactual

hydrodynamic interaction between periodic images of the probe particle over a much greater

frequency range. For the active rheology, they reported estimates of the dynamic modulus

at very high frequencies at which these artifactual hydrodynamic interactions may not be

significant, but at the same time, these frequencies (ω ≥ 1) are comparable or above the

characteristic Lennard-Jones time scale [38]. In our previous simulations of an unentangled

system [18], we observed a crossover from the Basset-force dominated motion to the ballistic

motion of the probe on a very similar time range as that studied by Kuhnhold and Paul.

There we showed that the relaxation modulus could hence not be reliably extracted from

the probe motion signal for frequencies above 0.3, depending on available statistics. Since

Kuhnhold and Paul report dynamic modulus values above ω = 1 only, one should expect very

large uncertainty in the estimates. More puzzling is their observation that over this frequency

range, omitting inertia from the analysis yields positive storage moduli, while many of the

mathematical variants of the expression containing inertia used by them exhibit negative
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values of the moduli; our previous simulations showed behavior exactly opposite to theirs at

high frequencies—that use of GSER yielded unphysical values of the moduli whereas IGSER

yielded values that were in quantitative agreement with NEMD and Green-Kubo results.

In this work, we extend the IGSER approach to study probe rheology in an entangled

polymer melt in both passive and active modes. This system exhibits richer physics than

the unentangled system because of an additional relevant length scale: the entanglement

spacing dT . We examine the interaction of this new length scale with those already seen

in the unentangled system: monomer bead size (d), probe size (R), chain size (Rg), wave

length (Λ) and penetration depth (∆) of the shear wave, and the simulation system size

(L). We demonstrate that the linear viscoelasticity of the entangled polymer melt can

be quantified using particle rheology simulations, and we identify the frequency range over

which the analysis is valid. In a further important extension, we also demonstrate that if the

medium viscoelastic spectrum is available, then IGSER can be used to predict nanoparticle

displacement in the medium over a wide range of time scales.

II. COMPUTATIONAL METHOD

A. Simulation details

The system studied in this work consists of a nanoparticle (NP) that is embedded in a

weakly entangled (number of beads N = 80) polymer melt. There are two types of beads in

our system: polymer and nanoparticle beads. All beads interact with each other by either

the regular Lennard-Jones (LJ) potential or the purely repulsive LJ potential (WCA type).

Specifically monomer beads from the same chain or from different chains interact with each

other by the WCA potential [39],

UWCA(r) =

 4εpp

((σpp
r

)12

−
(σpp
r

)6

+
1

4

)
, r ≤ rc,pp = 21/6σpp

0, r > rc,pp

where r is the monomer-monomer pairwise distance and εpp, σpp, rc,pp are the LJ energy,

diameter and cut-off distance parameters respectively. The suffix pp in the expression rep-

resents pairwise monomer-monomer bead (from polymer chains) interaction. All quantities

reported in this work are nondimensionalized using σpp, εpp and mp (polymer bead mass).
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Here we note that, in reduced units, monomer bead size is d = σpp = 1. For nanoparticle-

nanoparticle bead interactions, we use the same interaction potential with σnn = 1 and

εnn = 1 and the same cut-off distance rc,nn = rc,pp. Since our continuum analysis as-

sumes that the no-slip boundary condition holds at the nanoparticle-polymer interface,

the full LJ potential along with σnp = 1, εnp = 2 and rc,np = 2.3 was used to elimi-

nate slip between the nanoparticle and the medium [40, 41]. Chain connectivity was mod-

eled by using FENE (Finitely Extensible Nonlinearly Elastic) springs with potential [42],

UFENE = −1
2
KQ2 ln

[
1−

(
r

Q

)2
]

; the values of the parameters being K = 30 and Q = 3/2.

The spherical nanoparticle with a rough surface was obtained by carving out a sphere of

radius, Rnominal = R = 12 [41], from a FCC crystal lattice structure with lattice spacing

value of 1.42. To maintain the rigidity of the nanoparticle, we connected each nanoparti-

cle bead with its nearest neighbors by harmonic bonds, UHarmonic = 1
2
kbond (b− b0)2, where

force constant kbond = 500, and b0 is the equilibrium bond distance as determined by the

original crystal structure. The ability of this potential to maintain the rigid structure of

the nanoparticle was established in previous work [41]. All simulations were carried out

at temperature, T = 1 and density, ρ = 0.85, using a time step ∆t = 0.003 for passive

rheology simulations, and a range of time step values from ∆t =0.001795—0.0027 for the

active rheology simulations (different values were used for different frequencies). For all of

our calculations, we used a cubic simulation box of edge length L = 150. The probe rheology

results were compared with values of the complex shear modulus G∗(ω), obtained from the

non-equilibrium molecular dynamics (NEMD) simulation [43]. For this purpose, small am-

plitude oscillatory shear NEMD simulations were performed at the same state point. In this

technique, oscillatory shear is applied to the model system by a combination of modification

of the equation of motion and application of the sliding-brick periodic boundary conditions

and the moduli are determined by monitoring the resulting stress developed in the system

as a function of time.[44] All of the simulations were performed at constant NV T (number

of beads, volume and temperature) conditions with a Nosé-Hoover thermostat [45] using the

LAMMPS [46] simulation package.

7



B. Continuum Mechanics Analysis:

The viscoelastic properties of the medium are obtained by analyzing the particle motion

using continuum mechanics. The analysis procedure is described in detail in our previous

work [18]. For the sake of completeness, a short summary is presented here. We write a

generalized Langevin equation for the probe particle motion in a complex medium

mbare
d2rb(t)

dt2
= −

∫ t

−∞
ζ(t− t′)drb(t

′)

dt′
dt′ + fex(t) + fB(t), (1)

wherembare and rb(t) are the probe particle mass (bare mass) and displacement, ζ(t−t′) is the

frictional memory tensor, while fex(t) and fB(t) are the external conservative and Brownian

forces acting on the particle, respectively. Using the fluctuation-dissipation theorem along

with the generalized Stokes relation, and accounting for medium and particle inertia [32, 33],

the generalized Langevin equation in the frequency domain takes the form [18]

6πRG∗(ω)

iω
+ 6πR2

√
ρG∗(ω) + iωmeff = Z∗(ω) (2)

where ρ is the density of the medium. The first term on the left side of Eq.2 is the Stokes

drag, the second term is the Basset force which has its origin in the medium inertia, and

the third term is the effective inertial force contribution from the probe particle. In the

third term, the effective mass of the moving particle in the medium is defined according to

continuum mechanics as: meff = mbare+madd [47]. The effective particle mass thus comprises

of the bare mass of the particle mbare and the added mass from the medium madd = 2
3
πR3ρ,

that results from the medium inertia.

The expression obtained by solving Eq. (2) for the dynamic modulus is

G∗(ω) =
iωZ∗(ω)

6πR
+
meffω

2

6πR
(3)

+
R2ω2

2

[√
ρ2 +

2ρ

3πR3

(
Z∗(ω)

iω
−meff

)
− ρ

]
.

We have verified that for both active and passive rheology, use of “bare” or “hydrodynamic”

radii values (12 and 12.31, respectively) yield effectively the same results. We note here that

for these calculations, the hydrodynamic radius of the probe particle is taken as the radius

of the spherical region around the probe from which the centers of the medium particles

are excluded [40]. The friction function Z∗(ω) assumes different forms in the active and the

passive rheology approaches. Separate considerations for these active and passive modes are

described in what follows.
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1. Active rheology:

In the active mode, the particle motion is realized by subjecting it to an external sinusoidal

oscillatory force, <e {F0e
iωt}, where F0, is the amplitude of the sinusoidal force and <e {...}

denotes the real part of its argument. In order to prevent the particle from wandering off

from a given position, it is also subjected to a harmonic trap, −He · ∆rb(t), that allows

for small excursions ∆rb(t) from the equilibrium position. Here He is the harmonic spring

constant tensor He =


He,xx 0 0

0 He,yy 0

0 0 He,zz

 with zero off-diagonal components in our chosen

coordinate system. Since our model polymer melt is an isotropic medium, analysis of particle

motion along any direction will yield the same viscoelastic properties. In this work, we have

chosen to impose the sinusoidal force along the x direction. Thus, the combined force that

the particle is subjected to will be fex = <e {F0e
iωt} −He · ∆rb(t). Appropriate choice of

the amplitude of the input force and the harmonic restraint parameters will ensure that the

resultant oscillatory displacement along x direction will be 〈∆xb(t)〉 = x0(ω)<e
{
ei(ωt−φ(ω))

}
where x0(ω) is the amplitude of the oscillatory displacement of the particle, and φ(ω) is the

frequency dependent phase lag of the displacement with respect to the input force. In the

linear regime, it is expected that x0(ω) ∝ F0 for a particular frequency ω, and the ensemble-

averaged particle displacement 〈∆xb(t)〉 will have contributions only at the input frequency

ω (i.e. absence of higher harmonics) [48]. In this work, the following choices were made for

the spring constants: He,xx = 10, He,yy = 1000 and He,zz = 1000. Note that, due to the use

of the large values of He,yy and He,zz, both 〈∆yb(t)〉 and 〈∆zb(t)〉 are negligible compared

with 〈∆xb(t)〉. Including these variables and parameters, we get the following expression for

the friction function for active rheology:

Z∗(ω) ≡ Z∗active(ω) =
1

iω

(
F0

x0(ω)
eiφ(ω) −He,xx

)
. (4)

2. Passive rheology:

For passive rheology, the friction function in Eq. (3) is given by [18]

Z∗(ω) ≡ Z∗passive(ω) :=
6kBT

(iω)2F̄
{
〈∆r2

b(t)〉eq

} , (5)
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where kB is the Boltzmann constant and F̄ {...} [ω] indicates the one-sided Fourier (or

Laplace) transform of the mean squared displacement (MSD) 〈∆r2
b(t)〉eq =

〈
[rb(t)− rb(0)]2

〉
eq

of the particle position rb(t).

Eq. (3) (with Z∗(ω) given by Eq. (5)), which results from the inclusion of the medium

and particle inertia in the GSER was called the inertial generalized Stokes Einstein relation

(IGSER) in our previous study [18] and prior work [30, Eq. (2.17)].

III. RESULTS

A. NEMD simulations for comparison with probe rheology

Probe particle rheology results for the viscoelastic moduli will be compared with bulk

rheology obtained by application of the established equilibrium and non-equilibrium MD

(NEMD) simulation techniques to the same system. The equilibrium, Green-Kubo (GK)

results from Sen et al. [49] for the bulk viscoelastic moduli of this system will be used for

the purpose of the comparison. To the best of our knowledge, NEMD results of viscoelastic

properties exist for short chains (N = 20), but not for this particular weakly entangled

system (N = 80). We thus obtained another independent set of viscoelastic moduli values

for our system by running NEMD simulations on the same model system (but without

the probe particle) and at the same conditions. For these calculations, the frequency range,

ω = 0.002—0.08 was chosen to match the frequency range used in the probe particle rheology

simulations. For a particular frequency ω, an oscillatory shear strain was imparted on the

simulation box and the corresponding shear stress component was monitored as a function

of time; these data were used to determine the values of G∗(ω). To capture the steady state

response of the system to the shear perturbation, the first 30 (50) oscillations were discarded

for the lower frequency decade (higher frequency decade). For the lower frequencies (0.002—

0.01), 70 oscillations and for the higher frequencies (0.02 - 0.08), 100 oscillations were used

for collecting data in these simulations. A comparison of our NEMD results with the existing

literature values [49] that were obtained by the application of the Green-Kubo method to

this system is shown in Fig. 1.

Over the entire frequency range we studied, the agreement between our NEMD results

and the literature values [49] from the Green-Kubo method is excellent. Below we compare
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FIG. 1. (Color online) Values of the linear storage, G′(ω) (open symbols) and loss, G′′(ω) (filled

symbols) moduli of entangled polymer melt of chain length N = 80 obtained from NEMD (squares)

simulations. Values are compared with the literature data (circles) obtained using Green-Kubo

simulations [49].

these two sets of bulk G∗(ω) values with the G∗(ω) results obtained from the linear probe

rheology simulations.

B. Probe rheology

1. Active rheology

In the active mode, particle motion is realized by subjecting the particle to a sinusoidal

external force <e {F0e
iωt}. In order to sample the linear viscoelastic regime, the force

amplitude F0 for a given frequency was selected such that the resultant oscillation magnitude

x0(ω) was much smaller than the particle diameter. It was verified that the viscoelastic

modulus (G∗(ω)) values so calculated were insensitive to the changes in the amplitude over

this range. Another check for linearity was also performed by ensuring that the Fourier

transform of the raw output oscillation signal of the particle showed only one characteristic

peak—that at the forcing frequency. With this setup, simulations were performed at several

frequencies over the range ω = 0.002—0.1. For the lower values of frequency, i.e. ω =

0.002—0.01, data for the center of mass location of the nanoparticle were collected for

80 oscillations, and for the higher frequency values, i.e. ω = 0.02—0.1, these data were
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collected for 100 oscillations. Out of these, data for the first 40 oscillations (equilibration

stage) were discarded and the remaining values were averaged to get the time averaged

sinusoidal output displacement signal. The amplitude and the phase lag of the particle

oscillation were then determined from these average data by assuming the functional form

〈∆xb(t)〉 = x0(ω)<e
{
ei(ωt−φ(ω))

}
. Eq. (3) with Eq. (4) was then used to calculate G∗(ω)

from these simulation results.

In Fig. 2, the active probe rheology results for the viscoelastic moduli of this entangled

melt are compared with our NEMD results and also the literature values that were obtained

using the Green-Kubo formalism [49]. As seen from Fig. 2, the active rheology results are

in good agreement with NEMD and GK results for little over a decade of frequency.

FIG. 2. (Color online) Comparison of frequency dependence of viscoelastic moduli as determined by

active rheology, NEMD and Green-Kubo techniques. The upper four (solid-star, dashed-plus, filled

circles and filled square) data sets are for G′′(ω) and the lower four data sets (solid-star, dashed-

plus, empty circles and empty squares) are for G′(ω). Solid-star lines differ from corresponding

dashed-plus lines in that the former represent results obtained by accounting for medium and

particle inertia while the latter represent results obtained by ignoring the medium and particle

inertia in the analysis procedure. Uncertanties are shown on the results that were obtained by

accounting for inertia; these were estimated by using the blocking method [50].

Fig. 2 also presents a comparison of G∗(ω) values calculated with and without accounting

for the medium and particle inertia. As was also observed in our previous work on an

unentangled polymer melt system [18], the G′(ω) (dashed-plus line in Fig. 2) exhibits
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negative values at higher frequencies when the medium and particle inertia are not included

in the analysis. This observation can be attributed to the importance of both the Basset

and the added mass acceleration terms at the higher frequencies. This effect is further

amplified by the use of the larger particle in the present study. Inclusion of the inertial

effects in the analysis not only removes these negative G′(ω) values at high frequencies but

also substantially enhances the agreement between the active probe rheology results and the

results from the NEMD and the Green-Kubo techniques. As was the case for the unentangled

polymers [18], this observation of ours for the entangled system also is opposite to that of

Kuhnhold and Paul [38] who found that when inertia was not accounted for in the analysis,

the storage modulus continued to exhibit positive values, whereas accounting for the inertia

in their analysis led to unphysical values for the storage modulus in many instances. Fig. 2

further shows that at lower values of frequencies, the G′(ω) shows a stronger decrease than

that observed in NEMD or Green-Kubo results, while the G′′(ω) attains a plateau value even

after including medium and particle inertia in the analysis of active rheology simulations.

We attribute this artifact to the hydrodynamic interactions between the periodic images of

the moving particle in the simulations; a more detailed discussion of this effect is presented

below.

2. Passive rheology

In this simulation, the probe particle was allowed to move through the entangled melt

under the influence of thermal fluctuations. Ten independent system replicas were used

and in order to capture the different regimes of particle motion, the particle trajectory was

tracked over as long a time scale (more than 500 million MD time steps) as practically

possible given the current computational power. In Fig. 3, we show the time dependence

of the mean-squared displacement (MSD) of the nanoparticle obtained by averaging over

10 replicas. The MSD shows 3 regimes: a short time scale ballistic regime, an intermediate

transient regime related to local caging (see inset in Fig. 3), and a “diffusive-like” regime

at long times. The statistical inaccuracies at these longer time scales are also seen from the

inset in Fig. 3. At longer times, approximately t & 5× 105, the plot of MSD vs. time on the

log scale has a slope of 0.93, thus indicating that the particle motion approached, but did

not reach, the diffusive regime, even at these long simulation times. In our previous study
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for an unentangled polymer melt system [18], we were able to capture the diffusive regime

over the simulation time scale. However, this higher-molecular weight system exhibits longer

relaxation times, which makes obtaining good statistics in the terminal zone more expensive.

One could perhaps sample the true diffusive regime for this system by tracking the probe

FIG. 3. (Color online) Averaged MSD (black dots) of a probe particle from 10 independent replicas.

Solid red line is the fitting curve obtained by Eq. 6 with α1 = 2.807, α2 = 1.877, α3 = 0.2111,

α4 = 0.7933, τ0 = 0.08, τ1 = 1.6, τ2 = 37, τ3 = 600, τ4 = 150000 (χ2 = 0.0086). Inset shows

the logarithmic slope of MSD with respect to time (calculated using Euler differencing approach)

where a transient caging effect due to the entangled mesh is evident from the minimum in the

slope.

motion over a longer period of time, may be one or two more time decades. But due to

the practical limitations in the current computational power, such long time simulations are

not presently feasible. For this reason, we have restricted these simulations to the longest

timescale practically achievable with current computational resources.

We have used an analytical fitting procedure to the MSD to capture the different regimes

of particle motion from the ballistic to the diffusive; the analytical expression is then used

in the IGSER, Eq. 3, to determine G∗(ω). For this purpose, we used two analytical func-

tions (Eqs. 8 and 9 below) which can capture both the short time ballistic regime and the

long time diffusive regime. This analytical fitting procedure is briefly summarized here.

Specifically, in single probe microrheological analysis, usually the logarithm of the MSD is

fit to a polynomial of ln t, and then an approximate expression of the one-sided Fourier
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(or Laplace) transformation is used for the polynomial to derive G∗(ω) from the MSD via

GSER [13, 28]. This method is practically useful but the approximation for the Laplace

transformation is poor when the MSD’s slope varies rapidly, and also the physical meaning

of the values of fitting parameters (i.e. the coefficient of the each order term and the order

of the polynomial) is lost. To overcome these limitations, we proposed a more accurate and

physically intuitive method [18] that utilizes the power-law spectrum used for the analysis

of viscoelastic relaxation spectrum [51]. In this scheme, the MSD is expressed as

〈
∆r2

b(t)
〉

eq
=

∫ ∞
0

f (1)(t, τ)
h(τ)

τ
dτ + g0f

(0)(t, τmax), (6)

The spectrum is given by

h(τ) =
nmax∑
j=1

gjτ
αjH(τj − τ)H(τ − τj−1), (7)

where nmax is the total number of modes of the spectrum, τj and αj are the relaxation time

and the exponent for the jth mode (τj > τj−1) respectively, and H(τ) is a unit Heaviside

function. Hereafter we denote τnmax as τmax for simplicity. The weight function in front of the

spectrum was introduced to guarantee that the MSD exhibits ballistic behavior 〈∆r2
b(t)〉eq =

Ct2 in the smallest time regime t� τ0

f (1)(t, τ) = 1− (1 + t/τ)e−
t
τ

≈

 t2/(2τ 2), for t� τ

1, for t� τ
(8)

On the other hand, the second term with the function

f (0)(t, τmax) = e−t/τmax − 1 + t/τmax

'

 t2/(2τ 2
max), for t� τmax

t/τmax, for t� τmax

(9)

was added to ensure that the MSD shows the diffusive behavior 〈∆r2
b(t)〉eq = 6Dt in the

longest time regime t � τmax. The second term on the right-hand side of Eq. (6) must be

equal to first term at t = τmax for the MSD to be diffusive when t� τmax [52]. This require-

ment determines the weight of the second term as g0 =
∑nmax

j=1 gj
(
τ
αj
j − τ

αj
j−1

)
/αj. Also, by

imposing continuity for the weighting of the modes, the weight g1 of the first mode determines
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the rest as gj = g1

∏j−1
k=1 τ

αk−αk+1

k for 2 ≤ j ≤ nmax. Furthermore, the first weight is related

to the coefficient of the ballistic motion by C = g1
2

∑nmax

j=1

(∏j−1
k=1 τ

αk−αk+1

k

)
τ
αj−2

j −τ
αj−2

j−1

αj−2
+ g0

τ2max
.

(Usually the last term can be neglected safely because τmax is large.) Therefore once C is

estimated from the initial slope of the MSD data on the log-log scale independent of the fit-

ting, g1 can be obtained from the other parameters through this relation. Summarizing, for

a given nmax, the number of free adjustable parameters {α1, ..., αmx, τ0, ..., τmax} is 2nmax + 1

in total (αmax := αnmax) [52]. We assign approximately one mode per decade of time for

the time window except the ballistic and diffusive regimes, and assume nmax = 4 as in the

previous study [18].

It is important to note that the expression of the MSD, Eq. (6), is analytically Laplace

transformed. If Eq. (8) and (9) are substituted into Eq. (6) and then the integration is

conducted with respect to τ , one obtains

〈
∆r2

b(t)
〉

eq
=

nmax∑
j=1

gj
[
ταj
(
1/αj − et/τ + (αj − 1)E1+αj (t/τ)

)]τ=τj

τ=τj−1
+g0

(
e−t/τmax − 1 + t/τmax

)
(10)

where E1+α (t/τ) =
∫∞

1
dx x−1−α e−xt/τ is the exponential integral function. Therefore the

real and imaginary parts of F̄
{
〈∆r2

b(t)〉eq
}

= r′(ω) + ir′′(ω) are obtained as

r′(ω) = −2
n∑
j=1

gj
1 + αj

[
τ 1+αj

2F1

(
2,

1 + αj
2

;
3 + αj

2
,−τ 2ω2

)]τ=τj

τ=τj−1

− g0

τmaxω2 (1 + τ 2
maxω

2)
, (11a)

r′′(ω) = − 1

ω

n∑
j=1

gj
αj (αj + 2)

[
ταj
{

2 + αj − αjτ 2ω2
2F1

(
1, 1 +

αj
2

; 2 +
αj
2
,−τ 2ω2

)
−2αjτ

2ω2
2F1

(
1, 1 +

αj
2

; 2 +
αj
2
− τ 2ω2

)}]τ=τj

τ=τj−1

− g0

ω (1 + τ 2
maxω

2)
, (11b)

where 2F1 is the hypergeometric function, and [f(τ)]τ=y
τ=x := f(y) − f(x) for an arbitrary

function f(τ). We find the parameters {α1, ..., αmax, τ0, ..., τmax} as follows. First we fix

the relaxation times {τi}, and then numerically seek exponents {αi} that minimize χ2 of

− ln(MSD) within a certain window of {αi} for the fixed {τi} (the appropriate values of

{τi} and the center of the window {αi} are estimated by manual fitting). It is important to

choose an appropriate window width to attain high accuracy of fitting because in practice

the minimization is attainable only locally in the parameter space, due to the nonlinear
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nature of Eq. (6) with respect to these parameters. We compare the minimized χ2 value to

that obtained from the conventional method based on least-square fitting of the polynomial

function of ln t (with order 7∼10). If our value of χ2 is much larger than the conventional

one, we modify {τi} or the window of {αi} so that we can get χ2 smaller than, or at least

comparable to, the conventional one to guarantee that our fitting is almost as accurate as

the conventional method. The fitted line obtained by this procedure is shown in Fig. 3.

We then calculate G∗(ω) by using Eqs. (10–11), and IGSER, Eq. (3) for the thus-obtained

parameter values. This calculation ofG∗(ω) can be done without the approximation typically

used, and is superior to the conventional method for the accuracy of the inverse Laplace

transformation. But it should be noted that our method takes more effort for fitting the

MSD compared to the conventional least-square fitting of the polynomial function.

FIG. 4. (Color online) Comparison of the G∗(ω) values obtained by passive probe rheology, NEMD

and Green-Kubo techniques. The upper red solid star and red dashed plus lines represent G′′(ω)

and the lower blue solid star and blue dashed plus lines represent G′(ω) values obtained probe

rheology. For the NEMD and Green-Kubo values, the open symbols denote G′(ω) while the solid

symbols denote G′′(ω).

Fig. 4 shows a comparison of the passive probe rheology results that were obtained by

considering (i.e. using IGSER) and ignoring (i.e. using GSER) the medium and particle

inertia with our NEMD results as well as with the literature Green-Kubo values [49]. For the

weakly entangled melt studied here, G′(ω) values are always smaller than the G′′(ω) values

indicating that the melt shows predominantly liquid-like behavior over the frequency range
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studied in this work. The G∗(ω) values obtained from passive probe rheology by applying

GSER (i.e. by ignoring the medium and particle inertia) in the analysis (dashed lines in

Fig. 4), show a large disagreement with the corresponding values obtained from NEMD and

Green-Kubo methods over the entire frequency range. In fact, at higher frequencies (ω ≥

10−2), the G′(ω) obtained from such an exercise becomes unphysically negative. Indeed, the

G′(ω) values obtained by the inclusion of medium and particle inertia in the analysis (i.e. by

applying IGSER) are no longer negative. The agreement between the G∗(ω) values obtained

from probe rheology with NEMD and Green-Kubo methods is improved in this case, and is

of comparable quality to the active probe rheology approach. The G∗(ω) values from probe

rheology exhibit larger deviations from other methods at both ends of the frequency range,

which can be explained as follows. At the higher values of frequency (ω & 10−1), the motion

of the particle becomes ballistic and thus MSD values in this regime cannot be used for

determining the material viscoelastic properties. As was also mentioned for active rheology,

the artifactual hydrodynamic intreactions between the periodic images of the probe particle

affect results at the lower end of the frequency range; this effect is discussed in details below.

IV. DISCUSSION

A. Effect of probe particle size

The applicability of probe particle rheology to an entangled polymer system is governed by

the interplay of several characteristic length scales: the monomer segment size (d), the chain

radius of gyration (Rg), the entanglement tube diameter (dT ), and finally, the wavelength

(Λ) and the penetration depth (∆) of shear waves. The latter effects are described in the

next sub-section.

Most synthetic polymers are flexible, for which d < dT � Rg. The application of con-

tinuum mechanics relations for analyzing simulation data implicitly assumes that the probe

particle size is significantly larger than the characteristic size of the molecules of the medium

i.e. R > Rg and also that R � dT [26, 53]. At the other end of the scale, it was shown

in experiments that nanoparticle diffusion is much faster (∼200 times) than that predicted

by the Stokes-Einstein relation when the particle radius is smaller than the tube diameter

[54, 55]. In this regime (R < dT ), particle motion through the polymer matrix does not de-
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pend on the disentanglement of the chains, but rather depends on the local rearrangements

of the chain segments on the length scales below dT , where the chain segments do not feel

the presence of entanglements [29, 54, 55]. As a result, the particle no longer probes the

continuum properties of the medium, but rather one observes a microscopic response to a

specific probe.

For heavily entangled melts (degree of entanglement or average number of entanglements

per chain, 〈Z〉eq > 4), theoretical work by Yamamoto and Schweizer [26] predicted the

recovery of Stokes-Einstein diffusion when R/dT & 5. Similarly, experimental work on well

entangled DNA solutions [56] found probe rheology results to be consistent with continuum

mechanics at R & 3dT . It should be kept in mind that estimates of dT are model dependent

FIG. 5. (Color online) Comparison of active probe rheology results for two different particle sizes,

R =2.5, and 12.0. The upper two curves along with the filled symbols are for G′′(ω) and the lower

two curves along with the open symbols are for G′(ω).

[57], and may vary by a factor of two. In our work, we have used a particle of nominal radius

R = 12, for our weakly entangled polymer melt system (〈Z〉eq ∼ 1.5−2) whose entanglement

distance has been reported in the literature [58] to be dT ≈ 7.7. Thus, for our system, the

ratio of R/dT is 1.56, which is smaller than both the literature studies mentioned above

[26, 56]. Yet, as described above, over the frequency range of applicability of our technique,

the probe rheology results are in agreement with the Green-Kubo and NEMD values of the

medium viscoelasticity.

To further judge the effect of the choice of the particle size on our probe rheology results,
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we performed active rheology calculations with a smaller particle (R = 2.5) over the fre-

quency range 0.01 < ω ≤ 0.08. As seen in Fig. 5, G′′(ω) obtained from the smaller particle

shows good agreement with that obtained from the larger particle. The values of G′(ω)

obtained by the use of different sized particles also show agreement though the differences

are larger than those for G′′(ω). Note that we performed the comparison using only the

active rheology technique since this is a much faster calculation than passive rheology. In

principle, the test of particle-size dependence should also include calculations with a parti-

cle of size R ∼ 40 (i.e. R/dT > 5). The shear wave propagation effects (discussed in the

next subsection) would become even more prominent in such a case, and their mitigation

would necessitate use of much larger simulation boxes than that used here, making such a

calculation impractical at the current time.

B. Penetration depth and shear wave propagation effects

For active particle rheology (Fig. 2), storage and loss moduli [G′(ω) and G′′(ω)] esti-

mations deviate from the NEMD and the Green-Kubo values at frequencies ω . 0.008.

Similarly, the agreement between passive rheology (Fig. 4), on the one hand, and the

NEMD and Green-Kubo results on the other, also suffers in the same frequency range. We

attribute these artifacts to shear wave propagation effects in the 3D periodic simulation

system that were discussed in our previous work [18]. The possibility of the occurrence

of these effects can be judged by focusing on two length scales associated with the propa-

gating wave—the wavelength Λ and the penetration depth ∆ of the wave in the medium.

For a viscoelastic fluid, these length scales are given by Λ(ω) = |G∗(ω)|
ω

√
2
ρ

1
|G∗(ω)|+G′(ω)

, and

∆(ω) = |G∗(ω)|
ω

√
2
ρ

1
|G∗(ω)|−G′(ω)

[33] as shown in Fig. 6. These were estimated by using G∗(ω)

from the Green-Kubo technique [49], since G∗(ω) values calculated from probe rheology

could be affected by the shear-wave propagation phenomena at both ends of the frequency

range. The minimum distance between the surfaces of the nearest images of the moving

particles in our simulation system is l ≈ 150−25 ≈ 125 and is shown by the upper horizontal

line in Fig. 6. Thus, for frequencies ω . 0.005, the penetration depth of the shear wave will

be larger than the minimum distance between the nearest neighbor particles—i.e., the shear

wave propagating from a moving particle will affect the motion of its six closest neighbor

particles in our system, and vice versa. These interactions are not accounted for in our
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FIG. 6. (Color online) Frequency dependence of the penetration depth (solid black line) and the

wavelength (dashed red line) of the propagating shear wave calculated using the literature Green-

Kubo values. The minimum distance between the moving probe particle and its images (upper)

and the probe particle size (lower) are shown by horizontal (dotted blue) lines.

continuum analysis, so that the moduli values calculated from the IGSER expression are

unreliable at these frequencies.

As the plot of penetration depth versus frequency shows, the problem is worst at low

frequencies. Assuming one wishes to retrieve the dynamic modulus down to frequencies

in the terminal zone, near the low-frequency crossover in the dynamic modulus, a simple

scaling estimate can be made for the necessary box size for this purpose. In the terminal

zone, the liquid behaves nearly Newtonian, and the storage modulus can be neglected.

Hence, the penetration length is the Newtonian one: ∆ ∼=
√

2η0
ρω

, where η0 is the zero-

shear rate viscosity, and can be estimated as η0
∼= G0

Nτd. For entangled polymers, the

plateau modulus G0
N
∼= ρkBNAT/Me (where NA is the Avogadro number) is independent of

molecular weight, and the longest relaxation time goes as [59] τd ∼= τe
40

(Mw/Me)
7/2, where

τe is the strand relaxation time, approximately the inverse of the frequency at the high-

frequency crossover of the dynamic modulus. We are interested in frequencies ω & 1/τd,

so the maximum penetration length is ∆max
∼= 1

40

√
2kBNAT
Me

(
Mw

Me

)7/2

τe. Our simulation box

must be significantly larger than this size, which may be compared to the radius of gyration

of the polymer Rg
∼=
√
MwaK√
6MK

, where aK is the Kuhn step length and MK is the Kuhn step
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molecular weight. Hence, we find

∆max

Rg

∼=
√

12kBNAT

MK

τe
aK

〈Z〉3eq

40Ne

, (12)

where Ne = Me/MK is the average number of Kuhn steps in an entanglement and 〈Z〉eq =

Mw/Me is the average number of entanglements per chain. In other words, a näıve estimate

of the minimum box size that considers only polymer size, and neglects the hydrodynamic

interaction of the particle with its images grows worse with the number of entanglements

(Z) cubed.

However, not only the scaling but also the prefactor is important. As an example, we

consider polystyrene at T = 180◦C, where MK = 726Da [60], aK = 1.5nm [61], Ne
∼= 15 [62],

and τe ∼= 1ms [59], we find ∆max

Rg
∼= 2.8 × 105〈Z〉3eq. For this system, the box needs to be at

least 5 orders of magnitude larger than expected using the näıve calculation.

Estimates of the box size required for capturing the terminal zone for the bead-spring

model considered in this work can also be made. Thus, using values of η0 = 55 and ω =

1×10−4 from the Green-Kubo results [49] in the expression ∆ ∼=
√

2η0
ρω

, we obtain an estimate

of ∆max
∼= 1138 i.e. ∆max

Rg
∼= 257, where we have used a value of Rg = 4.42 for our model

chains. Thus, even for the lightly entangled model system studied here, viscoelasticity in the

terminal region can only be captured in probe rheology simulations if boxes of size greater

than 1150 (i.e. about 250 times the chain size) are used. These would be very large systems

for simulations, keeping in mind that the number of beads in the system scales as the cube

of the box size.

Rather than using such large systems, a better approach would be to capture the wave

propagation effects in the analysis methodology by including the multibody hydrodynamic

interactions along with the inertial contributions in the force balance, this is an involved

task and beyond the scope of the current work. Furthermore, it appears that the repeated

and forced creation of the propagating wave in the active mode leads to a stronger wave than

the stochastically created wave in the passive mode, in turn, leading to a stronger effect of

the multibody hydrodynamic interactions between the images of the probe particle in active

mode. An investigation of this effect should also be a part of the future work in this field.

At the other end of the frequency range studied (i.e. at ω ≥ 0.1), the wavelength of

the shear wave becomes smaller than the particle size. Physically, the Basset force starts

becoming dominant over the Stokes drag [33] at these frequency values. The particle motion
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is predominantly ballistic (and hence independent of the medium viscoelasticity) in this

regime, thus making it difficult to extract the medium viscoelastic properties by the analysis

of the particle motion [18]. This effect is clearly seen from the significant disagreement

between the passive rheology results and the NEMD or Green-Kubo values in this frequency

range, the active rheology calculations were not attempted in this frequency range.

In summary, the wave propagation effects put restrictions on the frequency range over

which viscoelasticity can be investigated via probe rheology methods. In simulations, box

sizes are often picked in relation to the size of the molecule or the probe particle studied, our

analysis demonstrates the need for considering the range of the hydrodynamic interactions

when selecting a box size for determining the viscoelasticity over a given frequency range by

probe rheology simulations.

C. Deduction of particle displacement from medium viscoelasticity data

In many practical applications involving, for example, nanoparticle-based drug delivery

to tumors [63, 64], the quantity of central interest is the nanoparticle motion in a given

complex medium on different time scales. Such information can be used for deducing the

penetration depth to which the diffusing particle such as the drug carrying nanoparticle

will travel in the medium over a certain time scale. The IGSER described above provides

a transform between the particle MSD and the medium viscoelastic properties. Thus, in

principle, IGSER can be applied in the reverse direction to determine the particle MSD over

a given time scale from the knowledge of the viscoelastic spectrum of the complex medium.

To assess the ability of the IGSER to predict the particle motion in the entangled poly-

meric melt from its viscoelasticity, we used G∗ that Sen et al. [49] calculated based on the

Green-Kubo approach. We point out here that their G′ and G′′ data at high frequencies are

almost parallel, and also the slope in the log-log scale is very close to 2/3. The same ten-

dency is observed in our NEMD result (see Fig. 1) and also in the simulations of unentangled

chains by Cifre et al. [65]. Thus surprisingly, G∗ at the high frequencies is well described

by the Zimm model [66] rather than the Rouse model, indicating that the hydrodynamic

interactions between polymers are not screened out. Also, the overall G∗ fits very well with

a combination of the Zimm model and the two-mode Maxwell model (see inset of Fig. 7).

Using this approach, we converted G∗ into the MSD by using the IGSER given by Eq. (3)
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FIG. 7. (Color online) Comparison of the probe particle MSD measured in the passive rheology

simulations (dotted) and that predicted from literature G∗ values [49] (shown in inset). Solid line

is derived from the IGSER whereas dashed line is from the conventional GSER. In inset, solid

lines are fitting curves by a superposition of the Zimm model (with the relaxation time 20 and

the amplitude 0.12) and the 2-mode Maxwell model (with the relaxation times {1100, 65} and the

amplitudes {0.038, 0.065}).

along with Eq. (5); a comparison of the result with the probe particle MSD measured in the

passive rheology simulations is shown in Fig. 7. As seen from the figure, we obtain excel-

lent agreement between the two over several decades in time except the long-time diffusive

regime (t > 103). The disagreement in the diffusive regime is the counterpart of the differ-

ence in G∗ at the terminal flow regime (see Fig. 1). Probably this disagreement is due to

larger statistical errors from shorter simulation times in the Green-Kubo approach of the G∗

calculation as we have shown for unentangled polymeric melt in the previous paper [18]. On

the other hand, the agreement in the MSD in the ballistic regime is not surprising because

the MSD is not affected by G∗ of the medium in this short time regime: that is, no matter

what the G∗ is, the MSD is given by 〈∆r2
b (t)〉 = 3kBT

mobserved
t2 [18]. If we use the conventional

GSER without inertial effects (see dashed curve in Fig. 7), then the MSD predicted from

G∗ does not agree with that measured in the passive rheology simulations neither in the

short time ballistic and Basset regimes (due to absence of inertia in the analysis) nor in the

long time regime (for the same reasons as for IGSER i.e. statistical errors in Green-Kubo

approach at longer times).
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D. Added mass of the medium

FIG. 8. (Color online) Comparison of active rheology results obtained by considering the probe

particle mass to be mobserved = 10, 500 and meff = 13, 500. The results from NEMD simulations

and literature Green-Kubo calculations are also shown.

In our previous work on an unentangled system [18], we had shown that the “observed”

particle mass (i.e., the mass value obtained from the particle motion in the ballistic regime)

rather than the “effective” mass (i.e., the mass value obtained by considering the mass of

the medium dragged with the particle), is to be used in the application of the continuum

analysis to the simulation data. That observation was explained by demonstrating that the

calculated shell thickness of the polymer mass moving with the probe (i.e. the added mass)

was smaller than the polymer bead size which was the smallest length scale in that system

[18]. To study this aspect for the current system, we calculated the observed mass of the

probe using the same procedure as described in our previous study [18]—i.e., by fitting

the ballistic regime of MSD. In this regime 〈∆r2
b (t)〉 = Ct2, the constant C = 3kbT

mobserved
can

be determined by taking the limit, limt→0 〈∆r2
b (t)〉 /t2 of our simulation MSD data. This

exercise yields a value of mobserved = 10, 500. Per continuum mechanics, the effective mass of

the probe is obtained by including the mass of the medium that is considered to be moving

with the probe as given by: meff = mbare + madd = 10, 100 + 2
3
πR3

Hρ = 13, 500. Thus,

mobserved is smaller than meff but larger than the bare particle mass, mbare.

The viscoelastic properties obtained by considering the observed and effective particle

masses for active rheology are compared against the values from the NEMD and Green-
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Kubo techniques in Fig. 8. As seen from the figure, the use of mobserved results in larger

deviations of the calculated moduli values (specifically G′ values) from those obtained using

the NEMD and Green-Kubo techniques, especially at higher values of frequency. This

observation suggests that meff is the appropriate mass to be used in the continuuum analysis

for the system studied here. The difference in the behavior from the previous work can be

explained as follows. If the added mass of the polymer melt that is moving with the probe

nanoparticle during its unsteady motion is considered to reside in a fluid shell around it, the

shell thickness LS, can be estimated as 2
3
πR3

Hρ = 4
3
π
(
(RH + LS)3 −R3

H

)
ρ. For the system

used in the current study, this yields a value of LS = 1.78 which is larger than the smallest

length scale in the system i.e. monomer size = 1. On the other hand, for the particle used

in the previous work (RH = 2.82) [18], the shell thickness so calculated (LS = 0.41) was

smaller than the monomer size, thus violating the continuum treatment of the medium.

V. CONCLUSIONS

We have applied the probe particle rheology simulation technique in both active and

passive modes to determine the viscoelastic properties of a lightly entangled polymer melt

system. For the passive mode, we find that, in spite of conducting extremely long simulations

by contemporary simulation standards for systems of this size, the “true” diffusive regime

of the probe particle motion still could not be captured in the simulations. Nevertheless, we

fitted the MSD data to an analytical functional form that gives the correct MSD behavior in

both short (ballistic motion) and long (diffusive motion) time regimes, this analytical form

was used to obtain the moduli values from the passive rheology approach. Similar to our

previous work for an unentangled polymeric system, we show that for the entangled system

studied here, the inclusion of the particle and medium inertia in the continuum analysis

leads to good agreement between the viscoelastic properties obtained by probe rheology and

those obtained from the established simulation approaches, namely the Green-Kubo and the

NEMD methods. Our observation is in contrast to recent work [38] which concluded that

it was not possible to judge which of the different mathematical variants used for including

inertial effects in probe rheology lead to the correct values of the medium viscoelasticity.

Another important contribution of this work is we show that if the viscoelastic spectrum

of the complex medium is available then the IGSER can be used to predict nanoparticle
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displacement in the medium over the time scale of interest. Such ability could be of interest

for applications involving nanoparticle diffusion, where it might be easier to measure the

medium viscoelasticity rather than tracking the particle motion over a long time.

In addition to the significantly longer relaxation times, the entangled system presents

other complexities, such as the presence of one more length scale, namely, the entanglement

length scale. For the continuum Stokes treatment to be applicable, previous work suggests

that for heavily entangled polymers, the moving particle should satisfy R/dT & 3− 5. This

requirement would necessitate use of a particle of size 23 ∼ 38 requiring even longer sim-

ulations and larger simulation boxes to mitigate the effects from shear wave propagation.

Given the practical limitations of computational power, the actual simulations were per-

formed with a particle of nominal radius R = 12 (R/dT ∼ 1.5). With this particle size, our

results for the probe rheology are in good agreement with those from NEMD and Green-

Kubo techniques. Surprisingly, test simulations carried out with a probe particle of size

R = 2.5 (i.e. R/dT ∼ 0.32), also gave effectively the same moduli values as those obtained

from the simulations with the particle of size R = 12. Apparently, our lightly entangled

system shows less sensitivity to probe size than what is predicted in the literature.

The frequency range over which the probe rheology simulation technique is applicable

is determined by considering the shear wave propagation effects. The lower bound of this

frequency range is set by the hydrodynamic interactions between the periodic images of

the moving particle. We derived a simple expression to estimate how much larger this

penetration length is than the radius of gyration. We found that this ratio scales with the

entanglement number cubed. Moreover, the prefactor can be very large for real systems. In

order to avoid system-size related artifacts, a common practice in molecular simulations is

to choose a box size based on the considerations of molecule (or probe) size and the length

scale of the interbead interactions. Our work shows that the hydrodynamic interactions,

however, are much longer range than the interparticle interactions, and as a consequence

of this, much larger box sizes are required for the simulations of phenomena such as probe

rheology that involve significant hydrodynamic interactions. In principle, this effect could be

included in the continuum analysis by explicitly accounting for the multibody hydrodynamic

interactions along with the inertial effects. Future work in this direction would help extend

the range of the technique to lower values of the frequency without necessitating the use of

very large simulation systems.
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One advantage of experimental probe rheology is the requirement of very small amount

of sample which is valuable when the sample is scarce or expensive. For computations, sam-

ple size requirements for probe rheology, NEMD and Green-Kubo techniques are similar.

Our analysis has shown that long range hydrodynamic interations put restrictions on the

frequency range that can be investigated in probe rheology. Thus, the frequency range over

which probe rheology can be applied is comparable to that for Green-Kubo technique and is

smaller than that for NEMD. As discussed, this frequency range for probe rheology can be

expanded by adding multibody hydrodynamics to the analysis. One potential advantage of

particle rheology is that the technique is capable of probing local rheology whereas NEMD

and Green-Kubo techniques can only yield overall or effective values of the medium viscoelas-

ticity. From the experimental point of view, the IGSER formalism has the ability to predict

nanoparticle motion in complex soft matter from the knowledge of medium viscoelasticity,

this will be useful in applications such as drug delivery where experimentally measuring

viscoelasticity of the medium is a simpler task than tracking 3-dimensional particle motion

in the medium.
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