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Abstract

Optogenetics provides a method of neuron stimulation that has high spatial, temporal and cell type

specificity. Here we present a model of optogenetic feedback control that targets the inhibitory popu-

lation, which expresses light sensitive Channelrhodopsin-2 (ChR2) channels, in a mean field model of

undifferentiated cortex that is driven to seizures. The inhibitory population is illuminated with an inten-

sity that is a function of electrode measurements obtained via the cortical model. We test the efficacy of

this control method on seizure like activity observed in two parameter spaces of the cortical model that

most closely correspond to seizures observed in patients. We also compare the effect of closed loop and

open loop control on seizure like activity using a less complicated ordinary differential equation (ODE)

model of the undifferentiated cortex in parameter space. Seizure like activity is successfully suppressed

in both parameter planes using optimal illumination intensities less likely to have adverse effects on

cortical tissue.
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I. INTRODUCTION

The different etiologies of seizures make diagnosis and treatment of this disorder compli-

cated tasks. Physical trauma, stroke and tumors are examples of causes that may be more easily

identifiable than those responsible for idiopathic seizures. However, despite the differences in

etiologies, all epileptic seizures are characterized by the excessive synchronous firing of a large

number of neurons [1]. This activity is captured well at the mesoscale, which involves the

averaged activity of millions of neurons. Electroencephalography (EEG), which is one of the

most helpful tests to identify idiopathic seizures [2], and electrocorticography (ECoG), are two

techniques used to observe cortical activity at this scale.

To simulate cortical activity at the mesoscale, Liley at el. [3] proposed a mathematical

model of the cortex based on the columnar arrangement of cortical neurons, which was first

discovered by Santiago Ramón y Cajal towards the end of the 19th century. Since then, this

mesoscale model of the cortex has been shown to model the mesoscopic electrical behavior

recorded from the human cortex during sleep [4, 5, 7], anaesthesia [9] and seizures [10–12].

Various methods of feedback control were demonstrated to suppress seizures simulated using

the cortical model [13], which resulted in a biologically relevant method of closed loop control

[14] to treat medically refractory epilepsy. Modulation of traveling waves, as seen in [11], was

also carried out experimentally in [15], while the efficacy of feedback control in suppressing

seizures was experimentally demonstrated in [16] in hippocampal brain slices.

Optogenetics offers another modality of seizure control, albeit with higher spatial, tempo-

ral and cell type specificity than any other method of stimulation [17]. Open loop optogenetic

control of a seizing model human cortex has already been demonstrated [11] using a model

of channelrhodpsin-2 (ChR2) dynamics [18]. ChR2 is a cation pump that is activated by blue

light of maximum wavelength 480 nm [19]. Closed loop control of epileptiform activity using

optogenetics has been experimentally demonstrated in rats [20, 21] and in mice [22]. Here,

we investigate a method of closed loop feedback control using the proportional integral (PI)

mode of control. By basing our control strategy on electrode measurements of the same spatial

and temporal scales as the cortical model, we propose a method of seizure inhibition that is

biologically relevant and efficient in the use of energy required to effect control - criteria that

have to be satisfied for the use of any control strategy in humans over long periods of time. We

also study seizures in two parametric spaces of the cortical model that most closely correspond
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to seizures observed in patient data. Comparisons between open loop and closed loop control,

and the effect of each method in suppressing seizures is studied using a simpler ordinary differ-

ential equation (ODE) model of the combined cortico-optogenetic dynamics, which is shown

to correspond well with the full stochastic partial differential equations (SPDEs) that describe

the dynamics of the model cortex. A bifurcation analysis of the combined cortico-optogenetic

model in the open loop format and a time integration in the closed loop format are performed to

study the hyperexcited cortical model’s behavior when coupled with optogenetic stimulation.

This paper is organized as follows. First, we present a version of optogenetic PI control that

uses electrode measurements of model cortical activity to calculate the intensity of light used

to illuminate inhibitory neurons, which then depolarize and suppress excessive excitatory activ-

ity characteristic of epileptic seizures. Next, we explore the efficacy of this control method

in the parameter space defined by two parameters of the cortical model - the excitatory

subcortical inputs (Pee) and the influence of excitatory synaptic input on the mean soma

potential (Γe), which acts as an amplitude gain that determines the strength of the excita-

tory inputs to a cell population. These parameters will be defined in detail in sections III

and V, while the mathematical model describing cortical dynamics is presented in full in

the appendix. A simpler ODE system is used to perform a bifurcation analysis on the corti-

cal model, and the combined cortico-optogenetic model in the open loop format, while a time

stepping continuation is performed on the discontinuous closed loop model. Finally, we ex-

plore the effect of closed loop PI control on seizures in the parameter space defined by

two additional parameters of the cortical model - the slope (Me) at the inflection point of

the sigmoid function that describes the mean excitatory firing rate, and the influence of

inhibitory synaptic input on the mean soma potential (Γi), which acts as an amplitude gain

that determines the strength of the inhibitory inputs to a cell population.

II. CLOSED LOOP OPTOGENETIC CONTROL

The use of optogenetics as an effective control modality for cortical seizures has been

demonstrated in the context of a mathematical model in [11]. The inhibitory population of

neurons in the mesoscale cortical model first developed by Liley [3] was modified to express

light sensitive Channelrhodopsin-2 (ChR2) ion channels following the work of Grossman et

al.[18]. When illuminated with light of wavelength 480 nm, these ion channels pump cations

3



into neurons, depolarising them. The ion conductance of ChR2 is dependent on the intensity

of light used, and the membrane potential of the cell population expressing these channels. For

convenience, we restate the equations describing optogenetic channel dynamics presented in

[11].

dNO1

dt
= Ka1.NC1− (Kd1 + e12).NO1 + e21.NO2 (1)

dNO2

dt
= Ka2.NC2+ e12.NO1 +(Kd2 + e21).NO2 (2)

dNC2

dt
= Kd2.NO2 − (Ka2 +Kr).NC2 (3)

NC1 = 1−NO1 −NO2 −NC2 (4)

Optogenetic dynamics occur at the cell level, which is at the microscale. However, we

are interested in cortical dynamics at the mesoscale level. To adapt the optogenetic model

to the meso scale, the values of NOi and NCi have been normalized with the total number

of ChR2 channels per representative neuron, and now represent the fraction of channels

in each state per representative neuron. The sum of these fractions equals unity, and is

described in equation 4. Equations 1-3 describe the number of channels in the open and

closed states, represented by NO1, NO2, and NC2. The number of channels per unit area is

obtained by multiplying the expression density with the fraction of each channel. Here,

we use an expression density of ∼109/m2, which enables the use of light intensities that

correspond to experiments [23]. Channel opening and closing rates are represented by the K

and e terms. Kai are the rates of transition from the closed states, C1 and C2, to the open states

O1 and O2, respectively, and are dependent on the intensity of light illuminating the channels

[11]. Conversely, Kdi are the closing rates from the open states to the closed states, while Kr is

the thermal recovery rate from C2 to C1. Both of these rates are assumed to be constants. e12

and e21 are the transition rates from O1 to O2 and vice versa, and are also dependent on the

illumination intensity. The values for all rate constants can be found in Appendix B.

The total conductivity of ChR2 channels expressed by a neuron population in a cortical

macrocolumn is given by,

GChR2 = Gmax.gChR2.
(1− exp(−hi/U0))

hi/U1
, (5)
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where hi is the mean soma potential for the inhibitory population, Gmax is the maximum

conductance of optogenetic channels in the O1 state and has a value of 500 pS, gChR2 is the

total conductance of the optogenetic channels in the O1 and O2 states defined by (NO1 +

sg.NO2), where sg is the empirically derived ratio of channel conductivity in the O1 state to

the O2 state with a value of 0.5. U0 and U1 are empirical constants with values of 40mV and

15mV respectively. Further explanation of the variables and the equations can be obtained

in [11, 18].

From equations 1-3 and 5, we see higher channel opening rates, which in turn yield higher

conductances, while higher inhibitory mean soma potentials reduce conductivity of these ion

channels. Channel conductivity is dramatically reduced as the reversal potential of the neuron

population is approached because of its dependence on the mean soma potential. External

modulation of the conductance of these channels is thus only possible via the intensity of light

illuminating the channels.

In [11], optogenetic control was used in an open loop configuration, where a pre determined

intensity of light was chosen to illuminate the model cortex. If a high enough intensity is used,

seizures are successfully inhibited. However, this does not result in optimal use of light energy,

which is important for optogenetic control to be efficient and cost-effective. Additionally, pro-

longed exposure to high intensities of light has been shown to cause irreversible tissue damage

in animal models [23], so we have to minimise the time the cortex is illuminated with high

intensities to accommodate tissue safety concerns. In light of this, we propose a method of

feedback control that satisfies these requirements.

A. Development of the control law

To design a feedback loop that provides optimal optogenetic stimulation, the light intensity

has to be based on a measured variable in the combined cortical-optogenetic model. We have

chosen to use the signal sensed at the surface of the cortex by an electrode, h̃m [14], for two

reasons. Firstly, the length scales involved in the meso-scale model of the cortex used here

are similar to the sizes of commercial electrode arrays. Secondly, it is a mean-field model,

which means all variables in the model are spatially averaged properties of neuron popula-
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tions. EEG/ECoG measurements are based on the ensemble behavior of many neurons, and the

mesoscale model is suited to capturing such behavior.

The measured signal from the surface of the cortical model, h̃m, is a function of the extra-

cellular currents in the tissue, and not of the intracellular soma potential [24]. Taking this into

account, Lopour et al. [14] defined h̃m using the following two equations:

h̃m = (he
0 − h̃e)Ĩm (6)

(

1

Tm

∂

∂ t̃
+1

)2

Ĩm = F(−0.413×Nβ
e S̃e −0.092×N

β
i S̃i

−0.458× φ̃e+0.034× (Pee+ Γ̃1)−0.004× (Pie+ Γ̃3))

(7)

where h̃m is the potential measured by a cortical surface electrode, Ĩm is the current measured at

the cortical surface, he
0 is the reversal potential of the excitatory population, N

β
e,i are the number

of synaptic connections from the excitatory and inhibitory populations, respectively, S̃e,i are the

firing rates of the excitatory and inhibitory populations, respectively, Pee and Pie are the subcor-

tical inputs from the excitatory and inhibitory populations to the excitatory population, and φ̃e

is the long range corticocortical input from the excitatory population. Please see appendix A

for the full set of equations that describe the dynamics of the meso-scale cortical model and as-

sociated parameters. F is a positive gain parameter that helps convert the right side of equation

7, which is based on voltages, to currents, which is the basis of the left side of the equation. It

also scales the magnitude of the synaptic inputs to ensure an appropriate amount of influence

over the electrode measurement Ĩm. In equation 7, we use F = 10−3. Throughout this paper,

tildes are used to denote non-dimnesionalised variables in the meso-scale cortical model. Addi-

tionally, we include the mean offset of the measured signal, which gives us a net positive signal.

This is in contrast to EEG readings, for example, where the mean offset is subtracted to obtain

a signal with mean zero. The theory behind the measured signal, mean offset, equations 6 and

7, and the constants, coefficients and parameters used in these equations is explained in detail

in [14].

To calculate intensity, E, that should enable successful control - i.e. the ‘control law’- we use

the concept of proportional and integral (PI) control. As we are dealing with a highly non-linear

and stochastic system, PI control offers a simple, but effective way to calculate the control effort

based on the measured potential h̃m:
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E = KPh̃m+KI

∫ t

t−dτ
h̃mdt (8)

The first term of eq. 8 represents proportional control, where KP is proportional gain. This

component of the control effort calculates a contribution to the intensity of light to be used based

on the current value of measured potential. Spikes in intensity with highs past the physiological

limit, and lows tending to zero, will lead to unsafe and ineffective control. To avoid this, we

lower KP to ensure peak values of intensity are safe for cortical tissue, and add a second term

based on the integral of h̃m over a short duration of time, dτ . Throughout this manuscript, we

use dτ = 0.2s, which is the most optimal amount of time to integrate over for the integral control

term, while also maintaining computational efficiency. This contribution is modulated by KI ,

which is the integral gain term in eq. 8, and addresses shortfalls in intensity, and synaptic delays

between cell populations, that lead to continued seizure activity.

It should be noted that equation 8 is slightly different from the traditional form of PI control,

where the control effort is based on minimising the error in the measured signal. Error would be

calculated based on the difference between amplitude of the expected signal and the measured

signal. However, the mathematical model of the human cortex consists of a highly stochastic,

non-linear system of PDEs, and in the example simulations we present in the paper, the values

of parameters associated with the model change over time - e.g. Pee varies with time. This leads

to a non-stationary expected value of h̃m. However, the expected value of h̃m in a normally

functioning cortex is much smaller than peak h̃m values observed during the seizure state. We

can thus neglect the estimated value and calculate control effort based directly on the measured

variable h̃m.

The entire spatial domain of the model cortex is discretized with a Cartesian mesh to per-

form numerical simulations. The measured potential and intensity are calculated as piecewise

constant approximations at every grid point, and we do not account for the electrodes’ spatial

profiles, or the spatial variation of illumination in this first study of the efficacy of the control law

and the dynamics of the combined cortico-optogenetic model during closed loop stimulation.

B. Optogenetic inhibition

Certain inhibitory neuron types and neural circuits might be responsible for cortical disorders

and play an integral role in cortical function. For example, GABAergic inhibition is decreased
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in some types of epilepsy [39, 40]. The targeted stimulation of this specific class of inhibitory

neurons is one possible way to address this decrease in inhibition. The meso-scale model we

use in this work does not include specific subtypes of inhibitory neurons, but it does allow us to

explore the efficacy of optogenetic depolarisation of the inhibitory neuron population.

Additionally, the distribution of inhibitory neurons in mammalian cortices is non-uniform,

with the majority of inhibitory neurons embedded well below the cortical surface [43]. Targeted

stimulation of neurons at or near the surface of the cortex only has a distinct effect on pyramidal

(excitatory) neurons [14] while ignoring a large range of stimulation options via inhibition.

However, [23] and [42] have shown light can penetrate at least 1 mm or more beneath the

cortical surface giving access to a number of other neuron types that can be found in larger

numbers in layers 2-6 of the cortex.

First in [13] and then in [11], the model cortex was hyperexcited by increasing the excitatory

subcortical inputs to a magnitude 50 times higher than during normal function. This led to

traveling seizure waves that were suppressed in [11] by optogenetic control, which was applied

by depolarising inhibitory neurons that express ChR2 channels to increase inhibition. However,

the measured potential, h̃m, is related to the mean soma potential of the excitatory population,

h̃e, because surface electrode measurements are averaged readings from apical dendrites of

pyramidal neurons, which are excitatory in nature. This means the light intensity required to

illuminate the inhibitory population is also most closely related to h̃e. In essence, to apply

control, we measure the activity of the excitatory population, calculate intensity based on this

measurement, which is then used to stimulate the inhibitory population. The effect of control is

then measured again via the excitatory population and adjustments to the illumination intensity

are made until seizures are suppressed.

C. Triggering and deploying control

Numerous methods of seizure detection using EEG/ECoG signals have been proposed over

the last few years. Orosco et al. [25] used energy thresholds of instantaneous frequency data

to detect seizures with around 60% accuracy. Spike features such as amplitude, width, rate and

regularity, and changes in energy within specific frequency bands were taken into account while

developing a seizure detection algorithm by Krook-Magnusson et al. [22]. Neural networks

[26], entropy estimators [27], and a combination of neural networks and an entropy estimator
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[28] have been trained to detect seizures with more than 90% accuracy. The different methods

currently available for seizure detection, and the pathway from acquiring data to closed loop

applications can be found in [29]. Seizure prediction, on the other hand, has proven to be

a more complicated task. Dynamical entrainment [30], accumulated signal energy [31] and

phase synchronisation [32] are only a few examples of features of EEG data that were used in

seizure prediction, but a fully satisfactory approach remains elusive. Realistically, given the

wide variation in seizure pathologies and seizure types, a more subjective approach to detection

[33] is required. This may entail a combination of detection methods including, but not limited

to, electrode measurements, accelerometers, electrodermal activity and so on.

The aim of this work is to demonstrate the ability to calculate illumination intensity for opto-

genetic control directly from electrode measurements of cortical activity. The detection method

merely serves as a trigger to turn on the controller, and does not play a role in the ‘control law′

itself. Here, we use a very straightforward trigger for seizure control based on the amplitude and

rate of change of the measured potential, h̃m, which has a mean value close to 0 during normal

function, with fluctuations in amplitude that are much less than 0.1 in magnitude. Seizure activ-

ity is characterized by high amplitude oscillatory changes in the mean soma potential of neuron

populations, and by extension, in h̃m as well. The amplitude and rate of change of amplitude

thresholds that have to be surpassed for control to be triggered are based on the sensitivity of

the controller, which in turn can be tuned differently for different paths to seizures. Again, this

method of detection works well for the model seizures that we investigate in this work, but one

can substitute any other detection method in its place to trigger the controller.

When control is triggered, the intensity of illumination is calculated based on the control law

described in eq. 8. The proportional component contributes to changes in illumination intensity

based on instantaneous changes in h̃m, while the integral component is calculated over the past

dτ seconds and changes more gradually. The integral part of the control provides an offset

for the proportional component resulting in the optimal amount of light intensity being used to

inhibit seizures.

We have also included an off switch for the controller, which is based on the illumination

intensity E and the amplitude of the measured potential hm. This is a straightforward switch

similar to the trigger used to turn on the controller, and facilitates studying the efficacy of the

controller. One could substitute other switches in its place, which would work just as well with

the controller.
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D. Tuning the controller

In the next two sections, we demonstrate the efficacy of the PI controller for seizures in

two different parameter spaces. The first space is associated with subcortical inputs from the

excitatory populations (Pee) and the influence of excitatory synaptic inputs on the mean soma

potential (Γe). The second space is defined by the slope at the inflection point of the mean

firing rate (Me) and the influence of inhibitory synaptic inputs on the mean soma potential (Γi).

Please see appendix A for the full set of equations that describe the dynamics of the meso-scale

cortical model. In separate work, these parameter spaces were identified as being the most

probable regions in which seizures produced using the mesoscale model have been shown to be

directly, and quantifiably, compared with electrocorticogram (ECoG) readings of seizures from

a human subject [34].

In both parameter spaces, seizures are induced in a normally functioning model cortex by

gradually varying one of the parameters with time. In both parameter spaces, the model cortex

produces the most robust seizures at the peak value of these parameters. Both dτ and the gains

of the PI controller, and the intensity for a comparable open loop controller, in turn, are tuned

to suppress seizures induced at these peak values of the parameters.

Given the stochastic nature of the model cortex, we use numerical optimization to obtain the

most optimal values of proportional and integral gains that successfully suppress seizures. We

use the illumination intensity to define a cost function,

Cost =

∫ to f f

ton

Edt (9)

where E is the illumination intensity, ton is the time at which control is switched on, and to f f is

the time at which control is switched off. The cost, in terms of J/mm2 is calculated for a range

of proportional and integral gain terms. The response diagram for each pair of proportional and

integral gains is examined for oscillations, and the pair which minimizes the total energy cal-

culated by equation 9 while successfully suppressing seizures is chosen to calculate the control

effort.
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III. SEIZURES IN THE Pee-Γe SPACE

Seizures in this parameter space are simulated by increasing subcortical inputs that will

lead to a hyperexcited model cortex, while simultaneously reducing the influence of excitatory

synaptic input on the mean soma potential. We will explore seizures caused by a decrease

in inhibition in section V. An increase in subcortical inputs from the excitatory population,

Pee, leads to an increase in the post synaptic activation due to excitatory inputs (Ĩee), which

in turn increases the mean soma potential of both the excitatory (h̃e) and inhibitory (h̃i) cells

that leads to higher firing rates in both populations. The post-synaptic activation due to the

excitatory population in the seizing model cortex is lowered, while the post-synaptic activation

due to the inhibitory population is held constant. This causes a net decrease in the post-synaptic

influence of the excitatory population on itself and the inhibitory population. In addition, there

are fewer inhibitory synapses than excitatory ones, leading to a net increase in excitation due

to the hyper-excitatory subcortical inputs, that results in seizures in the model cortex. A more

detailed analysis of the feedback and reciprocal synaptic connections in the model cortex that

lead to seizures due to an increase in sub-cortical excitation can be found in [13].

When results from simulating cortical activity using the mesoscale model were compared

with patient data [10], the magnitude of Pee required to produce seizure like activity in the

model cortex was almost 50 times the value of Pee required for normal function. Here, we

present two cases of epileptic seizures caused by excessive excitation with different values of

Γe, the influence of the excitatory post-synaptic potential on the mean soma potential of a neuron

population, and α , the amplitude of noise in the stochastic subcortical inputs. Please refer to the

appendix for details about the noise in the stochastic inputs. The first case uses Γe = 0.0008 and

α = 1.6, while the second case uses Γe = 0.00066 and α = 1.15. These parameter values are

within the physiologically acceptable range of Γe and α values that cause seizures for the range

of Pee used here. The excitatory inputs in the first case are higher, and produce more robust

seizures that require greater increases in inhibition to suppress seizures.

A. Seizures with Γe = 0.0008 and α = 1.6

A temporal distribution of Pee with a maximum value of 548.0 as shown in the right most

panel of fig. 1 ensures a gradual increase in the mean soma potentials of both neuron populations
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until the cortex is tipped into a state of seizures. The seizures produced using these values of

Pee, Γe, and α , simulate the activity of some of the most physiologically robust seizures seen in

the human cortex [34]. The left most panel of figure 1 depicts the variation of the mean soma

potential of the excitatory population with time, and the center panel of figure 1 represents a

one dimensional slice of the two dimensional domain illustrating traveling waves when seizure

like activity is observed for the range of Pee shown in the right most panel of the same figure.

It should be noted here that the seizure waves may appear to be almost stationary in a 1D slice

of the two dimensional cortex. These are, in fact, spiral waves with large radii of curvature as

illustrated in [11]. The smaller cortex used in this work has dimensions of the order of a human

cortex, making it difficult to appreciate the curvature of the traveling waves, which have radii of

curvature of the order of the dimensions of the model human cortex. Interestingly, while high

values of Pee are required to initiate seizures, lower values of Pee are able to sustain seizure like

activity as seen in fig. 3. Oscillatory activity seizes when the magnitude of Pee falls well below

270 despite starting only after Pee has risen past a value of around 300, as shown in fig. 1a.
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FIG. 1: Seizures in the Pee-Γe space. Pee is gradually increased then decreased in time with a

maximum value of 548.0 as shown in the figure on the extreme right. Γe is held constant at

0.0008 with α = 1.6. All other parameters are similar to baseline parameters in [13]. The mean

soma potential (h̃e) at a point, and traveling seizure waves depicted by a 1 dimensional slice of

the 2 dimensional cortex are shown in the first two figures on the left.

Seizures arising with this set of parameters are successfully suppressed by using closed

loop optogenetic stimulation as shown in fig.2. The intensity is calculated using eq. 8, and

is triggered when h̃m surpasses a magnitude of 0.2, coupled with a 20 % change in h̃m over

20 ms. When the amplitude of measured potential h̃m and the intensity of light illuminating

the model cortex fall below 0.1 and 10 mw/mm2, respectively, control is switched off. The
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proportional and integral gains for the controller are tuned to suppress a fully formed seizure at

Pee = 548.0, Γe = 0.0008 and α = 1.6. An open loop intensity of 34 mW/mm2 is required to

control the same seizures. The red dot dash line in the right most panel of figure 2 depicts the

intensity of open loop illumination required to suppress the same seizure. The on and off switch

for the controller is based on the amplitude and rate of change thresholds used to detect seizures

in section III B. Again, seizures are detected just as they begin to take shape, and control is

triggered around 0.5s as seen in panel on the right in fig. 2. As the strength of subcortical

inputs peaks around 1s, there is a slight increase in the illumination intensity required to subdue

oscillatory activity. Intensity continues to decrease almost monotonically after this increase at

1s.
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FIG. 2: Effect of closed loop optogenetic control on seizures in the Pee-Γe space using a

temporal modulation of Pee in time shown in fig. 1c. Γe is held constant at 0.0008 with

α = 1.6. All other parameters are similar to baseline parameters in [13]. Figures on the

extreme left and right show the variation with time of he and intensity, respectively, at the same

point. The red dot-dash line in the figure on the extreme right indicates the open loop intensity

required to suppress a fully formed seizures at Pee = 548.0. Gains used: KP = 0.4 and

KI = 3.6.

The seizure in fig. 2 is rather robust, and requires higher intensities to suppress oscillatory

activity as compared to the seizures described in the next section. The controller is tuned to use

optimal amounts of energy while operating within the physiological bounds for tissue exposure

to light. A high proportional gain will react more vigorously to the robust changes in mean

soma potential caused by the higher excitatory inputs, and might synchronise the optogenetic

and cortical dynamics leading to continued oscillatory activity. Additionally, high proportional

gains might lead to rapid increases in illumination intensities well past physiologically safe
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values. The integral term provides the required offset to these drawbacks of purely proportional

control. Higher integral gains lead to higher overall intensities, which are required to suppress

robust oscillations in the model cortex.

B. Seizures with Γe = 0.00066 and α = 1.15

In this section, we look at a less robust seizure with lower excitatory inputs. The seizure

pathway is the same as the seizure studied in the previous subsection, however, the influence of

the excitatory post synaptic potential (EPSP) denoted by Γe, and the amplitude of noise, α , in

the stochastic subcortical inputs are both decreased. The left and center panel of figure 3 show

the variation of the excitatory mean soma potential at a point and the traveling seizure waves

in the model cortex, respectively. Again, the subcortical inputs from the excitatory population

to itself is varied with time as shown in the right most panel of fig. 3. As observed in fig. 1,

seizures start at a higher Pee but are sustained even after the subcortical inputs have fallen below

this initial value. However, we use a smaller range of Pee values here, and this leads to two

distinct differences with the seizures seen in section III A. One, for higher values of Γe and α

seizures arise at a much lower value of Pee. Two, we can clearly see the end of the seizure state

in the left and center panels of figure 3, with oscillatory activity being suppressed around the

1.8 s mark, while it is less apparent in the seizures described in this section.
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FIG. 3: Seizures in the Pee-Γe space. Pee is gradually increased then decreased in time with a

maximum value of 548.0 as shown by the figure in the panel on the right. Γe is held constant at

0.00066 with α = 1.15. All other parameters are similar to baseline parameters in [13]. The

mean soma potential (h̃e) at a point, and traveling seizure waves depicted by a 1 dimensional

slice of the 2 dimensional cortex are shown in the first two figures on the left.
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Figure 4 shows the effect of closed loop optogenetic control on a model cortex with weak

seizures. Control is actuated by depolarising the inhibitory neurons. The increased inhibition

suppresses the tendency of high subcortical inputs to hyperexcite the model cortex. The con-

troller is tuned to suppress the strongest seizures arising in the Pee −Γe plane, making it robust

to temporal variations in parameter values. Fig. 4 clearly demonstrates the advantages of having

a controller that calculates intensity based on the measured signal, as opposed to using an open

loop approach. The controller outperforms the open loop controller using optimal intensity in-

stead of a constant intensity to suppress seizures. The right most figure in fig. 4 shows that the

mean soma potential is maintained around the rest potential of the excitatory population for the

given values of Γe and Pee. The central panel of fig. 4 also shows the suppression of traveling

seizure waves demonstrating a breakdown of oscillatory behavior.
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FIG. 4: Effect of closed loop optogenetic control on seizures in the Pee-Γe space using a

temporal modulation of Pee in time shown in fig. 1c. Γe is held constant at 0.00066 with

α = 1.15. All other parameters are similar to baseline parameters in [13]. Figures on the

extreme left and right show the variation with time of he and intensity, respectively, at the same

point. The red dot-dash line in the figure on the extreme right indicates the open loop intensity

required to suppress a fully formed seizures at Pee = 548.0, Γe = 0.0008, and α = 1.6. Gains

used: KP = 0.4 and KI = 3.6, which are the same gains used to suppress the robust seizure

presented in section III A.

IV. THE ODE MODEL

The stochastic and spatial terms in the set of stochastic partial differential equations (SPDEs)

that describe the meso-scale cortical model make bifurcation analysis, which can provide useful
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insight into the seizure dynamics of the model, a challenging task. To gain a preliminary insight

into the rich dynamics of this system via bifurcation analysis, the stochastic inputs and spatial

terms from the SPDEs, which can be found in Appendix A, that describe the cortical model

are ignored, and a simpler ordinary differential equation (ODE) system is considered. The

combined optogenetic and cortical ODE system is stated here:

dh̃e

dt̃
= 1− h̃e +Γe(h

0
e − h̃e)Ĩee+Γi(h

0
i − h̃e)Ĩie (10)

dh̃i

dt̃
= 1− h̃i +Γe(h

0
e − h̃i)Ĩei +Γi(h

0
i − h̃i)Ĩii −u (11)

(

1

Te

d

dt̃
+1

)2

Ĩee = Nβ
e S̃e

[

h̃e

]

+ φ̃e +Pee (12)

(
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dt̃
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e S̃e
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+ φ̃i +Pei (13)
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dt̃
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)2

Ĩie = N
β
i S̃i

[

h̃i

]

+Pie (14)

(

1

Te

d

dt̃
+1

)2

Ĩii = N
β
i S̃i

[

h̃i

]

+Pii (15)

(

1

λe

d

dt̃
+1

)

φ̃e = Nα
e S̃e

[

h̃e

]

(16)

(

1

λi

d

dt̃
+1

)

φ̃i = Nα
i S̃e

[

h̃e

]

(17)

dNO1

dt̃
= Ka1.NC1 − (Kd1 + e12).NO1 + e21.NO2 (18)

dNO2

dt̃
= Ka2.NC2 + e12.NO1 − (Kd2 + e21).NO2 (19)

dNC2

dt̃
= Kd2.NO2 − (Ka2 +Kr).NC2, (20)

Eqs. 10-17 represent the cortical model and eqs. 18-20 describe the dynamics of ChR2 op-

togenetic channels. This system has been recast in dimensionless variables and all variables are

functions of dimensionless time t̃ only. The subscripts e and i represent excitatory and inhibitory

populations respectively, and variables with two subscripts in the cortical model represent the

transfer of energy from one population to another. The mean soma potential of each population

is denoted by h̃, post-synaptic connections by Ĩ, and long range connections by φ̃ . N represents

the fraction of ChR2 channels in each of the four states, while K is the rate of transition from

one state to another as described in [11]. Again, tildes represent non-dimensionalized variables

in the cortical model. The control term u is given by,
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u = h̃i.GChR2.Rm. (21)

In equation 21, h̃i is the mean soma potential of the inhibitory population, GChR2 is the chan-

nel conductivity described in equation 5, and the membrane resistance Rm is obtained from

voltage clamp experiments and has a value of 7.1GΩ[8]. Various studies have shown the

reversal potential of ChR2 channels at physiological PH is 0 mV [41, 46–48]. The PH

around a cortical macrocolumn will not be affected significantly under optogenetic stimu-

lation, so we assume a reversal potential of 0 mV for the optogenetic model. The values of

all constants connected to the cortical model can be found in [10] and values of rate constants

associated with the optogenetic model can be referenced in [11]. We use AUTO [35], a software

package for continuation and bifurcation problems in ordinary differential equations, to study

this system of equations and to determine the associated fixed points, bifurcations, limit cycles

and their stability type. Please see [36] for a specific implementation of bifurcation analysis of

the meso-scale cortical model with spatial and temporal variation but without stochastic inputs.

The figure on the left in fig. 5 shows the comparison between the SPDE and ODE models for

a hyperexcited model cortex with subcortical input Pee = 548.0. Red represents the maximum

and minimum values of he over 2 seconds for a given Γe using the SPDE model while black

represents the bifurcation diagram of the ODE model. In figure 5a, the amplitude of noise from

the stochastic subcortical inputs, defined in Appendix A, is set at 0.1 to demonstrate the effect

of the spatial terms on the SPDE model, and how the dynamics compare to the ODE model.

This is an order of magnitude lower than the amplitude used in other simulations presented

in this paper using the SPDE model where α = 1.15 or 1.6. Apart from high amplitude

oscillations occurring at a lower Γe using the SPDE model, the dynamics of the SPDE model

follow that of the ODE model closely in stable regions (solid lines). This agreement between

the SPDE and ODE models makes it reasonable to use the simpler ODE model to perform a

dynamical systems analysis on the cortical model, which may be suggestive of what happens in

the full SPDE model. The right panel of fig. 5 shows the region of Pee-Γe space that leads to

oscillatory behaviour in the ODE and SPDE models denoted by dark grey and light grey regions,

respectively. In this figure, α = 1.6 is used to account for the full effect of noise in the SPDE
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FIG. 5: Comparison between the full SPDE model and the simpler ODE model. Left:

Response diagram for the hyperexcited cortex with subcortical input Pee = 548.0. Amplitude

of noise from stochastic subcortical inputs was reduced by an order of magnitude to 0.1 to

demonstrate the effect of spatial terms on the dynamics of the model. The red jagged lines

indicate maximum and minimum values of he over 2 seconds for different Γe, which is the

influence of the synaptic input on the mean soma potential of the excitatory population, using

the SPDE model. Black lines indicate the bifurcation diagram for the ODE model. Dashed and

solid lines indicate unstable and stable fixed points, respectively. Maximum and minimum

values of he during stable (dot-dashed) and unstable (dashed) limit cycles arising from a

subcritical Hopf bifurcation (asterisk) are also shown. Right: Comparison of the SPDE and

ODE models in parameter space, with grey regions indicating seizure causing areas. The

stochastic inputs in the SPDE model enhance the seizure area (indistinct boundary marked in

grey) in parameter space when compared to the ODE model (darker region with sharp

boundaries). Here, we use α = 1.6 which corresponds to the amplitude of noise used with the

SPDE model elsewhere in the manuscript.

model. Except at the boundaries, the seizure causing region using the ODE model overlaps that

of the SPDE model almost entirely. The SPDE model has boundaries for the seizure regions

that are slightly broader and less distinct than the boundaries of the ODE model.
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A. Bifurcation analysis using the ODE system

In section III, Pee was gradually varied until a high enough magnitude of excitatory subcor-

tical inputs induced seizures in the model cortex. Here, we study the response of the cortical

model by observing the features of the mean soma potential of the excitatory population when

the magnitude of excitatory subcortical inputs is varied. The left most panel of fig. 6 shows the

response of the ODE model when no optogenetic stimulation is applied at Γe = 0.0008 with all

other parameters held at baseline values [13]. Asterisks at Pee = 417.4 and Pee = 996.7 indi-

cate subcritical Hopf bifurcations that give rise to unstable limit cycles, which stabilise at the

turning points on the branch. Maximum and minimum values of he achieved during stable and

unstable limit cycles are indicated by dot-dashed lines and dotted lines, respectively. We do

not explore the dynamics past Pee = 2000.0, which is well above the physiological limit of Pee.

Stable oscillations (dot-dashed lines) occur between Pee = 397.2 and Pee = 1355.0.
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FIG. 6: Bifurcation analysis using an unstimulated cortex (left panel) and a cortex stimulated

with light of constant 10 mW/mm2 intensity in the open loop configuration (center panel).

Asterisks indicate subcritical Hopf bifurcations that lead to unstable limit cycles. Time

integration of the combined cortico optogenetic model with PI control to track the maximum

and minimum values of the excitatory mean soma potential is shown on the right. The red

triangle indicates the start of oscillatory activity despite closed loop control being triggered.

The dashed black lines in the right most panel indicate minimum and maximum values of h̃e

during oscillatory activity arising despite the use of closed loop control. Gains used KP = 0.4

and KI = 3.6.

To evaluate the efficacy of open loop optogenetic control, we use an intensity of 34

mW/mm2, which is the minimum intensity required to suppress successfully a fully formed
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seizure when α = 1.6, Γe = 0.0008, and Pee is within the physiologically acceptable range of

values. When open loop optogenetic control is applied via the inhibitory population using an

illumination intensity of 34 mW/mm2 the first and second subcritical Hopf bifurcations, marked

with green asterisks, shift to higher values of Pee = 1604.67 and Pee = 1938.87, respectively.

These Hopf bifurcations also lead to an unstable limit cycle, and demonstrate how open loop

can delay seizure activity until much higher excitatory inputs are available to elicit seizures.

In the case with triggered PI control, we cannot perform a bifurcation analysis because the

trigger renders the system discontinuous in time. Instead, we time integrate the ODE system

to obtain the maximum and minimum values of the mean soma potential for various values

of Pee, as shown in the right most panel of 6. After control is triggered, we simulate cortical

activity for a further 1 second. This is done to allow the system to reach a steady state, which

in turn allows us to track the maximum and minimum value of the mean soma potential for

the excitatory population after the control effort has attained maximum strength. The black

solid line indicates no oscillatory activity in the cortex when control is switched on (stable fixed

points), while the black dot dashed lines indicate oscillations in the mean soma potential of the

excitatory population despite control being turned on. The red triangle around Pee = 1860.0

indicates the lowest value of subcortical excitatory inputs that will produce seizures in the ODE

model despite the use of closed loop optogenetic control. Here, we use KP = 0.4 and KI = 3.6.

In both the open and closed loop cases, we do not explore higher intensities or gains because

they successfully delay oscillatory activity well past the physiological range of parameters.

V. SEIZURES IN THE Me-Γi SPACE

Another route to seizure using the meso scale cortical model is achieved by increasing the

slope at the inflection point of the sigmoid function that represents the mean firing rate of the

excitatory population, Me, as it depends upon the mean soma potential of the excitatory popu-

lation, h̃e. This parameter models the effects of variance of depolarisation within a population

of neurons [37]. By increasing Me, small changes in h̃e could result in large changes in the

firing rate S̃e, a characteristic of oscillatory behavior. When Γi, the influence of synaptic input

on mean soma potential, is also increased by a small amount, it leads to a small net increase in

the rate of change of h̃e. This rise in dh̃e/dt̃ coupled with the higher Me leads to an abrupt onset

of oscillatory behavior as observed in figure 7. We gradually increase, and then decrease, Me in

20



time as shown in the right most panel of figure 7, while Γi is held at a slightly higher values than

during normal function. The value of Me at its peak is -12.5, which is within the physiological

range of values for this parameter, but is much higher than its value during normal function.
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FIG. 7: Seizures in the Me-Γi space using a variation of Me in time with a maximum value of

-12.5 as shown in the panel on the right. Γi is held constant at 0.085. All other parameters are

similar to baseline parameters in [13]. The mean soma potential (h̃e) at a point, and traveling

seizure waves depicted by a 1 dimensional slice of the 2 dimensional cortex are shown in the

first two figures on the left.

The center panel of figure 7 depicts a one dimensional slice of the 2D domain illustrating

traveling waves. The waves appear to be stationary because the radius of curvature of spiral

waves produced is much larger than the dimensions of the model. When seizures are induced

by increasing subcortical inputs and decreasing the influence of excitatory synapses on the mean

soma potential, there is first a gradual increase in the post synaptic activation, which results in

an increase in the firing rate that leads to highly oscillatory activity. However, when we change

Γi and Me, we directly increase the firing rate. This leads to a more abrupt onset seizure.

Consequently, seizure like activity is quickly suppressed when Me is reduced.

To deal with the abruptness of seizure onset by quickly suppressing excessive excitatory

activity, a strong initial control effort is required. This is achieved by using a relatively high

proportional gain, KP = 1.0, and a moderately high integral gain, KI = 0.64. A higher intensity

leads to higher optogenetic conductance, which in turn depolarises inhibtory cells much faster.

The gains are tuned for a fully formed seizure with parameters Me = −12.5, Γi = 0.085 and

α = 1.6. An open loop intensity of 8 mW/mm2 is required to suppress an equivalent fully

formed seizure. The red dot-dash lines in figure 8c depicts open loop intensity for fully formed

seizures at the peak value of Me =−12.5. The intensities used to suppress seizures in this space
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FIG. 8: Effect of closed loop optogenetic control on seizures in the Me-Γi space. Me is varied

in time with a maximum value of -12.5 as shown in figure 7. Γi is held constant at 0.085 with

α = 1.6. All other parameters are similar to baseline parameters in [13]. The left and right

panels show the variation with time of h̃e and intensity, respectively at the same point. The red

dot-dash line in the right panel indicates the open loop intensity required to suppress a fully

formed seizures at ge =−12.5. Gains used: KP = 1.0 and KI = 0.64.

are lower than intensities observed in III A because unlike constant high subcortical inputs, a

high Me leads to rapid oscillations between high and low firing rates, which translates to the

amplitude of total excitatory inputs in the model cortex oscillating between highs and lows.

This gives the increased inhibition from optogenetic stimulation more opportunities for seizure

suppression using lower intensities when the firing rate is low.

The delays associated with synaptic transmission make the rapidity in depolarisation crucial

to suppressing excessive excitatory activity before it reaches a state of synchronisation charac-

teristic of seizures. As Me rises until it peaks at 1s, the firing rate increases and decreases more

rapidly, and the controller accounts for these changes by adjusting the intensity of light as seen

in the panel on the right in figure 8. We have used the same amplitude and rate triggers as in the

previous section. The left and center panels of figure 8 respectively show how oscillations in he

are suppressed, and how traveling seizure waves break down.

A. Seizures in parameter space

Figure 9 illustrates the region of the Me-Γi space that leads to seizure like activity in the

model cortex. Open loop control via an 8 mW/mm2 illumination and closed loop PI control

with KP = 1.0 and KI = 0.64 successfully suppress oscillatory activity throughout the entire
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range of values of Me and Γi shown in figure 9, and so we have not shown this parameter space

or the bifurcation diagram here with illumination turned on. Again, the SPDE model will lead

to less distinct boundaries of the seizure area in parameter space.
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FIG. 9: Seizure prone areas in the Me −Γi parameter space with no optogenetic stimulation.

Here, dark regions represent values of Me and Γi which produce oscillations in the mean soma

potential he. The grayscale shading indicates the variation in he during oscillatory behavior.

These results were obtained using the dimensionless ODE system of equations.

VI. CONCLUSION

We have presented a method of closed loop optogenetic control that efficiently suppresses

seizure like activity in a model of the human cortex. The inhibitory population in the cortical

model is modified to express channelrhodopsin-2 (ChR2) ion channels that are activated by light

of wavelength 480 nm. A simple and robust trigger initiates control when seizure like activity

is detected via amplitude and rate of change of amplitude thresholds of electrode measurements

of cortical activity (h̃m), which are made at the same temporal and spatial scales that define the

cortical model. Proportional integral (PI) control based on the measured potential is used to cal-

culate the intensity of light that illuminates the inhibitory population together with an algorithm

for switching off the controller when the seizure subsides. Depolarising the inhibitory popula-

tion increases inhibition, which in turn suppresses excessive excitatory activity characteristic of

epileptic seizures. This control strategy is tested in the Pee-Γe and Me −Γi parameter spaces,
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which have been found to be the most probable parameter regions that lead to seizures in the

model that correspond well with multiple seizures observed in recordings of cortical activity

of a patient [34]. Bifurcation analysis in the Pee-Γe space reveals that even a small intensity of

light delays the occurrence of Hopf bifurcations that lead to unstable limit cycles, which signal

seizure like activity in the model cortex. The etiology of seizures is important in determining

the gain constants associated with control. Abrupt onset of seizures, as seen in the Me −Γi

parameter space require a higher proportional response. A more gradual increase in oscillatory

activity, as seen in the Pee-Γe, requires lower intensities of light illumination to inhibit seizure

activity. An examination of a simpler ODE model that corresponds well with the full SPDE

model, shows the effectiveness of closed loop control in suppressing physiologically relevant

seizures in the model cortex.

While this strategy of seizure control is effective, there are improvements that can be made.

First, we can account for the spatial electrode profile in our measurements to improve the accu-

racy of the measured potential, and also incorporate spatial variation of illumination that could

result in less homogeneous distribution of intensity. We can also account for spatial variations

of the cortical model, for example the presence of gyri and sulci, making only a region of model

cortex easily accessible to optogenetic stimulation. In [11] we showed optogenetic control is

still effective when only parts of the cortical model are illuminated. However, a limited region

of stimulation might require higher illumination intensities, and a more refined tuning of the

gain terms.

Second, as stated in section II B, different types of inhibitory neurons could be responsible

for specific types of seizures. Previous work [11], has explored the consequences of stimulating

only a fraction of the neurons in the meso-scale model to inhibit seizure activity. Using constant

illumination, control was achieved when only a third of the inhibitory population in the area of

a seizure hotspot was stimulated with higher illumination intensities. It would be interesting to

investigate how stimulation via different neuron subtypes influences the dynamics of seizures

in the human cortex. While we currently do not have sufficient data on different types of human

interneurons to include them in our model, in rats [43, 44] and in mice [45], inhibitory neurons

can be divided into three main subtypes, fast spiking, latent spiking and another group con-

taining burst spiking and regular spiking neurons. The meso-scale model offers a very suitable

platform to incorporate the dynamics of these neurons because the layout of the equations of

the model facilitates the inclusion of more sub-types of neurons.
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Third, we have seen seizures can be more abrupt in the Me−Γi parameter space, which sug-

gests exploring control actuation via the excitatory population to mitigate the effect of synap-

tic delays by suppressing excessive excitation at the source. One way of doing this is to use

halorhodpsin, which is an anion pump that is activated by light of wavelength around 570 nm

[38], to hyperpolarise the excitatory neurons. Apart from avoiding synaptic delays, another ad-

vantage of using this method in conjunction with our current method of control is the option of

selectively stimulating either inhibitory or excitatory neurons, or stimulating both together to

provide more flexible control.

Finally, it will be interesting to study the effects of optogenetic stimulation of subcortical

brain structures. Some seizures specifically arise because of the dynamic interplay between

the cortex and subcortical regions. For example, in [21], seizures arising from cortical injury,

and maintained by the interplay between the thalamus and cortical regions were identified in

rats. Additionally, in the same paper, thalamocortical neurons were stimulated via closed loop

optogenetic control to inhibit seizures caused by cortical injury. The meso-scale mathematical

model of the cortex used in this work does not yet include detailed equations describing the dy-

namic interplay between subcortical and cortical regions, which may only be a feature in some

seizures. Instead, we explore whether seizures caused by higher excitatory subcortical inputs

or changes in the inflection point of the sigmoid function that describes the mean excitatory

firing rate could be controlled with optogenetics in the cortex, which is a much more accessible

part of the brain to stimulate than subcortical regions. The control of specific seizures might

entail other, more involved strategies. This first attempt at exploring whether cortical feedback

stimulation could work has proven successful even when the precipitating cause is subcortical

inputs. In the future, a complex mathematical model of dynamic cortico-subcortical interac-

tions, will aid in studying the effect of applying optogenetic control to subcortical regions, and

also provide insight into the effects of cortical stimulation when the pathway to seizures is the

dynamic interplay between the cortex and subcortical regions.
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Appendix A: The meso-scale cortical model

The non-dimensional meso-scale model was first stated in [13], where values and explana-

tions for all variables and constants of the model can be found. For convenience, we state the

equations here.
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Ĩii = N
β
i S̃i

[

h̃i

]

+Pii + Γ̃4 (A6)

(

1

λe

∂

∂ t̃
+1

)2

φ̃e =
1

λ 2
e

∇2φ̃e +

(

1

λe

∂

∂ t̃
+1

)

Nα
e S̃e

[

h̃e

]

(A7)

(

1

λi

∂

∂ t̃
+1

)2

φ̃i =
1

λ 2
i

∇2φ̃i +

(

1

λi

∂

∂ t̃
+1

)

Nα
i S̃e

[

h̃e

]

(A8)

All variables have been non dimensionalized and are functions of time t̃, and the two spa-

tial dimensions x̃ and ỹ. The subscripts e and i represent excitatory and inhibitory populations

respectively, and variables with two subscripts represent the transfer of energy from one popula-

tion to another. Tildes over parameters and parameters represented by upper case letters indicate

non-dimensionalized forms. The mean soma potential for a neuronal population is represented

by the h̃ state variable, Ĩ represents the postsynaptic activation due to local, long-range, and

subcortical inputs. φ̃ represents long range (corticocortical) inputs. The stochastic forcing from

the subcortical inputs is represented by Γ̃1,2,3,4 terms in equations A3 - A6. In equations A7 and

A8, ∇2 represents the Laplacian, or the divergence of the gradient of the long rang connections

φ , which models the spatial variation of the long range connections. The stochastic forcing and

spatial terms can be removed to obtain the ODE model described in section IV.

The firing rate of each neuron population is given by the sigmoid function S̃e,i, and is de-

pendent on the mean soma potential of the population, h̃e,i, the inflection point of the sigmoid
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function, θ̃e,i, and the slope at the inflection point of the sigmoid function, Me,i. Please note

that Me,i in this article corresponds to g̃e,i in Kramer et al. [13]. We have changed notation

to avoid confusion with the various conductance variables associated with the optogenetic

model that are denoted by g.

S̃e,i =
1

1+ exp[−Me,i(h̃e,i − θ̃e,i)]
(A9)

Subcortical inputs contribute to the postsynaptic activation Ii j through constant Pi j and

stochastic inputs defined by,

Γ̃ = α
√

Pi jξ [x̃, t̃]. (A10)

Here, i and j refer to population subtypes, which can be either excitatory or inhibitory, α is

a scaling parameter for the stochastic inputs ξ is zero mean Gaussian white noise in time and

space.

For convenience, we include tables from [13] that explain the dimensionless variables in

terms of the dimensional symbols (Table 1), and the associated parameters and their typical

values (Table 2).
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Symbol Definition Description

h̃e,i he,i/hrest Population mean soma dimensionless electric potential

Ĩee,ie Iee,ieγe/Geexp(1)Smax Total e → e, i → e input to excitatory population

Ĩei,ii Iei,iiγi/Geexp(1)Smax Total e → i, i → i input to inhibitory population

φ̃e,i φe,i/Smax Long range (corticortical) input to e, i populations

t t/τ Dimensionless time

x x/(τν̃) Dimensionless time

TABLE I: Dynamical variable definitions for the dimensionless SPDEs model. The

dimensionless variables (left column) are defined in terms of the dimensional symbols (middle

column) found in Table 1 (with values and description) of Steyn-Ross et al. [6]. The variables

are described in the right column. Subscripts e and i refer to excitatory and inhibitory

populations, respectively. The notational simplification is made in agreement with values used

in [6].

Appendix B: The optogenetic model

For convenience, we include a table explaining the rate constants in eqs.1-3 that appears in

Selvaraj et al. [11].

The photon flux is dependent on the light intensity E:

φ =
σEλ

hc
, (B1)

where φ is the photon flux at a given time, σ is the effective cross section of a ChR2 channel

(∼10−20m2), E is the intensity of light in W/m2, λ is the wavelength of light used (blue light -

470 nm), h is Planck’s constant, and c is the speed of light.
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Symbol Definition Description Typical value

Γe,i
Ge,iexp(1)Smax

γe,i|h
rev
e,i −hrest | Influence of input on mean soma potential values 1.42×10−3,0.0774

h0
e,i hrev

e,i /hrest Dimensionless cell reversal potential -0.643, 1.29

Te,i τγe,i Dimensionless neurotransmitter rate constant 12.0, 2.6

λe,i τν̃Λee,ei Dimensionless characteristic corticocortical inverse-length scale 11.2, 18.2

Pee,ie pee,ie/Smax Subcortical input to e population 11.0, 16.0

Pei,ii pee,ei/Smax Subcortical input to i population 16.0, 11.0

N
alpha
e,i - Total number of synaptic connections from distant e populations 4000, 2000

Nbeta
e,i - Total number of local e and i synaptic connections 3034, 536

Me,i ge,i/hrest Dimensionless sigmoid slope at inflection point -19.6, -9.8

θ̃e,i θe,i/hrest Dimensionless inflection point for sigmoid function 0.857, 0.857

TABLE II: Parameter values for the dimensionless SPDEs neural macrocolumn model. The

dimensionless symbols (first column) are defined in terms of the dimensional variables (second

column) found in Table 1 of Steyn-Ross et al. [6]. The variables are described in the third

column and typical values are shown in the fourth column. The variables are described in the

right column. Subscripts e and i refer to excitatory and inhibitory populations, respectively.

The notational simplification is made in agreement with values used in [6].

Rate constant Transition from Value (ms−1)

Ka1,Ka2 C1 to O1, C2 to O2 0.5Φ, 0.12Φ

Kd1,Kd2 O1 to C1, O2 to C2 0.1, 0.5

e12,e21 O1 to O2, O2 to O1 .011+ .005log(Φ/0.024), 0.008+0.004log(Φ/0.024)

Kr C2 to C1 1/3000

TABLE III: Rate constant values for the meso scale optogenetic model of ChR2 embedded in

the cortex. Φ(t) is the photon flux per ChR2 and has units of ms−1. Kai is given by the

quantum efficiency times the photon flux, εi.Φ(t).
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