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In the study of networked systems such as biological, technological, and social networks the
available data are often uncertain. Rather than knowing the structure of a network exactly, we
know the connections between nodes only with a certain probability. In this paper we develop
methods for the analysis of such uncertain data, focusing particularly on the problem of community
detection. We give a principled maximum-likelihood method for inferring community structure and
demonstrate how the results can be used to make improved estimates of the true structure of the
network. Using computer-generated benchmark networks we demonstrate that our methods are
able to reconstruct known communities more accurately than previous approaches based on data
thresholding. We also give an example application to the detection of communities in a protein-
protein interaction network.

I. INTRODUCTION

Many systems of scientific interest can be usefully rep-
resented as networks and the last few years have seen a
surge of interest in the study of networks, due in part
to the fruitful application of a range of techniques drawn
from physics [1]. Most current techniques for the analysis
of networks begin with the assumption that the network
data available to us are reliable, a faithful representation
of the true structure of the network. But many real-world
data sets, perhaps most of them, in fact contain errors
and inaccuracies. Thus, rather than representing a net-
work by a set of nodes joined by binary yes-or-no edges,
as is commonly done, a more realistic approach would
be to specify a probability or likelihood of connection
between every pair of nodes, representing our certainty
(or uncertainty) about the existence of the corresponding
edge. If most of the probabilities are close to zero or one
then the data are reliable—for every node pair we are
close to being certain that it either is or is not connected
by an edge. But if a significant fraction of pairs have a
probability that is neither close to zero nor close to one
then we are uncertain about the network structure. In re-
cent years an increasing number of network studies have
started to provide probabilistic estimates of uncertainty
in this way, particularly in the biological sciences.

One simple method for dealing with uncertain net-
works is thresholding : we assume that edges exist when-
ever their probability exceeds a certain threshold that we
choose. In work on protein-protein interaction networks,
for example, Krogan et al. [2] assembled a sophisticated
interaction data set that includes explicit estimates of
the likelihood of interaction between every pair of pro-
teins studied. To analyze their data set, however, they
then converted it into a conventional binary network by
thresholding the likelihoods, followed by traditional net-
work analyses. While this technique can certainly reveal
useful information, it has some drawbacks. First, there
is the issue of the choice of the threshold level. Kro-

gan et al. used a value of 0.273 for their threshold, but
there is little doubt that their results would be different if
they had chosen a different value and little known about
how to choose the value correctly. Second, thresholding
throws away potentially useful information. There is a
substantial difference between an edge with probability
0.3 and an edge with probability 0.9, but the distinction
is lost if one applies a threshold at 0.273—both fall above
the threshold and so are considered to be edges. Third,
and more subtly, thresholded probability values fail to
satisfy certain basic mathematical requirements, mean-
ing that thresholded networks are essentially guaranteed
to be wrong, often by a wide margin. If, for instance,
we have 100 node pairs connected with probability 0.5
each, then on average we expect 50 of those pairs to be
connected by edges. If we place a threshold on the proba-
bility values at, say, 0.273, however, then all 100 of them
will be converted into edges, a result sufficiently far from
the expected value of 50 as to have a very low chance of
being correct.

In this paper we develop an alternative and princi-
pled approach to the analysis of uncertain network data.
We focus in particular on the problem of community
detection in networks, one of the best studied analysis
tasks. We make use of maximum-likelihood inference
techniques, whose application to networks with definite
edges is well developed [3–6]. Here we extend those de-
velopments to uncertain networks and show that the re-
sulting analyses give significantly better results in con-
trolled tests than thresholding methods. As a corollary,
our methods also allow us to estimate which of the uncer-
tain edges in a data set is mostly likely to be a true edge
and hence reconstruct, in a probabilistic fashion, the true
structure of the underlying network.

A number of authors have looked at related ques-
tions in the past. There exists a substantial literature
on the analysis of weighted networks, meaning networks
in which the positions of the edges are exactly known
but the edges carry varying weights, such as strengths,
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lengths, or volumes of traffic. Such weighted networks
are somewhat similar to the uncertain networks studied
in this paper—edges can be either strong or weak in a cer-
tain sense—but at a deeper level they are different. For
instance, the data sets we consider include probabilities
of connection for every node pair, whereas weighted net-
works have weights only for node pairs that are known
to be connected by an edge. More importantly, in our
uncertain networks we imagine that there is a definite
underlying network but that it is not observed; all we
see are noisy measurements of the underlying truth. In
weighted networks the data are considered to be exact
and true and the variation of edge weights represents an
actual physical variation in the properties of connections.

Methods for analyzing weighted networks include sim-
ple mappings to unweighted networks and generalizations
of standard methods to the weighted case [7]. Inference
methods, akin to those we use here, have also been ap-
plied to the weighted case [8] and to the case of affin-
ity matrices, as used for example in computer vision for
image segmentation [9]. A little further afield, Harris
and Srinivasan [10] have looked at network failures in a
noisy network model in which edges are deleted with uni-
form probability, while Saade et al. [11] use spectral tech-
niques to detect node properties, but not community af-
filiations, when the underlying network is known but the
node properties depend on noisy edge labels. Guimer and
Sales-Pardo [12] similarly give a framework for network
inference in the presence of noise, but their model as-
sumes one can observe only an unweighted network with
possibly erroneous edges. In related work, Xu et al. [13]
have studied the prediction of edge labels using inference
methods and Kurihara et al. [14] have applied inference
to a case where the data give the frequency of interac-
tion between nodes. Lastly, Bassett et al. [15] have stud-
ied correlation matrices, which can be view as a type of
weighted network, and give a technique for computing
the probability that correlations are the result of chance,
though this type of data is quite distinct from the edge
probabilities studied in this manuscript.

II. METHODS

We focus on the problem of community detection in
networks whose structure is uncertain. We suppose that
we have data which, rather than specifying with certainty
whether there is an edge between two nodes i and j, gives
us only a likelihood or probability Qij that there is an
edge. We will assume that the probabilities are indepen-
dent. Correlated probabilities are certainly possible, but
the simple case of independent probabilities already gives
many interesting results, as we will see.

At the most basic level our goal is to classify the nodes
of the network into non-overlapping communities—
groups of nodes with dense connections within groups
and sparser connections between groups, also known as
“assortative” structure. More generally we may also be

interested in disassortative structures in which there are
more connections between groups than within them, or
mixed structures in which different groups may be ei-
ther assortative or disassortative within the same net-
work. Conceptually, we assume that even though our
knowledge of the network is uncertain, there is a definite
underlying network in which each edge either exists or
does not, but we cannot see this network. The under-
lying network is assumed to be undirected and simple
(i.e., it has no multi-edges or self-edges). The edge prob-
abilities we observe are a noisy representation of the true
network, but they nonetheless can contain information
about structure—enough information, as we will see, to
make possible the accurate detection of communities in
many situations.

Our approach to the detection problem takes the clas-
sic form of a statistical inference algorithm. We propose
a generative model for uncertain community-structured
networks, then fit that model to our observed data. The
parameters of the fit tell us about the community struc-
ture.

A. The model

The model we use is an extension to the case of uncer-
tain networks of the standard stochastic block model, a
random graph model widely used for community struc-
ture analyses [3, 16, 17]. In the conventional definition
of the stochastic block model, a number n of nodes are
distributed at random among k groups, with a probabil-

ity γr of being assigned to group r, where
∑k
r=1 γr = 1.

Then undirected edges are placed independently at ran-
dom between node pairs with probabilities ωrs that de-
pend only on the groups r, s that a pair belongs to and
nothing else. If the diagonal elements ωrr of the proba-
bility matrix are significantly larger than the off-diagonal
entries then one has traditional assortative community
structure, with a higher density of connections within
groups than between them. But one can also make the
diagonal entries smaller to generate disassortative struc-
ture or mixed structure types.

Given the parameters γr and ωrs, one can write down
the probability, or likelihood, that we generate a partic-
ular network in which node i is assigned to group gi and
the placement of the edges is described by an adjacency
matrix A with elements Aij = 1 if there is an edge be-
tween nodes i and j and 0 otherwise:

P (A,g|γ,ω) = P (g|γ)P (A|g,ω)

=
∏
i

γgi
∏
i<j

ωAij
gigj (1− ωgigj )1−Aij . (1)

Here γ represents the vector of group probabilities γr and
ω represents the matrix of probabilities ωrs.

In extending the stochastic block model to uncertain
networks we imagine a multi-step process, illustrated in
Figs. 1 and 2, in which the network is first generated
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using the standard stochastic block model and then the
definite edges and non-edges are replaced by probabili-
ties, effectively adding noise to the network data. The
exact shape of the noise will depend on the detailed ef-
fects of the experimental procedure used to measure the
network, which we assume to be unknown. We assume
only that the edge likelihoods are true probabilities in
a sense defined below (see Eq. (4)). Remarkably, how-
ever, it still turns out to be possible to perform precise
inference on the data.

We represent the noise process by two unknown func-
tions. The function β1(Q) represents the probability den-
sity on the interval from 0 to 1 that a true edge between
two nodes in the original (unobserved) network gives rise
to a measured probability Q of connection between the
same nodes in the observed (probabilistic) data. Con-
versely, the function β0(Q) represents the probability
density that a non-edge gives rise to probability Q.

Given these two functions, we can write an expression
for the probability (technically, probability density) that
a true network represented by adjacency matrix A gives
rise to a matrix of observed edge probabilities Q = {Qij}
thus:

P (Q|A) =
∏
i<j

[
β1(Qij)

]Aij
[
β0(Qij)

]1−Aij
. (2)

The crucial observation that makes our calculations
possible is that the functions β0 and β1 are not indepen-
dent, because the numbers Qij that they generate are
not just any edge weights but are specifically probabili-
ties and are assumed to be independent. If we were to
gather together all node pairs that have probability Q of
being connected by an edge, the independence assump-
tion implies that a fraction Q of them on average should
in fact be connected by edges and the remainder should
be non-edges. For example, 90% of all node pairs with
Qij = 0.9 should, in expectation, be connected by edges.

If there are m edges in total in our underlying true
network, then there are mβ1(Q) dQ edges with ob-
served probability lying between Q and Q + dQ and
[
(
n
2

)
−m]β0(Q)dQ non-edges in the same interval. Hence

for every possible value of Q we must have

mβ1(Q) dQ

mβ1(Q) dQ+ (
(
n
2

)
−m)β0(Q) dQ

= Q. (3)

Rearranging, we then find that

β1(Q)

β0(Q)
=

Q/ρ

(1−Q)/(1− ρ)
, (4)

where

ρ =
m(
n
2

) (5)

is the so-called density of the network, the fraction of
possible edges that are in fact present. Since we don’t
know the true network, we don’t normally know the value

of m, but it can be approximated by the expected number
of edges

∑
i<j Qij , which becomes an increasingly good

estimate as the network gets larger, and from this figure
we can calculate ρ.

Note that Eq. (4) implies that β0(1) = 0 and β1(0) = 0.
The equation is also compatible with the choice β0(Q) =
δ(Q), β1(Q) = δ(Q − 1), where δ(x) is the Dirac delta
function, which corresponds to the conventional case of
a perfectly certain network with Qij = Aij .

Using Eq. (4) we can now write Eq. (2) as

P (Q|A) =
∏
i<j

1− ρ
1−Qij

β0(Qij)

×
∏
i<j

(
Qij
ρ

)Aij
(

1−Qij
1− ρ

)1−Aij

. (6)

The first product is a constant for any given set of ob-
served probabilities Q and hence will have no effect on
our maximum-likelihood calculations (which depend only
on the position of the likelihood maximum and not on its
absolute value). Henceforth, we will neglect this factor.
Then we combine Eqs. (1) and (6) to get an expression
for the likelihood of the data Q and the community as-
signments g, neglecting constants and given the model
parameters γ and ω:

P (Q,g|γ,ω) =
∑
A

P (Q|A)P (A,g|γ,ω)

=
∏
i

γgi
∏
i<j

∑
Aij=0,1

[
Qijωgigj

ρ

]Aij
[

(1−Qij)(1− ωgigj )

1− ρ

]1−Aij

=
∏
i

γgi
∏
i<j

[
Qijωgigj

ρ
+

(1−Qij)(1− ωgigj )

1− ρ

]
. (7)

Our goal is now, given a particular set of observed
data Q, to maximize this likelihood to find the best-fit
parameters γ and ω. In the process we will determine the
community assignments g as well (which are frequently
the primary objects of interest).

B. Fitting to empirical data

Fitting the model to an observed but uncertain net-
work, represented by the probabilities Qij , means deter-
mining the values of the parameters γ and ω that maxi-
mize the probability of generating the particular data we
see. In other words, we want to maximize the marginal
likelihood of the data given the parameters:

P (Q|γ,ω) =
∑
g

P (Q,g|γ,ω). (8)

Equivalently, we can maximize the logarithm of this
quantity, which gives the same result (since the logarithm
is a monotone function) but is often easier.

Direct maximization by differentiation gives rise to a
set of implicit equations that have no simple solution, so



4

P (A,g|γ,ω)

Random network model

A

Network instance β1(x)

Noise process

β0(x)

Q

Uncertain network
Aij = 1

Aij = 0

FIG. 1: The model of uncertain network generation used in our calculations. A community assignment g and network A are
drawn from a random network model such as the stochastic blockmodel. The experimental uncertainty is represented by giving
each pair of nodes i, j a probability Qij of being connected by an edge, drawn from different distributions for edges Aij = 1
and non-edges Aij = 0.

Underlying network A

0.01
1.

00

0.54

0.87

0.
75

0.66

Uncertain network QNoise process β β10 ,

0 0.5 1

Q

Edges
Non-edges

FIG. 2: Simple example of the generation of two uncertain networks from an initial network with three nodes. The two networks
generated (right-hand side) differ only in their noise distributions, β0(Q) and β1(Q), whose probability density functions (PDFs)
are shown in the center. The upper pair of distributions corresponds to a low-noise setting in which the PDFs for edges and
non-edges are quite distinct and the resulting probability matrix Q retains most of the information from the original adjacency
matrix A. The lower pair of distributions corresponds to a high-noise setting in which the two PDFs are almost the same and
the final matrix Q retains little of the original network structure.

instead we employ a standard trick from the statistics
toolbox and apply Jensen’s inequality, which says that
for any set of positive-definite quantities xi, the log of
their sum satisfies

log
∑
i

xi ≥
∑
i

qi log
xi
qi
, (9)

where qi is any probability distribution over i satisfying

the normalization condition
∑
i qi = 1. One can easily

verify that the exact equality is achieved by choosing

qi =
xi∑
i xi

. (10)
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Applying Jensen’s inequality to (8), we get

logP (Q|γ,ω) ≥
∑
g

q(g) log
P (Q,g|γ,ω)

q(g)

=
∑
g

q(g)
∑
i

log γgi + 1
2

∑
g

q(g)
∑
ij

log

[
Qijωgigj

ρ
+

(1−Qij)(1− ωgigj )

1− ρ

]
−
∑
g

q(g) log q(g)

=
∑
i

∑
r

qir log γr + 1
2

∑
ij

∑
rs

qijrs log

[
Qijωrs
ρ

+
(1−Qij)(1− ωrs)

1− ρ

]
−
∑
g

q(g) log q(g), (11)

where qir is the marginal probability within the probabil-
ity distribution q(g) that node i belongs to community r:

qir =
∑
g

q(g)δgi,r, (12)

and qijrs is the joint marginal probability that nodes i
and j belong to communities r and s respectively:

qijrs =
∑
g

q(g)δgi,rδgj ,s, (13)

with δij being the Kronecker delta.
Following Eq. (10), the exact equality in (11), and

hence the maximum of the right-hand side, is achieved
when

q(g) =
P (Q,g|γ,ω)∑
g P (Q,g|γ,ω)

=

∏
i γgi

∏
i<j

[
Qijωgigj

ρ +
(1−Qij)(1−ωgigj

)

1−ρ

]
∑

g

∏
i γgi

∏
i<j

[
Qijωgigj

ρ +
(1−Qij)(1−ωgigj

)

1−ρ

] .
(14)

Thus, calculating the maximum of the left-hand side
of (11) with respect to the parameters γ,ω is equivalent
to a double maximization of the right-hand side with re-
spect to q(g) (by choosing the value above) so as to make
the two sides equal, and then with respect to the parame-
ters. At first sight, this seems to make the problem more
complex, but numerically it is in fact easier—the double
maximization can be achieved in a relatively straight-
forward manner by alternately maximizing with respect
to q(g) using Eq. (14) and then with respect to the pa-
rameters. Such alternate maximizations can trivially be
shown always to converge to a local maximum of the log-
likelihood. They are not guaranteed to find the global

maximum, however, so commonly we repeat the entire
calculation several times from different starting points
and choose among the results the one which gives the
highest value of the likelihood.

Once we have converged to the maximum, the final
value of the probability distribution q(g) is given by
Eq. (14) to be

q(g) =
P (Q,g|γ,ω)

P (Q|γ,ω)
= P (g|Q,γ,ω). (15)

In other words, q(g) is the posterior distribution over
community assignments g given the observed data Q
and the model parameters. Thus, in addition to telling
us the values of the parameters, our calculation tells us
the probability of any assignment of nodes to communi-
ties. Specifically, the one-node marginal probability qir,
Eq. (12), tells us the probability that node i belongs to
community r and, armed with this information, we can
calculate the most probable community that each node
belongs to, which is the primary goal of our calculation.
These marginals also allow us to assess the strength of
our community structure, as when the data poorly sup-
port community structure the posterior distribution sim-
ply becomes uniform.

We still need to perform the maximization of (11) over
the parameters. We note first that the final sum is in-
dependent of either γ or ω and hence can be neglected.
Maximization of the remaining terms with respect to γ is
straightforward. Differentiating with respect to γr, sub-
ject to the normalization condition

∑
r γr = 1, gives

γr =
1

n

∑
i

qir. (16)

Maximization with respect to ω is a little more tricky. Only the second term in (11) depends on ω, but direct
differentiation of this term yields a difficult equation, so instead we apply Jensen’s inequality (9) again, giving∑

ij

∑
rs

qijrs log

[
Qijωrs
ρ

+
(1−Qij)(1− ωrs)

1− ρ

]
≥
∑
ij

∑
rs

qijrs

[
tijrs log

Qijωrs

ρtijrs
+ (1− tijrs) log

(1−Qij)(1− ωrs)
(1− ρ)(1− tijrs)

]
, (17)

where tijrs is any number between zero and one.
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The exact equality, and hence the maximum of the right-
hand side, is achieved when

tijrs =
Qijωrs/ρ

Qijωrs/ρ+ (1−Qij)(1− ωrs)/(1− ρ)
. (18)

Thus, by the same argument as previously, we can maxi-
mize the left-hand side of (17) by repeatedly maximizing
the right-hand side with respect to tijrs using Eq. (18)
and with respect to ωrs by differentiation. Performing
the derivative and setting the result to zero, we find that
the maximum with respect to ωrs falls at

ωrs =

∑
ij q

ij
rst

ij
rs∑

ij q
ij
rs

. (19)

The optimal values of the ωrs can now be calculated by
iterating Eqs. (18) and (19) alternately to convergence
from a suitable initial condition.

The quantity tijrs has a simple physical interpretation,
as we can see by applying Eq. (4) to (18), giving

tijrs =
ωrsβ1(Qij)

ωrsβ1(Qij) + (1− ωrs)β0(Qij)
. (20)

But by definition

ωrs = P (Aij = 1|gi = r, gj = s), (21)

β1(Qij) = P (Qij |Aij = 1), (22)

β0(Qij) = P (Qij |Aij = 0), (23)

and hence

tijrs =
P (Aij = 1|gi = r, gj = s)P (Qij |Aij = 1)

P (Qij |gi = r, gj = s)

= P (Aij = 1|Qij , gi = r, gj = s). (24)

In other words, tijrs is the posterior probability that there
is an edge between nodes i and j, given that they are in
groups r and s respectively. This quantity will be useful
shortly when we consider the problem of reconstructing
a network from uncertain observations.

We now have a complete algorithm for fitting our
model to the observed data. The steps of the algorithm
are as follows:

1. Make an initial guess (for instance at random) for
the values of the parameters γ and ω.

2. Calculate the distribution q(g) from Eq. (14).

3. Calculate the one- and two-node marginal proba-
bilities qir and qijrs from Eqs. (12) and (13).

4. From these quantities calculate updated values of γ
from Eq. (16) and ω by iterating Eqs. (18) and (19)
to convergence starting from the current estimate
of ω.

5. Repeat from step 2 until q(g) and the model pa-
rameters converge.

Algorithms of this type are known as expectation–
maximization or EM algorithms [18, 19]. The end result
is a maximum likelihood estimate of the parameters γ
and ω along with the posterior distribution over commu-
nity assignments q(g) and the probability tijrs of an edge
between any pair of nodes.

Equation (19) can usefully be simplified a little further,
in two ways. First, note that Eq. (18) implies that tijrs = 0
whenever Qij = 0. All of the real-world data sets we
have examined are sparse, meaning that a large majority
of the probabilities Qij are zero. This means that most
of the terms in the numerator of (19) vanish and can be
dropped from the sum, which speeds up the calculation
considerably. Indeed tijrs need not be evaluated at all for
node pairs i, j such that Qij = 0, since this sum is the
only place that tijrs appears in our calculation. Moreover
it turns out that we need not evaluate qijrs for such node
pairs either. The only other place that qijrs appears is in
the denominator of Eq. (19), which can be simplified by
using Eq. (13) to rewrite it thus:∑

ij

qijrs =
∑
g

q(g)
∑
i

δgi,r
∑
j

δgj ,s = 〈nrns〉 , (25)

where 〈. . .〉 indicates an average over q(g) and nr =∑
i δgi,r is the number of nodes in group r, for community

assignment g. For large networks the number of nodes in
a group becomes tightly peaked about its mean value so
that 〈nrns〉 ' 〈nr〉 〈ns〉 where 〈nr〉 =

∑
g q(g)

∑
i δgi,r =∑

i q
i
r. Hence

ωrs =

∑
ij q

ij
rst

ij
rs∑

i q
i
r

∑
j q

j
s

. (26)

This obviates the need to calculate qijrs for node pairs such
that Qij = 0 (which is most node pairs), and in addition
speeds the calculation further because the denominator
can now be evaluated in time proportional to the number
of nodes in the network, rather than the number of nodes
squared, as in Eq. (19). (And the numerator can be eval-
uated in time proportional to the number of nonzero Qij ,
which is small.)

C. Belief propagation

In principle, the methods of the previous section con-
stitute a complete algorithm for fitting our model to ob-
served network data. In practice, however, it is an im-
practical one because it’s unreasonably slow. The bottle-
neck is the sum in the denominator of Eq. (14), which is
a sum over all possible assignments g of nodes to commu-
nities. If there are n nodes and k communities then there
are kn possible assignments, a number that grows with n
so rapidly as to prohibit explicit numerical evaluation of
the sum for all but the smallest of networks.

This is not a new problem. It is common to most
EM algorithms, not only for network applications but
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for statistics in general. The traditional way around it
is to approximate the distribution q(g) by importance
sampling using Markov chain Monte Carlo. In this paper,
however, we use a different method, proposed recently
by Decelle et al. [6, 20] and specific to networks, namely
belief propagation.

Originally developed in physics and computer science
for the probabilistic solution of problems on graphs and
lattices [21, 22], belief propagation is a message passing
method in which the nodes of a network exchange mes-
sages or “beliefs,” which are probabilities representing
the current best estimate of the solution to the problem

of interest. In the present case we define a message ηi→jr

which is equal to the probability that node i belongs to
community r if node j is removed from the network. The
removal of a node is crucial, since it allows us to write
a self-consistent set of equations satisfied by the mes-
sages, whose solution gives us the distribution q(g) over
group assignments. Although the equations can without
difficulty be written exactly and in full, we will here ap-
proximate them to leading order only in the small quan-
tities ωrs. We find this approximation to give excellent
results in our applications and the equations are consid-
erably simpler, as well as giving a faster final algorithm.

Within this approximation, the belief propagation equation for the message ηi→jr is:

ηi→jr =
γr
Zi→j

exp

(
−
∑
k,s

qksωrs

) ∏
k(6=j)
Qik 6=0

∑
s

ηk→is

[
Qikωrs
ρ

+
(1−Qik)(1− ωrs)

1− ρ

]
, (27)

where Zi→j is a normalization coefficient that ensures
∑
r η

i→j
r = 1, having value

Zi→j =
∑
r

γr exp

(
−
∑
k,s

qksωrs

) ∏
k(6=j)
Qik 6=0

∑
s

ηk→is

[
Qikωrs
ρ

+
(1−Qik)(1− ωrs)

1− ρ

]
, (28)

and qir is, as before, the one-node marginal probability of Eq. (12), which can itself be conveniently calculated directly
from the messages ηi→jr via

qir =
γr
Zi

exp

(
−
∑
j,s

qjsωrs

) ∏
j

Qij 6=0

∑
s

ηj→is

[
Qijωrs
ρ

+
(1−Qij)(1− ωrs)

1− ρ

]
, (29)

with

Zi =
∑
r

γr exp

(
−
∑
j,s

qjsωrs

) ∏
j

Qij 6=0

∑
s

ηj→is

[
Qijωrs
ρ

+
(1−Qij)(1− ωrs)

1− ρ

]
. (30)

These equations are exact if the set of node pairs i, j
with edge probabilities Qij > 0 forms a tree or is at
least locally tree-like (meaning that arbitrarily large local
neighborhoods take the form of trees in the limit of large
network size). For non-trees, which includes most real-
world networks, they are only approximate, but previous
results from a number of studies show the approximation
to be a good one in practice [6, 20, 22–25]. Probability
data of the kind we consider might further deviate from
a strict tree-like form if they include a large number of
low-probability edges, but nonetheless we find the belief
propagation method to work well.

Solution of the equations is by iteration. Typically we
start from the current best estimate of the values of the
beliefs and iterate to convergence, then from the con-
verged values we calculate the crucial two-node marginal

probability qijrs by noting that

qijrs = P (gi = r, gj = s|Qij)

=
P (gi = r, gj = s)P (Qij |gi = r, gj = s)∑
rs P (gi = r, gj = s)P (Qij |gi = r, gj = s)

. (31)

where all data Q other than Qij are assumed given in
each probability. The probabilities in these expressions
are equal to

P (gi = r, gj = s) = ηi→jr ηj→is , (32)

P (Qij |gi = r, gj = s) = β0(Qij)
1− ρ

1−Qij

×
[
Qijωrs
ρ

+
(1−Qij)(1− ωrs)

1− ρ

]
. (33)
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Substituting these into (31), we get

qijrs =
ηi→jr ηj→is

[
Qijωrs

ρ +
(1−Qij)(1−ωrs)

1−ρ

]
∑
rs η

i→j
r ηj→is

[
Qijωrs

ρ +
(1−Qij)(1−ωrs)

1−ρ

] . (34)

Our final algorithm then consists of alternately (a) it-
erating the belief propagation equations (27) to conver-
gence and using the results to calculate the marginal
probabilities qir and qijrs from Eqs. (29) and (34), and
(b) iterating Eqs. (18) and (26) to convergence to calcu-
late new values of the ωrs and using Eq. (16) to calculate
new values of γr. In practice the algorithm is efficient—
in other tests of belief propagation it has been found fast
enough for applications to networks of a million nodes or
more.

D. Degree-corrected model

Our method gives a complete algorithm for fitting the
standard stochastic block model to uncertain network
data represented by the matrix Q of edge probabilities.
As pointed out previously by Karrer and Newman [17],
however, the stochastic block model gives poor perfor-
mance for community detection on many real-world net-
works because the model assumes a Poisson degree distri-
bution, which is strongly in conflict with the broad, fre-
quently fat-tailed degree distributions seen in real-world
networks. Because of this conflict it is often not possi-
ble to find a good fit of the stochastic block model to
observed network data, for any parameter values, and
in such cases the model can return poor performance on
community detection tasks.

The fix for this problem is straightforward. The degree-
corrected stochastic block model is identical to the stan-
dard block model except that the probability of an edge
between nodes i, j that fall in groups r, s is didjωrs (in-
stead of just ωrs), where di is the observed degree of
node i in the network. This modification allows the
model to accurately fit arbitrary degree distributions,
and community detection algorithms that perform fits to
the degree-corrected model are found to return excellent
results in real-world applications [17].

We can make the same modification to our methods
as well. The developments follow exactly the same lines
as for the ordinary (uncorrected) stochastic block model.
The crucial equations (18) and (26) become

tijrs =
Qijdidjωrs/ρ

Qijdidjωrs/ρ+ (1−Qij)(1− didjωrs)/(1− ρ)
(35)

and

ωrs =

∑
ij q

ij
rst

ij
rs∑

i diq
i
r

∑
j djq

j
s

, (36)

while the belief propagation equation (27) becomes

ηi→jr =
γr
Zi→j

exp

(
−didj

∑
k,s

qksωrs

)

×
∏
k(6=j)
Qik 6=0

∑
s

ηk→is

[
Qikdidjωrs

ρ
+

(1−Qik)(1− didjωrs)
1− ρ

]
,

(37)

with corresponding modifications to Eqs. (28) to (30) and
Eq. (34).

In the following sections we describe a number of exam-
ple applications of our methods. Among these, the tests
on synthetic networks (Section III A) are performed us-
ing the standard stochastic block model, without degree-
correction, while the tests on real-world networks (Sec-
tion III B) use the degree-corrected version.

III. RESULTS

We have tested the methods described in the previ-
ous sections both on computer-generated benchmark net-
works with known structure and on real-world examples.

A. Synthetic networks

Computer-generated or “synthetic” networks provide
a controlled test of the performance of our algorithm.
We generate networks with known community structure
planted within them and then test whether the algorithm
is able accurately to detect that structure.

For the tests reported here, we generate networks us-
ing the standard (not degree-corrected) stochastic block
model and then add noise to them to represent the net-
work uncertainty, using functions β0 and β1 as defined in
Section II A. We use networks of size n = 4000 nodes, di-
vided into two equally-size communities, and as the noise
function β1(Q) for the edges we use a beta distribution:

β1(Q) =
Qa1−1(1−Q)b1−1

B(a1, b1)
, (38)

where B(a, b) is Euler’s beta function. As the noise func-
tion β0(Q) for the non-edges we use a beta function plus
an additional delta-function spike at zero:

β0(Q) = c
Qa0−1(1−Q)b0−1

B(a0, b0)
+ (1− c)δ(Q). (39)

The delta function makes the matrix Q of edge proba-
bilities realistically sparse, in keeping with the structure
of real-world data sets, with a fraction 1− c of non-edges
having exactly zero probability in the observed data, on
average.

Thus there are a total of five parameters in our noise
functions: a0, b0, a1, b1, and c. Not all of these parame-
ters are independent, however, because our functions still
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have to satisfy the constraint (4). Substituting Eqs. (38)
and (39) into (4), we see that for the constraint to be sat-
isfied for all Q > 0 we must have a0 = a1−1, b0 = b1 +1,
and

c =
1− ρ
ρ

B(a1, b1)

B(a0, b0)
=

1− ρ
ρ

B(a1, b1)

B(a1 − 1, b1 + 1)

=
1− ρ
ρ

a1 − 1

b1
. (40)

Thus there are really just two degrees of freedom in the
choice of the noise functions. Once we fix the parameters
a1 and b1, everything else is fixed also. Alternatively, we
can fix the parameter c, thereby fixing the density of the
data matrix Q, plus one or other of the parameters a1
and b1.

The networks we generate are now analyzed using the
non-degree-corrected algorithm of Sections II A to II C.
To quantify performance we assign each node i to the
community r for which its probability qir of membership,
Eq. (12), as computed by the algorithm, is greatest, then
compare the result to the known true community assign-
ments from which the network was generated. Success
(or lack of it) is quantified by computing the fraction of
nodes placed by the algorithm in the correct groups. We
also compare the results against the naive (but common)
thresholding method discussed in the introduction [2],
in which edge probabilities Qij are turned into binary
yes-or-no edges by cutting them off at some fixed thresh-
old τ , so that the adjacency matrix element Aij is 1 if
and only if Qij > τ . Community structure in the thresh-
olded network is analyzed using the standard stochastic
block model algorithm described in, for example, Refs. [6]
and [20].

As we vary the parameters of the underlying net-
work and noise functions the performance of both algo-
rithms varies. When the community structure is strong
and the noise is weak both algorithms (not surprisingly)
do well, recovering the community structure nearly per-
fectly, while for weak enough community structure or
strong noise neither algorithm does better than chance.
But, as shown in Fig. 3a, there is a regime of interme-
diate structure and noise in which our algorithm does
significantly better than the naive technique. The fig-
ure shows the fraction of correctly classified nodes in the
naive algorithm as a function of the threshold τ (data
points in the figure) compared against the performance
of the algorithm of this paper (dashed line) and, as we
can see, the latter outperforms the former no matter what
value of τ is used. Note that the worst possible perfor-
mance still classifies a half of the nodes correctly—even
a random coin toss would get this many right—so this
is the minimum value on the plot. For high threshold
values τ approaching one, the threshold method throws
away essentially all edges, leaving itself no data to work
with, and hence does little better than chance. Con-
versely for low thresholds the threshold method treats
any node pair with a nonzero connection probability Qij
as having an edge, even when an edge is wildly unlikely,
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FIG. 3: (Color online) Tests of the method described in this
paper on synthetic benchmark networks. (a) Fraction of nodes
placed in the correct community for uncertain networks gen-
erated using a stochastic block model with n = 4000 nodes,
two groups of equal size, edge probabilities ω11 = ω22 = 0.02,
ω12 = ω21 = 0.014, and noise parameters a1 = 1.4 and
b1 = 2 (see Eq. (38)). The horizontal dashed line shows the
performance of the algorithm described in this paper. The
points show the performance of a naive algorithm in which
the uncertain network is first converted to a binary network
by thresholding the edge probabilities and the result then
fed into a standard community detection algorithm. The re-
sults for each algorithm are averaged over 20 repetitions of
the experiment with different networks. Statistical errors are
comparable in size to the data points. (b) Fraction of nodes
classified into their correct communities for stochastic block
model networks with varying amounts of noise in the data.
The parameters are the same as for (a) but with the spar-
sity parameter c fixed at 1/4n (see Eq. (39) and the ensuing
discussion) and varying the parameter b1, which controls the
level of noise in the data.

thereby introducing large amounts of noise into the cal-
culation that again reduce performance to a level little
better than chance. The optimal performance falls some-
where between these two extremes, around τ = 0.25 in
this case, but even at this optimal point the thresholding
method’s performance falls far short of the algorithm of
this paper.

Figure 3b shows a different test of the method. Again
we use networks generated from a stochastic block model
with two groups and calculate the fraction of correctly
classified nodes. Now, however, we vary the amount of
noise introduced into the network to test the algorithm’s
ability to recover structure in data of varying quality.
The parameters of the underlying network are held con-
stant, as is the parameter c that controls the sparsity of
the data matrix Q. This leaves only one degree of free-
dom, which we take to be the parameter b1 of the noise
process (see Eq. (38)).

A network with little noise in the data is one in which
true edges in the underlying network are represented by
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probabilities Qij close to 1, in other words by a noise dis-
tribution β1(Q) with most of its weight close to 1. Such
distributions correspond to small values of the param-
eter b1. Noisier data are those in which the values of
the Qij are smaller, approaching the values for the non-
edges, thereby making it difficult to distinguish between
edges and non-edges. These networks are generated by
larger values of b1. Figure 3b shows the fraction of cor-
rectly classified nodes as a function of b1, so the noise
level is increasing, and the quality of the simulated data
decreasing, from left to right in the figure.

As we can see, the algorithm returns close to perfect
results when b1 is small—meaning that the quality of the
data is high and the algorithm almost sees the true un-
derlying structure of the network. Performance degrades
as the noise level increases, although the algorithm con-
tinues to do significantly better than chance even for high
levels of noise, indicating that there is still useful infor-
mation to be extracted even from rather poor data sets.

B. Protein interaction network

As a real-world example of our methods we have ap-
plied them to protein-protein interaction networks from
the STRING database [26]. This database contains pro-
tein interaction information for 1133 species drawn from
a large body of research literature covering a range of
different techniques, including direct interaction exper-
iments, genomic information, and cross-species compar-
isons. The resulting networks are of exactly the form con-
sidered in this paper. For each network there is assumed
to be a true underlying network in which every pair of
proteins either interacts or doesn’t, but, given the un-
certainty in the data on which they are based, STRING
provides only probabilistic estimates of the presence of
each interaction. Thus the data we have for each species
consists of a set of proteins—the nodes—plus a likelihood
of interaction for each protein pair. A significant major-
ity of protein pairs in each of the networks are recorded
as having zero probability of interaction, so the network
is sparse in the sense assumed by our analysis and con-
ducive to fast computation.

In the STRING database as well as the work of Kro-
gan et al. [2], protein pairs are recorded as having zero
interaction probability when they never bind in high
throughput experiments. Though a true zero probability
of interaction is unlikely due to the possibility of human
or equipment error, proteins which do not bind are most
likely to have a value of zero. In principle one could add
a small estimate of error to every cell of the matrix, but a
small enough error would make no difference in the final
outcome.

We analyze the data using the degree-corrected version
of our algorithm described in Section II D, which is ap-
propriate because the networks in the STRING database,
like most real-world networks, have broad degree distri-
butions.

Figure 4a shows the communities found in a three-way
split of the protein-protein interaction network of the
bacterium Borrelia hermsii HS1. Node colors denote the
strongest community affiliation for each node, as quanti-
fied by the one-node marginal probability qir, with node
size being proportional to the probability a node is in
its most likely community (so that larger nodes are more
certain). In practice, most nodes belong wholly to just
one community.

For comparison, we also show in Fig. 4b the communi-
ties found in the same network by the naive thresholding
algorithm discussed earlier in which a node pair i, j is
considered connected by an edge if and only if the prob-
ability Qij exceeds a certain threshold, which here is set
at 0.25, though other thresholds gave similar results. By
contrast with the synthetic networks of the previous sec-
tion, we do not know the true underlying communities
for this network and so cannot calculate the fraction of
correctly classified nodes, but it is clear from the figures
that the new technique gives significantly different re-
sults from the thresholding method, particularly for the
community that appears in the upper right of the figure.

A closer examination of the data reveals a possible ex-
planation. The communities at the left and bottom in
both panels of Fig. 4 consist primarily of high-probability
edges and are easily identified in the data, so it is perhaps
not surprising that both algorithms identify these com-
munities readily and are largely in agreement. However,
the third community, in the upper right of the figure,
consists largely of edges of relatively low probability and
the thresholding method has more difficulty with this
case because many edges fall below the threshold value
and so are lost, which may explain why the thresholding
method divides the nodes of this community among the
three groups.

To give a simple picture, imagine a community whose
nodes are connected by very many internal edges, but all
of those edges have low probability. Because there are so
many of them, the total expected number of true inter-
nal edges in the underlying network—the number of node
pairs times the average probability of connection—could
be quite high, high enough to create a cohesive network
community. Our algorithm, which takes edge probabil-
ities into account, will allow for this. The thresholding
algorithm on the other hand can fail because the edges
all have low probability, below the threshold used by the
algorithm, and hence are discarded. The result is that
the thresholding algorithm sees no edges at all and hence
no community. The fundamental problem is that thresh-
olding is just too crude a tool to see subtle patterns in
noisy data.

IV. EDGE RECOVERY

A secondary goal in our analysis of uncertain networks
is to deduce the structure of the (unobserved) underly-
ing network from the uncertain data. That is, given the
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(a) Method of this paper (b) Thresholding method

FIG. 4: (Color online) Communities found by (a) the algorithm described in this paper and (b) the thresholding algorithm, in
a three-way split of the protein interaction network of the bacterium Borrelia hermsii HS1, taken from the STRING database.
Nodes are laid out according to the communities in (a) and the layout is the same in both panels.

matrix Q of edge probabilities, can we make an informed
guess about the adjacency matrix A? We call this the
edge recovery problem. It is related to, but distinct from,
the well studied link prediction problem [27], in which
one is given a binary network of edges and non-edges but
some of the data may be erroneous and the problem is to
guess which ones. In the problem we consider, by con-
trast, the data given are assumed to be correct, but they
are incomplete in the sense of being only the probabilities
of the edges, rather the edges themselves.

The simplest approach in the present case is simply to
use the edge probabilities Qij themselves to predict the
edges—those node pairs i, j with the highest probabili-
ties are assumed most likely to be connected by edges.
But if we know, or believe, that our network contains
community structure, then we can do a better job. If we
know where the communities in the network lie, at least
approximately, then given two pairs of nodes with similar
values of Qij , the pair that are in the same community
should be more likely to be connected by an edge than
the pair that are not (assuming “assortative” mixing in
which edge probabilities are higher inside communities).

It turns out that our EM algorithm gives us precisely
the information we need to perform edge recovery. The
(posterior) probability of having an edge between any

pair of nodes i, j can be written as

P (Aij = 1)

=
∑
rs

P (Aij = 1|gi = r, gj = s)P (gi = r, gj = s)

=
∑
rs

tijrsq
ij
rs, (41)

where the data Q and the parameters γ,ω are assumed
given in each probability and we have made use of
Eq. (24) and the definition of qijrs. Both tijrs and qijrs are
calculated in the course of running the EM algorithm,
so we already have these quantities available to us and
calculating P (Aij = 1) is a small extra step.

Figure 5 shows a test of the accuracy of our edge pre-
dictions using synthetic test networks once again. In
these tests we generate networks with community struc-
ture using the standard stochastic block model, as previ-
ously, then run the network through the EM algorithm
and calculate the posterior edge probabilities of Eq. (41)
above. We compare the results against competing pre-
dictions based on the prior edge probabilities Qij alone.

The figure shows receiver operating characteristic
(ROC) curves of the results. To construct an ROC curve,
one asks how many edges we would get right, and how
many wrong, if we were to simply predict that the frac-
tion x of node pairs with the highest probabilities of con-
nection are in fact connected by edges. The ROC curve
is the plot of the fraction of such predictions that turn
out right (true positives) against the fraction wrong (false
positives) for values of x from zero to one. By definition
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FIG. 5: (Color online) Receiver operating characteristic
(ROC) curves for the edge recovery problem on a synthetic
network generated using a two-group stochastic block model
with n = 4000 nodes, ω11 = ω22 = 0.05, ω12 = ω21 = 0.001,
and noise parameters b1 = 4 and c = 1/4n. The three curves
show the performance of the algorithm of this paper, the naive
algorithm based on the raw probabilities Qij alone, and a
hypothetical “ideal” algorithm that knows the values of the
parameters used to generate the model (so that one does not
have to run the EM algorithm at all). The diagonal dashed
line represents is curve generated by an algorithm that does
no better than chance.

the curve always lies on or above the 45-degree line and
the higher the curve the better the results, since a higher
curve implies more true positives and fewer false ones.

Figure 5 shows the ROC curves both for our method
and for the naive method based on the raw probabili-
ties Qij alone and we can see that, for the particular net-
works studied here, the additional information revealed
by fitting the block model results in a substantial im-
provement in our ability to identify the edges of the net-
work correctly. One common way to summarize the in-
formation contained in an ROC curve is to calculate the
area under the curve, where an area of 0.5 corresponds
to the poorest possible results—no better than a random
guess—and an area of 1 corresponds to perfect edge re-
covery. For the example shown in Fig. 5, the area under
the curve for our algorithm is 0.89 while that for the naive
algorithm is significantly lower at 0.80.

Also shown in the figure is a third curve representing
performance on the edge recovery task if we assume we
know the exact parameters of the stochastic block model
that were used to generate the network, i.e., that we don’t

need to run the EM algorithm to learn the parameter val-
ues. This is an unrealistic situation—we very rarely know
such parameters in the real world—but it represents the
best possible prediction we could hope to make under any
circumstances. And, as the figure shows, this best pos-
sible performance is in this case indistinguishable from
the performance of our EM algorithm, indicating that
the EM algorithm is performing the edge recovery task
essentially optimally in this case.

V. CONCLUSIONS

In this paper we have described methods for the anal-
ysis of networks represented by uncertain measurements
of their edges. In particular we have described a method
for performing the common task of community detec-
tion on such networks by fitting a generative network
model to the data using a combination of an expectation–
maximization (EM) algorithm and belief propagation.
We have also shown how the resulting fit can be used to
reconstruct the true underlying network by making pre-
dictions of which nodes are connected by edges. Using
controlled tests on computer-generated benchmark net-
works, we have shown that our methods give better re-
sults than previously used techniques that rely on simple
thresholding of probabilities to turn indefinite networks
into definite ones. And we have given an example appli-
cation of our methods to a bacterial protein interaction
network taken from the STRING database.

The methods described in this paper could be extended
to the detection of other types of structure in networks. If
one can define a generative model for a structure of inter-
est then the developments of Section II can be applied,
simply replacing the likelihood P (A,g|γ,ω) in Eq. (7)
with the appropriate probability of generation. Genera-
tive models have been recently proposed for hierarchical
structure in networks [4], overlapping communities [28],
ranking or stratified structure [29], and others. In prin-
ciple, our methods could be extended to any of these
structure types in uncertain networks.
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