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Recently, a phase transition has been discovered in the network community detection problem
below which no algorithm can tell which nodes belong to which communities with success any better
than a random guess. This result has, however, so far been limited to the case where the communities
have the same size or the same average degree. Here we consider the case where the sizes or average
degrees are different. This asymmetry allows us to assign nodes to communities with better-than-
random success by examining their local neighborhoods. Using the cavity method, we show that
this removes the detectability transition completely for networks with four groups or fewer, while for
more than four groups the transition persists up to a critical amount of asymmetry but not beyond.
The critical point in the latter case coincides with the point at which local information percolates,
causing a global transition from a less-accurate solution to a more-accurate one.

I. INTRODUCTION

Community detection, the division of a network into
well-connected groups of nodes with only sparser connec-
tions between groups, has been the subject of vigorous
research in a number of fields including physics, statistics,
and computer science [1]. A string of recent discoveries,
however, have revealed that there are fundamental lim-
its to our ability to detect community structure [2–7].
Using techniques from statistical physics and probabil-
ity theory, it has been shown that there can exist net-
works that possess underlying community structure and
yet that structure is undetectable. In particular, for cer-
tain classes of model networks it has been shown that
there exists a sharp detectability threshold above which
efficient algorithms for community detection exist, but
below which no algorithm of any kind can classify nodes
into their correct communities with success any better
than a random guess—or even detect the existence of
communities in the network—if given only the network
topology as input.

The simplest demonstration of this effect makes use of
the stochastic block model, a probabilistic generative net-
work model that allows one to create artificial networks
with any number of communities of any size [8]. For net-
works generated using this model the existence and lo-
cation of the detectability transition has been rigorously
proven for the case of two communities of equal size [6, 7].
The transition is a continuous one, with the fraction of
correctly classified nodes playing the role of order param-
eter. When the number of groups is increased, the phase
transition becomes more complicated, analogous to that
of random constraint satisfaction problems [9]. For five
or more groups (or four or more in the disassortative or
antiferromagnetic case) there is a “hard/easy” threshold
where the accuracy achievable by an efficient algorithm
undergoes a first-order transition and jumps discontin-
uously. Immediately below this point there is a regime
where community detection is possible in principle, but

is believed to require exponential time [3, 4].
These results are for the symmetric case where the

groups have equal size or, more generally, equal average
degree. In this case, every node has the same probability
distribution of local neighborhoods, so that the local en-
vironment of a node gives us no information about what
community it belongs to. In this paper we investigate
the less well-studied case where the groups have different
sizes or average degrees, which is of obvious relevance to
real networks. This case is harder to analyze than the
case of equal groups. We tackle it using two approaches,
both based on the cavity method of [3, 4]. In the first, we
perform a perturbative expansion of the cavity method
equations; in the second we consider the behavior of the
equations under finite iteration.

It is straightforward to see that having unequal groups
makes community detection easier. When different
groups have different average degrees we can use the node
degree as a simple proxy for group membership. And
making the group sizes unequal in general makes the av-
erage degrees unequal too (as we will show), so again we
can use degree as a proxy. Furthermore, by propagating
degree-based estimates of group membership through the
network using a message-passing (belief propagation) al-
gorithm, we can improve on the accuracy of this initial
classification, labeling nodes based not only on their own
degrees but also on the degrees of their neighbors, their
neighbors’ neighbors, and so on. Iterating the message-
passing calculation repeatedly corresponds to increasing
the radius of the network neighborhood from which we
draw information, until the classification reaches a fixed
point when all information has been taken into account.

It is known that the classification provided by this fixed
point (or if there are multiple fixed points, the one with
the highest likelihood or lowest Bethe free energy—see
below) is optimal, in the sense that no other algorithm
for community detection can do a better job [3]. In par-
ticular, if the fixed point does a poor job of assigning
nodes to groups—or if it fails completely—then no other
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method will return better performance and it is this ob-
servation that allows us to say when the structure in the
network becomes undetectable.

Using these methods, we show in this paper that for
four or fewer groups the second-order detectability transi-
tion of the equal-groups case disappears, but that for five
or more groups the first-order transition, and the coexis-
tence regime where several competing fixed points exist,
persist up to a critical level of asymmetry. In all cases
we can classify the nodes better than chance, no matter
what the parameter values are, but while in some cases
our final accuracy is a smooth function of the parame-
ters, in others there is a sudden jump from low accuracy
based on purely local information to high accuracy based
on propagating information globally across the network.

We note that this phenomenology is qualitatively simi-
lar to the case of “semisupervised” community detection,
where we are given the true labels of a small fraction of
nodes [10, 11], and also to the Franz–Parisi spin-glass
model [12], where each node has an external field point-
ing it to a reference state. In these models, the known
labels or external fields break the symmetry and provide
local information which propagates under belief propaga-
tion, causing the coexistence region to shrink and finally
disappear at a critical point. However, the scenario we
study here is different in that our local information comes
directly from the topology of the network itself, without
the need for any “metadata” or external field.

In Sections II and III we define the stochastic block
model and describe in detail previous results on de-
tectability and how they were reached. Then in Sec-
tion IV we develop the theory for networks with groups
of unequal size and degree, including series expansions
around the limit of weak structure and optimal local
classifiers based on neighborhoods of a given radius. In
Section V we present extensive numerical tests on the
stochastic block model that confirm the picture painted
by our theoretical results. In Section VI we give our con-
clusions.

II. THE STOCHASTIC BLOCK MODEL

The stochastic block model is a model for networks
containing community structure. It can be used both in
a forward direction for generating artificial networks with
tunable structure and in reverse for detecting the pres-
ence of communities in network data by fitting the model
to the data. In this paper we do both: we use the model
to generate test networks with known community struc-
ture, and then attempt to detect that structure by fitting
that same model to the network. This dual approach is
central to understanding when community structure is or
is not detectable, since there is no better way to detect
the structure in a network (or any other data set) than to
fit it to the very model used to generate that structure in
the first place. As pointed out by Decelle et al. [3], this
means that if we fail to detect the community structure

in our networks by this method, then all other methods
must also fail on the same networks. The structure in
such networks can thus fairly be said to be undetectable.

The definition of the stochastic block model is as fol-
lows. Each of n nodes is assigned to one of q groups, with
probabilities γ1, . . . , γq of assignment to group 1 to q re-
spectively. Thus γa is the expected size of group a as a
fraction of n. Once the group assignments are chosen,
edges are placed between node pairs independently at
random with probabilities pab that depend only on the
groups a, b that a pair belongs to. If the diagonal ele-
ments paa of the matrix of probabilities are larger than
the off-diagonal ones, the resulting network will have
traditional “assortative” community structure in which
edges are more probable within groups than between
them. However, other types of structure are possible and
are observed in certain real-world networks, including
“disassortative” structure where edges are more common
between groups than within them, or mixed structures
in which different groups may be variously assortative or
disassortative with respect to one another.

In this paper we focus on the case of a sparse network
with constant average node degree in the limit of large
network size, meaning that the edge probabilities pab
scale as 1/n. Specifically we set pab = cab/n where the
cab are constants. Then the expected degree ca of a node
in group a is the sum of the probabilities of connection
between it and all other nodes, averaged over all possible
assignments of nodes to communities. Letting si denote
the group to which node i belongs, we have

ca =
∑
{si}

∏
i

γsi
∑
i

pa,si =
∑
i

∑
b

pabγb = n
∑
b

cab
n
γb

=
∑
b

cabγb. (1)

The sparse case appears to be representative of most real-
world networks and also displays a richer phase transition
structure in the community detection problem.

A. Fitting the stochastic block model
to network data

In this paper we consider the following problem. An
undirected network is generated by the stochastic block
model for some choice of {γa} and {cab}, and our goal is
to find the best fit of the same model to the network data,
so as to recover the community assignments planted in
the network.

In performing the fit, we will assume that the values of
the parameters γa and cab used to generate the network
are known exactly. The only quantities we need to deter-
mine by our fit are which nodes belong to which groups.
This is a somewhat unrealistic assumption. In general,
nothing is known beforehand, and one must learn the val-
ues of the parameters as well as the group assignments.
In some cases we can do this using an expectation–
maximization algorithm [3, 4, 13–15]. However, our goal
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here is to understand the fundamental limits on our abil-
ity to detect community structure and for this purpose
the simpler setup considered here is a useful one. If it
is impossible to detect community structure when we are
given the values of the parameters, then it will still be im-
possible when we are not given them. Hence the accuracy
we can achieve given the parameter values sets an upper
bound on what we can achieve when the parameters are
unknown.

Given the parameters {γa} and {cab}, the optimal
group assignments can be calculated by maximizing the
likelihood that the observed network was generated by
the model. In the case of sparse networks it can be
misleading to focus only on the single assignment that
maximizes the likelihood, which can result in overfitting
of the data. Instead we focus on the posterior distribu-
tion µ({sj}) over group assignments, and especially the
marginal probability of group membership for each node,
i.e., the probability µia that node i belongs to group a:

µia =
∑
{sj}

µ({sj}) δa,si , (2)

where δa,b is the Kronecker delta. In particular, if our
goal is to maximize the fraction of nodes labeled cor-
rectly, the optimal strategy is to label each node i with
its most-likely group, given by argmaxa µ

i
a.

The optimal (maximum-likelihood) value of the poste-
rior distribution can be shown (via a standard derivation
involving Jensen’s inequality) to be given by maximizing
the quantity

L =
∑
a

∑
i

µia log γa +
∑
ab

∑
(i,j)

µijab log cab

− 1

n

∑
ab

∑
ij

µijabcab −
∑
{si}

µ({si}) logµ({si}) (3)

as a function of the distribution µ({si}). Here the no-
tation

∑
(i,j) denotes a sum over all edges (i, j) in the

network, and µijab is the two-node marginal probability
that nodes i and j belong to groups a and b respectively:

µijab =
∑
{si}

µ({si}) δa,si δb,sj . (4)

The quantity L has the character of a free energy. Its
maximization requires us to find a distribution µ whose
one- and two-node marginals give a large value for the
average log-likelihood of the observed network (the first
three terms in L ), while also giving a large value for
the entropy term −

∑
{si} µ({si}) logµ({si}). The tradi-

tional approach to this problem, borrowed directly from
statistical mechanics, is to treat µ({si}) as a Gibbs dis-
tribution over “states” {si} whose Hamiltonian consists
of (minus) the first three terms in L (the “internal en-
ergy”) and sample from this distribution using a Monte
Carlo algorithm. However, obtaining good statistics on

the marginals requires us to take many independent sam-
ples, which is computationally expensive.

An elegant alternative, better suited to our current
aims, is the belief propagation method proposed recently
by Decelle et al. [3]. Belief propagation focuses on the
“belief” or “message” µi→ja , which is an estimate of the
probability that node i would belong to group a if node j
were removed from the network (or, more precisely, if we
lacked information about whether or not i and j have an
edge between them). The removal of a node corresponds
to the cavity method of statistical mechanics: it allows
us to write down a set of self-consistent equations that
must be satisfied by the beliefs thus [3]:

µi→ja =
γa
Zi→j

exp

(
− 1

n

∑
k

∑
b

cabµ
k
b

) ∏
k∈∂i\j

∑
b

cabµ
k→i
b .

(5)
Here ∂i denotes the set of neighbors of node i and ∂i\j
denotes that set exclusive of node j. The quantity Zi→j
is a normalizing constant that ensures that

∑
a µ

i→j
a = 1:

Zi→j =
∑
a

γa exp

(
− 1

n

∑
k

∑
b

cabµ
k
b

) ∏
k∈∂i\j

∑
b

cabµ
k→i
b .

(6)
These equations assume that i’s neighbors are con-

ditionally independent of each other given i’s state si,
or equivalently, that i’s neighbors are correlated only
through their interaction with i. As a result, belief prop-
agation is only exact on trees; on a finite graph with
loops, it is merely an approximation. As long as corre-
lations in the network decay with distance, however, it
becomes exact in the limit of large size for a network
that is “locally treelike,” meaning that almost all ver-
tices have neighborhoods which are trees up to a radius
of O(log n). Networks generated by the stochastic block
model satisfy this condition in the sparse case considered
here, and hence we expect belief propagation to give ex-
act results in the large-n limit.

Implementing belief propagation consists of solving
Eq. (5) by simple iteration starting from an appropriate
initial condition and iterating until the beliefs converge
to a fixed point. The one-node marginal probabilities µia
can be calculated directly from the beliefs according to

µia =
γa
Zi

exp

(
− 1

n

∑
k

∑
b

cabµ
k
b

) ∏
k∈∂i

∑
b

cabµ
k→i
b , (7)

where Zi is a normalizing constant,

Zi =
∑
a

γa exp

(
− 1

n

∑
k

∑
b

cabµ
k
b

) ∏
k∈∂i

∑
b

cabµ
k→i
b .

(8)
The two-node marginals of Eq. (4) can also be calculated
from the beliefs. For pairs i, j connected by an edge,

µijab =
1

Zij
cabµ

i→j
a µj→ib (9)
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where Zij is another normalizing constant:

Zij =
∑
ab

cabµ
i→j
a µj→ib . (10)

In the sparse case, we can assume that pairs i, j not con-
nected by an edge are independent, so that

µijab = µiaµ
j
b. (11)

To calculate the value of L itself, we can substitute the
converged values of the one- and two-node marginals ob-
tained from the belief propagation equations (9) and (11)
back into the log-likelihood, Eq. (3). The final entropy
term in (3) requires an expression for the full joint pos-
terior distribution µ({si}), which we assume takes the
factorized form

µ({si}) =

∏
(i,j) µ

ij
sisj∏

i

(
µisi
)di−1 , (12)

where di is the degree of node i. (Again, this form is
exact on trees, and asymptotically exact on locally tree-
like networks in the limit of large size; on finite networks
with loops it is only approximate, and indeed does not
even sum to 1.) After some manipulation, one can then
show that the converged value of L , which is also equal
to the log-likelihood, is

L =
∑
(i,j)

logZij −
∑
i

logZi +
1

n

∑
ab

cab
∑
i

µia
∑
j

µjb,

(13)
with Zi and Zij as in Eqs. (8) and (10). This quantity
(or, rather, minus this quantity) is called the Bethe free
energy, and it can be shown [16, 17] that fixed points of
belief propagation are stationary points of the Bethe free
energy. In particular, there is a stable fixed point that
maximizes L whenever µ takes the form (12). However,
belief propagation often has many fixed points in addi-
tion to this one, so it is possible for it to converge to a
local optimum of L rather than the required global opti-
mum. To get around this problem one typically runs the
belief propagation calculation multiple times with differ-
ent initial conditions and selects, from the fixed points
found, the one with the highest log-likelihood (or the
lowest Bethe free energy).

In many regimes this approach works well. However,
it can also happen that the global optimum has an ex-
ponentially small basin of attraction—that is, the set of
initial messages that would cause belief propagation to
converge to it has exponentially small volume. In that
case, finding it can be computationally difficult, which
can lead to interesting behaviors, as we will see.

III. DETECTABILITY TRANSITIONS

Belief propagation is a fast and practical method for
community detection in networks and has been employed

extensively to fit the stochastic block model and other re-
lated models to network data [3, 4, 18–20]. It is also a
powerful tool for the formal analysis of algorithm perfor-
mance. By analyzing the fixed points of the belief propa-
gation equations, Eq. (5), we can make statements about
whether the method is, or is not, able to find the commu-
nities in a network. And since the maximum-likelihood
fit performed by the algorithm is optimal in the sense de-
scribed in Section II, if the belief propagation algorithm
fails, i.e., if the fixed point with the highest likelihood
does not give the correct communities, this implies (for
locally treelike networks) that all other algorithms must
also fail. Thus results for belief propagation tell us not
just about one particular algorithm, but about all possi-
ble algorithms for community detection.

Arguments of this type allowed Decelle et al. [3, 4] to
show that there exist regions in the parameter space of
the stochastic block model where community structure
is undetectable by any means. Specifically, they showed
that if the average degrees, Eq. (1), are the same for all
groups, there is a trivial fixed point where µi→ja = µia =
γa. If belief propagation settles at this fixed point, then it
returns results no better than guessing node labels based
on the prior probabilities γa. For example, in the special
case where the q groups have equal size γa = 1/q, belief
propagation concludes that all nodes are equally likely
to belong to all groups, and assigns nodes to groups with
accuracy no better than flipping a q-sided coin.

The so-called hard/easy transition corresponds to a bi-
furcation at which this trivial fixed point becomes unsta-
ble. This transition is known in the spin glass literature
as the de Almeida–Thouless line [21], and in information
theory as the Kesten–Stigum transition [22, 23] or the ro-
bust reconstruction threshold [24, 25]. Above this transi-
tion, if we initialize belief propagation with random mes-
sages, or even with just a small perturbation away from
the trivial fixed point, it quickly moves away from that
fixed point towards another, nontrivial fixed point which
is well-correlated with the true community assignment.
Thus detecting the community structure, and labeling
the nodes with accuracy better than chance, is computa-
tionally easy in this regime—belief propagation succeeds
at the task quickly and reliably.

The position of the hard/easy transition is relatively
easy to compute in the well-studied special case where
the groups have equal size and the parameters cab of the
stochastic block model take just two different values:

cab =

{
cin if a = b,
cout if a 6= b.

(14)

If cin is significantly greater than cout, this choice gives
us strong assortative structure, but as cin approaches cout
the structure gets weaker. One might imagine that the
structure would remain detectable, albeit with some sta-
tistical error, so long as cin > cout, but this is not the
case. Instead the trivial fixed point becomes stable when

cin − cout = q
√
c, (15)
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where

c =
cin + (q − 1)cout

q
(16)

is the average degree of the network as a whole.
When the trivial fixed point is stable, belief propaga-

tion can show different behaviors depending on whether
the stability is local or global, which in turn depends on
the number q of groups. For q ≤ 4 it is globally stable
below the hard/easy transition, so that the community
structure is completely undetectable (this is known rig-
orously for q = 2 [6]). Belief propagation will always
converge to the trivial point and return no information
about the community structure. In this case the tran-
sition is a pitchfork bifurcation where the trivial fixed
point emerges continuously from the nontrivial one. If
we define an order parameter

∑
i µ

i
si − 1/q, equal to the

average probability given to the correct label minus the
fraction 1/q we would get right by chance, then this order
parameter undergoes a classic second-order phase tran-
sition from a nonzero value above the critical point to
zero below it. Up to a constant, this order parameter is
the marginal overlap Qµ defined below, and this phase
transition is shown by the blue (bottom) curve in Fig. 1b.

In contrast, for q > 4 (or q ≥ 4 in the disassortative
case) there is a region immediately below the easy/hard
transition where the trivial fixed point is locally sta-
ble, but not globally stable. In this regime there is at
least one nontrivial fixed point that is also locally sta-
ble and corresponds to an accurate classification of the
nodes. In this “coexistence region,” belief propagation
can converge to either fixed point—and hence may fail
or succeed—depending on the initial values of the mes-
sages. The blue curves in Fig. 3 show how we obtain
different values of the order parameter by initalizing be-
lief propagation either with random initial messages or
with messages close to the nontrivial fixed point.

Unfortunately, the basin of attraction of the accurate
fixed point is exponentially small, so that we will almost
always converge to the trivial fixed point if we start with
random messages. But if we have the luxury of exploring
the entire space of messages, or performing an exponen-
tial number of independent runs of belief propagation,
we can still find the accurate fixed point. And if the
likelihood is higher at this point than at the trivial fixed
point, then the algorithm that picks the solution with
higher likelihood (as described above) would choose the
accurate fixed point over the trivial one and label the
nodes with good accuracy. We would, however, need to
perform exponentially many runs of belief propagation
to achieve this result. Decelle et al. [3, 4] have conjec-
tured, though it has not been proved, that in fact there
exists no algorithm of any kind that will find the ac-
curate fixed point quickly under these circumstances—
specifically none that will find it in polynomial time. If
this conjecture is correct then it implies the existence of
a “hard but detectable” regime where community detec-
tion is possible in principle but computationally hard.

(It is this regime that gives the easy/hard transition its
name.)

If one continues to decrease cin − cout, there comes a
point at which the likelihoods for the two fixed points
cross over and the trivial fixed point becomes favored
even with repeated restarts. At this “condensation
threshold” the system undergoes a first-order phase tran-
sition, where the fixed point that dominates the Gibbs
distribution changes from the accurate one to the trivial
one. Below this point there is a “clustered” regime where
many locally stable fixed points still exist, including the
accurate one, but the algorithm that selects the solution
with the highest likelihood will classify the nodes into
their groups with success no better than chance.

Thus, below the condensation threshold, belief prop-
agation no longer succeeds under any circumstances
and the community structure becomes information-
theoretically undetectable: no algorithm, even one that
takes exponential time, can perform better than chance.
Finally, as we decrease cin − cout even further, there is
a “spinodal” or dynamical transition where the accurate
fixed point disappears altogether, and the trivial point
becomes globally stable.

The coexistence of more than one stable fixed point
in the same parameter regime is a classic sign of a first-
order phase transition. Indeed there is a close analogy be-
tween the behavior of the community detection problem
and a thermodynamic first-order transition. As described
above, one can regard the log-likelihood as (minus) the
free energy of a thermodynamic system, a q-state Potts-
like spin system in this case whose spins are the com-
munity assignments si of the nodes. Fixed points of the
belief propagation algorithm give us not just individual
community assignments of nodes but the entire distribu-
tion µ({si}). Thus they correspond, in thermodynamic
terms, not to microstates but to macrostates, and com-
peting fixed points correspond to coexisting phases of the
system. The accurate fixed point corresponds to a ferro-
magnetic phase which is correlated with the true group
assignment, and the trivial fixed point corresponds to a
paramagnetic phase. The condensation transition is the
point at which the free energy branches corresponding to
these two phases cross, making one phase thermodynam-
ically favored over the other at equilibrium.

The words “at equilibrium” are crucial here, implying
that we have the luxury of sampling the entire state space
of group assignments. Since the state space is of exponen-
tial size as a function of n, this is typically not possible
for a polynomial-time algorithm. Thus even if the accu-
rate fixed point has a higher likelihood it may be difficult
to find it. The situation is analogous to that of a glassy
material: the lowest free energy of such a system may
be attained in the crystalline state, but if that state is
surrounded by a high free energy barrier—corresponding
dynamically to having an exponentially small basin of
attraction—then at reasonable timescales we will remain
in the trivial paramagnetic state, and fail to find the
true equilibrium. The hard/easy transition in commu-
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nity detection is the point at which the free energy barrier
disappears, so that it becomes dynamically easy for the
system to reach the ferromagnetic state and accurately
detect the community structure.

We can carry the physical analogy of a first-order tran-
sition further. Suppose we start in the accurate (fer-
romagnetic) phase, just above the hard/easy transition,
and then slowly decrease cin − cout so that we enter
the coexistence region. We do this in “adiabatic” fash-
ion, making only incremental changes to the structure of
the network—adding, removing, or moving edges one by
one—iterating the belief propagation equations to con-
vergence after each change, starting from the previous
fixed point. The net result will be that we stay at the
accurate fixed point even as we pass the easy/hard tran-
sition and enter the regime where that fixed point would
be a priori hard to find. We will continue to follow the
accurate point until it disappears and we shift to the
trivial (paramagnetic) phase. At that point, we can if we
wish start increasing cin−cout again, rising back through
the coexistence region but now staying at the trivial fixed
point until we once again pass the hard/easy transition,
where the trivial fixed point destabilizes and we jump
back to the accurate one, corresponding to spontaneous
magnetization. In this way we can trace out a hystere-
sis loop in the behavior of the system; the transitions at
which the trivial and nontrivial fixed points become un-
stable or disappear corresponding to the spinodal lines
at the boundaries of the loop.

While it is true that belief propagation rarely finds
the accurate fixed point in the coexistence region when
the beliefs are randomly initialized, it is still possible
to find it if we initialize the beliefs in the right way.
In Section V we show the results of numerical calcula-
tions where the beliefs are initialized at the known true
community assignments of the nodes si, meaning we set
µi→ja = δa,si , where δa,b is the Kronecker delta. This
initialization places the beliefs sufficiently close to the
accurate fixed point that the process reliably converges
to it. In real-world applications one does not know the
true assignments of the nodes to communities so this cal-
culation is not possible—finding those assignments is the
entire point of performing belief propagation in the first
place—but we may still be able to find the accurate fixed
point if we have some side information or “metadata”
about the group assignment that allows us to guess suffi-
ciently good initial values of the beliefs. This is roughly
what happens in the semisupervised case mentioned in
the introduction, where we are given the correct labels of
a fraction of the nodes. This kind of information lowers
the hard/easy transition, allowing us to find the accu-
rate fixed point at lower values of cin− cout [10, 11]. In a
similar way, we will see that making the groups unequal
lowers the hard/easy transition and shrinks the coexis-
tence region, until, at a critical amount of asymmetry, it
removes the detectability transition altogether.

IV. NETWORKS WITH UNEQUAL GROUPS

The purpose of this paper is to understand how the de-
tectability results reviewed in the previous section change
when the community structure is asymmetric, i.e., when
we go from equally sized groups to unequal ones. In fact,
the key question is not whether the groups have unequal
sizes, but rather whether they have unequal degrees. If
they do then the trivial fixed point µia = γa no longer
exists, and we can no longer identify the hard/easy tran-
sition with a simple linear stability analysis.

Here we explore two complementary approaches to this
problem. In the first, we approximate the fixed point by
a series expansion about the limit of weak structure. In
the second we approximate it by performing only a finite
number of iterations of the belief propagation equations.

A. Series expansion

In our first approach, we expand the equations for the
case of unequal groups about the weak-structure limit,
i.e., about the limit where cin = cout. That is, we choose
unequal sizes γa for the groups then expand in powers of
the strength cin − cout of the community structure. This
also results in different average degrees for the groups
(which, as we have said, is really the crucial point): from
Eq. (1), the average degree ca of a node in group a is

ca =
∑
b

cabγb = cout + (cin − cout)γa, (17)

so that nodes in larger groups (larger γa) have higher de-
gree on average whenever cin > cout. Thus we can use the
node degrees as a guide to community membership. As
we will see, the belief propagation equations employ this
local degree information to estimate communities with
success better than a random guess, and moreover they
spread that information to neighboring nodes to improve
the results still further. The calculation is as follows.

First, note that the average degree in the network as a
whole is

c =
∑
a

γaca = cout + (cin − cout)γ̄, (18)

where

γ̄ =
∑
a

γ2a (19)

is the expected size of the community to which a ran-
domly chosen node belongs. Equivalently, γ̄ is the frac-
tion of nodes we would assign to the correct communities
purely by chance if we were to place the correct number
nγa of nodes randomly in each group a.

We now expand around the case cin = cout by fixing
the mean degree c, Eq. (18), and varying the difference

ε = cin − cout. (20)
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This fixes the values of cin and cout uniquely to be cin =
c+(1− γ̄)ε and cout = c− γ̄ε or equivalently we can write

cab = c+ (δab − γ̄)ε. (21)

In the limit ε→ 0, where cin = cout, there is no correla-
tion between the community structure and the topology
of the network. Thus the network data tell us nothing
and the probability of a node belonging to any group a
is simply equal to the prior probability γa. Indeed, it is
easy to check in this case that the sole solution of the
belief propagation equations is µi→ja = γa.

We expand about this point in powers of ε thus:

µi→ja = γa
(
1 + αi→ja ε+ · · ·

)
(22)

for some coefficients αi→ja and expand the marginals sim-
ilarly:

µia = γa
(
1 + αiaε+ · · ·

)
. (23)

Since
∑
a µ

i→j
a =

∑
a µ

i
a = 1 and

∑
a γa = 1, we have∑

a

γaα
i→j
a =

∑
a

γaα
i
a = 0. (24)

Substituting Eq. (22) into Eq. (5) and keeping terms to
first order in ε, we get

µi→ja =
γa
Zi→j

exp

(
− 1

n

∑
k

∑
b

cabγb
(
1 + αkb ε

))
×

∏
k∈∂i\j

∑
b

cabγb
(
1 + αk→ib ε

)
. (25)

The sum in the exponential is∑
b

cabγb
(
1 + αkb ε

)
= ca + ε

∑
b

cabγbα
k
b

= ca + ε
[
cout

∑
b

γbα
k
b + (cin − cout)γaαka

]
= ca + ε2γaα

k
a = ca +O(ε2),

where we have used Eqs. (1), (20), and (24). Similarly,∑
b

cabγb(1 + αk→ib ε) = ca + ε2γaα
k→i
a = ca +O(ε2).

Using these expressions in (25), along with Eq. (18)
again, we get

µi→ja =
γa
Zi→j

e−cacdi−1a , (26)

where Zi→j is the appropriate normalizing constant as
usual. Notice that µi→ja is independent of j at this order,
meaning that a vertex sends the same message to each of
its neighbors.

Similarly, we can calculate the one-node marginal
probabilities µia from Eq. (7) and we get

µia =
γa
Zi

e−cacdia . (27)

This tells us that nodes with higher degree di will have
a higher probability of being placed in groups where the
average degree ca is higher, while those with lower degree
will have a higher probability of being placed in groups
with lower average degree. In other words, the algorithm
will divide the nodes according to their degrees. As a
result, whenever ε > 0 there is no regime in which we do
no better than chance.

Specifically, since nodes in group a have degrees which
are Poisson-distributed with mean ca, Eq. (27) implies
that the marginals are exactly equal to the posterior
probabilities of the groups given the degree, since

Pr[si = a | di] =
Pr[si = a]

Pr[di]
Pr[di | si = a]

=
γa
Zi

e−cacdia = µia, (28)

where γa = Pr[si = a] by definition and Zi = di! Pr[di] is
the required normalization constant. This is the Bayes-
optimal conclusion that we can reach about i’s group
membership, given no information except its degree, or
equivalently given only its radius-1 neighborhood in the
network.

That only the radius-1 neighborhood enters into this
calculation is a result of the fact that, in the weak-
structure limit where we treat ε to first order, belief prop-
agation transmits information only one step along the
edges of the network before it reaches a fixed point. If we
calculate the next order in the series, treating terms up to
second order in ε, we will find ourselves taking the radius-
2 neighborhood into account, classifying nodes based on
their own degree and the degrees of their neighbors, and
so on. This suggests an alternative approach which we
describe in the following section.

B. Finite iteration of the
belief propagation equations

As discussed above, a series expansion of the belief
propagation equations produces a set of approximations
for the fixed point that depend on information from a
neighborhood of increasing radius around the node of
interest. This prompts us to consider an alternative ap-
proach in which we look at the behavior of the belief
propagation algorithm after a finite number of iterations
of the update equations (5). Since each iteration corre-
sponds to each node passing its current information to
its neighbors, t iterations mean that each node receives
information from its neighbors out to distance t.

Suppose we start with messages derived from nothing
but the prior on group assignments, i.e., µi→ja = γa for
all i, j, a, and apply belief propagation for a single step.
After one iteration of Eq. (5) the new values of the beliefs
will be

µi→ja (1) =
γa

Zi→j(1)
e−cacdi−1a , (29)
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where Zi→j(1) is the appropriate normalizing constant as
usual and we have made use of Eq. (1). These values are
identical to those derived from the first-order expansion
of the previous section, Eq. (26). Similarly, from Eq. (7),
the one-node marginal probabilities are

µia(1) =
1

Zi(1)
γae−cacdia = Pr[si = a | di], (30)

the same again as in the previous section, Eq. (27). And,
as previously, this is the optimal Bayesian classification
of the nodes based on their radius-1 neighborhoods in
the network: that is, based only on how many neighbors
they have, but without any further information about
those neighbors—see Eq. (28).

If we perform a second step of belief propagation, we
get

µi→ja (2) =
γae−ca

Zi→j(2)

∏
k∈∂i\j

1

Zk→i(1)

∑
b

γbcabe
−cbcdk−1b

(31)
and

µia(2) =
γae−ca

Zi(2)

∏
k∈∂i

1

Zk→i(1)

∑
b

γbcabe
−cbcdk−1b . (32)

Now the marginals depend both on i’s degree and the de-
grees of its neighbors, i.e., on i’s neighborhood of radius
2. And again this is the optimal Bayesian classification
given this information and no other, as we can see by
noting that if k is a neighbor of i and is of type b then
its so-called excess degree—that is, the number of neigh-
bors k has in addition to i—is Poisson-distributed with
mean cb. Thus

Pr[dk | k ∈ ∂i, sk = b] =
e−cbcdk−1b

(dk − 1)!
. (33)

Furthermore, the definition of the block model gives

Pr[k ∈ ∂i | sk = b, si = a] = pab , (34)

and so

Pr[sk = b | k ∈ ∂i, si = a] =
γbpab∑
b′ γb′pab′

=
γbcab
ca

. (35)

Now, applying Bayes’ rule and summing over all possible
types of i’s neighbors (which are unknown to us) gives the
following probability that i is of type a, given i’s degree

and those of its neighbors:

Pr[si = a | di, {dk}] ∝ γa Pr[di, {dk} | si = a]

= γa Pr[di | si = a]
∏
k∈∂i

Pr[dk | k ∈ ∂i, si = a]

= γa
e−cacdia
di!

∏
k∈∂i

∑
b

Pr[sk = b | k ∈ ∂i, si = a]

× Pr[dk | k ∈ ∂i, sk = b]

= γa
e−cacdia
di!

∏
k∈∂i

∑
b

γbcab
ca

e−cbcdk−1b

(dk − 1)!

∝ γae−ca
∏
k∈∂i

1

(dk − 1)!

∑
b

γbcabe
−cbcdk−1b ,

(36)

which (after normalization) matches Eq. (32).
These results extend naturally to any number t of it-

erations: if we start with uniform messages and iterate
belief propagation t times we get the Bayes-optimal esti-
mate of i’s marginals based on its network neighborhood
of radius t. Indeed, the belief propagation equations are
equivalent simply to applying Bayes’ rule locally, updat-
ing i’s marginal based on those of its neighbors with the
assumption that i’s neighbors are independent of each
other. This holds exactly on trees and, therefore, also on
locally tree-like networks such as those generated by the
stochastic block model, on the radius-t neighborhood of
almost all vertices. Thus, iterating belief propagation t
times is an asymptotically optimal algorithm for labeling
nodes of a stochastic block model network based on local
information up to t steps away in the network.

Since we know that the local neighborhood carries in-
formation about group membership in the case of asym-
metric groups, this allows us to conclude that belief prop-
agation, starting from messages equal to the prior proba-
bilities, will always label the nodes better than a random
guess. It is by no means guaranteed, however, that a
local calculation of this kind must give the best possi-
ble answer. It is possible that some nonlocal calculation
could do better and indeed this is exactly what happens
in the coexistence region for the case q > 4. In this re-
gion the local calculation does do better than a random
guess, but there exists another fixed point that does bet-
ter still. Finding this fixed point, however, requires us
to start belief propagation very close to it, meaning we
have to give the algorithm fundamentally nonlocal infor-
mation, simultaneously choosing the correct values of the
beliefs out to arbitrary distances.

We close this section by addressing the expert reader
on the subject of replica symmetry. When replica sym-
metry breaking occurs, the Gibbs distribution breaks
apart into clusters of states with large energy barriers be-
tween them: within each cluster there are long-range cor-
relations, causing the conditional independence assump-
tion of belief propagation to break down. In this case, be-
lief propagation gives incorrect estimates of the marginals
and the free energy, forcing us to use higher-order algo-
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rithms such as survey propagation, whose messages corre-
spond to distributions of distributions [26, 27]. However,
we are working here with a planted model, and more-
over we assume that the true parameters of the model
are known to the algorithm. In this setting, the planted
configuration is a typical state in the Gibbs distribution,
and no static replica symmetry breaking occurs. There
can still be dynamic replica symmetry breaking, as in
the coexistence region below the condensation threshold,
where there are an exponential number of clusters corre-
sponding to fixed points of belief propagation; however,
these clusters have higher free energy than the paramag-
netic state, so they are thermodynamically suppressed.
As a result, long-range correlations disappear and belief
propagation is asymptotically optimal [28, 29].

V. NUMERICAL RESULTS

The results of Section IV suggest that it should be
possible to classify nodes into the correct groups with
a success rate better than chance for all networks with
cin > cout when group sizes are unequal or, more gener-
ally, when average degrees are unequal. In this section,
we test this prediction with numerical experiments on
networks generated by the stochastic block model. As
we will see, our expectations are borne out by the sim-
ulations and a number of other phenomena are revealed
as well, particularly concerning the picture for networks
with larger numbers of communities. As described in
Section III, when q > 4 there are, for certain parame-
ter regions, two stable fixed points. When the size or
average degrees of the groups are equal, the values of
the messages at one of these fixed points (the “trivial”
fixed point) give no information about community mem-
berships while those at the other give a group assignment
strongly correlated with the true one, and there is a first-
order phase transition between the two. When the group
sizes are unequal or when the groups have different aver-
age degrees a random guess according to the prior prob-
abilities γa achieves an accuracy of γ̄, Eq. (19), but the
calculations of the previous section suggest that even the
less good of the two fixed points achieves an accuracy sig-
nificantly better than this. Thus in this regime we expect
to see a (first-order) phase transition between “good” and
“better” performance, but no regime in which the algo-
rithm fails altogether.

In order to measure the effect of unequal group sizes
and degrees, we explore a two-parameter space of block
model networks. The first parameter is the difference ε =
cin− cout between the densities of in-group and between-
group connections, as defined previously in Eq. (20).
The second parameter, which we denote δ, measures the
amount of asymmetry in the groups, i.e., how far we are
from having equally sized groups. We define the group
sizes γa to be

γa =
1

q
(1 + δζa), (37)

where the quantities ζa are of order 1 and sum to zero,∑
a ζa = 0. This choice satisfies the normalization con-

straint
∑
a γa = 1 and allows us to go from equal-sized

groups at δ = 0 to unequal ones for δ > 0. For the par-
ticular simulations performed here, we consider equally
spaced group sizes with

ζa = a− 1
2 (q + 1). (38)

For q = 3, for example, we would have groups of size 1
3

and (1 ± δ)/3. Varying δ also varies the average group
degrees. From Eq. (17) we have

ca = cout +
ε

q
(1 + δζa), (39)

so the groups have different average degrees whenever
δ > 0.

To quantify our success (or lack of success) at identi-
fying the planted community structure, we calculate the
overlap between the planted and detected communities,
equal to the fraction of nodes assigned to their correct
communities by the algorithm. There is, however, some
ambiguity about how the overlap is defined, given that
belief propagation does not uniquely assign nodes to sin-
gle communities but rather gives us the marginal prob-
abilities µia with which the nodes belong to each com-
munity. Conventionally, one removes this ambiguity by
assigning each node to the community it has the highest
probability of belonging to. Then the overlap is

Q =
1

n

∑
i

δ(si, argmax
a

µia), (40)

where si is the planted community of node i as previously,
δ(i, j) is the Kronecker delta, and argmaxa f(a) denotes
the value of a that maximizes f(a).

This measure has some problems, however. It throws
away a lot of information contained in the marginals
when a node has a significant probability of belonging
to more than one group. Moreover, it can assign a node
to a group even if the probability it belongs there is only
a little above 1/q, so for large q the most probable as-
signment may be quite unlikely to be correct. An alter-
native measure that takes these issues into account is the
marginal overlap

Qµ =
1

n

∑
i

µisi , (41)

which is equal to the total fraction of nodes that would
be assigned to the correct communities if communities
were assigned randomly in proportion to their marginal
probabilities.

Note that these two definitions of the overlap have
different values in the weak-structure limit where the
marginal probabilities are equal to the group sizes µia =
γa. In the case where each node is assigned to its most
likely group we end up putting all nodes in the largest
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group in the weak-structure limit, which means that the
fraction of correctly assigned nodes is

Q = max
a

γa =
1

q

[
1 + 1

2 (q − 1)δ
]

(42)

for the choice of group sizes in Eq. (38). In contrast,
the value of the marginal overlap in the weak-structure
limit is

Qµ =
1

n

∑
i

γsi = γ̄ =
1

q

[
1 + 1

12 (q2 − 1)δ2
]
. (43)

A. Performance of belief propagation

Figure 1 shows the overlap (left) and marginal overlap
(right) for networks with q = 2 groups. For these calcu-
lations we generated networks with n = 100 000 nodes,
average degree c = 3, and various values of the param-
eters δ and ε, then ran the belief propagation algorithm
starting from random initial messages.

For the case δ = 0, where the two communities are of
equal size and equal average degree, we see that there
is, as in [3, 4], a phase transition at εc = 2

√
c = 3.46 . . .

(see Eq. 15) from a regime where the overlap is 1
2 by ei-

ther definition—no better than a random guess—to one
with overlap strictly greater than 1

2 . For δ > 0, however,
where the communities have unequal size and unequal
average degree, we see that the algorithm does better
than chance whenever ε > 0; moreover, the detectability
transition disappears, i.e., the overlap is a smooth func-
tion of ε. Figure 2 provides an alternative visualization of
the behavior of the system. Here we show the overlap Q
(left) and the convergence time (right) in the ε-δ plane.
These figures make the lack of a sharp detectability tran-
sition particularly clear: the only place where Q is not
a smooth function, and the only place where the conver-
gence time diverges, is at the equal-group detectability
transition, when δ = 0 and ε = εc.

We have also performed tests on networks with three
and four groups and find similar behavior. For more than
four groups we expect qualitatively different behavior as
described above—a first-order transition with a coexis-
tence region below the hard/easy transition, character-
ized by the simultaneous coexistence of two stable fixed
points. Unfortunately, clear numerical confirmation of
this behavior is harder to obtain. The coexistence region
is difficult to see because the range of ε it spans is quite
narrow for assortative networks. As observed in Ref. [4],
however, the behavior is clearer in the disassortative case,
and particularly in the fully disassortative case of a net-
work that has connections only between different groups
and none within groups. (Community detection in this
case is equivalent to a “planted graph coloring problem.”
In computer science a q-coloring of a graph is a color-
ing or labeling of the vertices with q different labels such
that no vertices with the same label have an edge be-
tween them. Our problem is equivalent to one in which

we generate a random graph that we know to be colorable
in this way by first assigning the labels and then adding
edges only between unlike labels. Then we discard the
labels and try to recover them again based only on the
structure of the graph.) Since cin = 0 in a totally disas-
sortative network, our parameter ε is just −cout in this
case while the average degree, Eq. (18), is c = cout(1− γ̄).
Thus there is no need for separate parameters c and ε:
fixing the average degree automatically fixes ε.

Recall that both of the fixed points in the coexistence
region are expected to give better-than-random classifi-
cation of the nodes into communities, but one is expected
to perform better than the other. The two points can be
considered perturbations of the “accurate” and “trivial”
fixed points of the equal-groups case. Roughly speaking,
the perturbed “near-trivial” fixed point corresponds to
inference with local information, starting with the prior
and applying belief propagation a few times, while the ac-
curate fixed point corresponds to finding a self-consistent
solution with global correlations and considerably higher
accuracy. We expect both fixed points to be locally sta-
ble, but for the accurate fixed point to have an expo-
nentially smaller basin of attraction than the near-trivial
one.

To test this hypothesis we perform two separate sets of
experiments. In the first we initialize belief propagation
with uniformly random messages µi→ja (up to normaliza-
tion). With this random initialization belief propagation
typically converges to the near-trivial fixed point, unless
we are above the hard/easy transition at which this point
becomes unstable. In the second set of simulations we
initialize belief propagation with messages corresponding
to the true communities that we planted in the network,
µi→ja = δa,si . With this planted initialization belief prop-
agation typically converges to the accurate fixed point,
unless we are below the spinodal transition at which this
point disappears. Thus, above and below the coexistence
region we expect these two sets of experiments to con-
verge to the same solution, while within the coexistence
region we expect them to give different solutions, with
the random initialization giving a lower overlap than the
planted one.

Figure 3 shows the overlap Q as a function of c for
fully disassortative networks with q = 5 and n = 100 000,
with random initial messages (left) and the planted ini-
tialization (right), run on the same set of networks in
each case. As the figure shows, the results are indeed
as hypothesized above. For low and high values of c the
two initializations give the same results, as they do also
for sufficiently large values of δ. For small values of δ,
however, there is a sizable range of values of c where
the overlap achieved by belief propagation with random
initial messages is significantly lower than that with the
planted initialization, indicating the coexistence of two
competing fixed points. For comparison, the hard/easy
transition for fully disassortative networks in the equal-
group case [3] is at c = (q − 1)2 = 16.

Figure 4 again gives a different view of the results,
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FIG. 1: (Color online) The overlap Q, Eq. (40), and the marginal overlap Qµ, Eq. (41), for belief propagation on networks
generated by the stochastic block model with q = 2 groups, n = 105 nodes, average degree c = 3, and group sizes as given in
Eqs. (37) and (38) a function of ε = cin − cout for various values of δ. Increasing δ (from bottom to top at the left of both
panels) corresponds to greater differences between the group sizes and average degrees. The dashed lines in the left panel are
the expected values in the weak-structure (i.e., ε = 0) limit, Eq. (42). Note how the sharp detectability transition disappears
for δ > 0; both overlaps are smooth functions of the block model parameters.
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FIG. 2: (Color online) The marginal overlap Qµ (a) and log (base 10) of the convergence time (b) as a function of ε and δ
for networks with q = 2 groups, size n = 105, and average degree c = 3. The overlap is a smooth function except at the
detectability transition for equal-sized groups, which occurs when δ = 0 and ε = 2

√
c. This is also the only place where the

convergence time diverges. Thus for q = 2 and δ > 0 there is no detectability transition. In both panels δ of each line is
increasing from bottom to top.

with the left panel showing the overlap achieved by be-
lief propagation with random initial messages in the c-δ
plane. There is a clear curve visible in this plot where the
overlap changes discontinuously as the near-trivial fixed
point becomes unstable and belief propagation jumps to
the accurate fixed point. Exactly on this curve, the near-
trivial fixed point is marginally stable, causing the con-

vergence time to diverge, as shown in the right panel.
Thus there is a hard/easy transition in this case, even
though there was none for q = 2, and it is a first-order
transition. As the asymmetry increases with δ, however,
the size of the discontinuity shrinks and past a certain
point (about δ = 0.12) it vanishes altogether. The criti-
cal point where it vanishes is a second-order phase tran-
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FIG. 3: (Color online) The overlap Q for belief propagation on fully disassortative networks generated by the stochastic block
model with q = 5 groups, n = 105 nodes, and various values of δ (increasing from bottom to top) as indicated, as a function
of average degree c. In the panel (a) we initialize the beliefs with uniform random values; in the panel (b) we initialize them
with the true (planted) communities. For small values of δ there is a range of c where the latter initialization gives a higher
overlap, indicating a second and better fixed point with a small basin of attraction. In particular, for δ = 0 the coexistence
region corresponds to 12.8 < c < 16.
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FIG. 4: (Color online) The overlap Q (a) and log (base 10) of the convergence time (b) as a function of c and δ for totally
disassortative networks with q = 5 groups and n = 105 nodes. The beliefs are initialized with random values in both panels. The
first-order hard/easy transition is visible as a line in the c–δ plane where the overlap jumps discontinuously and the convergence
time diverges. The height of the discontinuity decreases with increasing δ until we reach a critical point at which it vanishes at
a second-order transition. Above this point the overlap is a smooth function of c and δ and there is no detectability transition.

sition and beyond this transition the overlap is a smooth
function of the block model parameters.

This behavior is reminiscent of a first-order transition
in a spin system with an external field, where the order
parameter shows a discontinuity as a function of temper-
ature but the size of the discontinuity decreases and then
vanishes at a critical value of the external field [10, 12].
In the present case the “temperature” comes from the

average degree and/or the strength of the community
structure, and the “external field” comes simply from
the topology of the network.

Figure 5 shows the behavior observed in our experi-
ments as a single phase diagram in the c–δ plane. The
blue curve represents the hard/easy transition at which
the near-trivial fixed point becomes unstable; to the right
of this curve only the accurate fixed point is stable, so
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FIG. 5: (Color online) Phase diagram in the c–δ plane for
the q = 5 fully disassortative case described in the text. The
blue curve shows where the near-trivial fixed point becomes
unstable (also called the Kestum–Stigum or easy/hard transi-
tion); the green curve is the point at which the accurate fixed
point disappears. The gray area between the two is the coex-
istence region in which both fixed points are stable and belief
propagation can converge to either depending on the initial
conditions. The red curve is the condensation transition at
which the likelihoods cross over; the black dot is the critical
point above which there is no phase transition behavior at all.

all calculations converge to a high overlap, regardless of
whether they are initialized randomly or with the planted
communities. The green curve shows the spinodal line
where the accurate fixed point disappears; to the left of
this curve both initializations converge to the near-trivial
fixed point, yielding a relatively low overlap. In between
lies the coexistence region (gray), which extends up to
the critical point at δ ' 0.12; for δ larger than this there
is no phase transition. Finally, the red curve is the con-
densation transition mentioned in Section III, the line at
which the likelihoods (or equivalently the Bethe free en-
ergies) of the two fixed points cross. To the left of this
line the algorithm that finds the fixed point with highest
likelihood will choose the near-trivial fixed point over the
accurate one, and hence fail to detect the communities
no matter how much time is allowed.

Note that, even to the right of the hard/easy transi-
tion, there can be locally stable fixed points other than
the accurate one: when ε is large enough or δ is small
enough, there are also fixed points corresponding to var-
ious permutations of the groups. These permuted fixed
points have lower likelihood than the one correspond-
ing to the planted community structure, but for large ε
they can have fairly large basins of attraction, causing
belief propagation with random initial messages to fall
into them fairly often. (This is the source of some of the
fluctuations visible in Fig. 3.) Nevertheless, we can find
the accurate fixed point in this case by performing a rea-
sonable number of independent runs of belief propagation

and choosing the fixed point with the highest likelihood.

B. Belief propagation with a finite number of steps

In this section we investigate the behavior of belief
propagation when run for a finite number of steps, as
opposed to iterating it until it converges to a fixed point.
As discussed in Section IV B, iterating belief propagation
t times makes optimal use of local information up to t
steps away, but ignores information further than that.

In Fig. 6 we show the overlap Q (a) and marginal over-
lap Qµ (b) for q = 2 groups. In each panel, the black
curve shows the overlap of the fixed point to which belief
propagation converges if we continue iterating it. Below
that, we show two curves corresponding to iterating belief
propagation for t = 1 and t = 2 steps where (as in Sec-
tion IV B) the messages are initially set equal to the prior
probabilities µi→ja = γa. As we iterate, using informa-
tion about the network from larger and larger neighbor-
hoods, the accuracy of belief propagation improves and
the curves approach the overlap for the fixed point from
below. We also show two further curves where the beliefs
are initialized with the planted assignment µi→ja = δa,si
and these curves approach the overlap of the fixed point
from above. (The fixed point is the same for either initial-
ization, since for q = 2 and δ > 0 there is no detectability
transition.)

The curves with t = 2, for either initialization, already
give quite a good approximation to the final overlap when
ε is either very low or very high. Only in the interme-
diate region, close to the position of the detectability
threshold for equal-sized groups (which in this case is at

εc = 2
√

8 ' 5.66) is the approximation still poor after
two iterations. This agrees with previous observations
that belief propagation converges quickly everywhere ex-
cept in the vicinity of the transition [4]. It also shows
that, for q = 2 groups, local information is enough to al-
low belief propagation to quickly approach optimal clas-
sification as the neighborhood radius increases. (See [30]
for recent rigorous results on external fields or “side in-
formation,” showing that local algorithms also succeed
in that setting.)

Figure 7 shows analogous results for q = 5 groups in
the fully disassortative case, for parameter values that en-
compass the coexistence region where both fixed points
are stable. In the coexistence region, initializing the be-
liefs with the prior probabilities—and thus using only lo-
cal information—converges to the near-trivial fixed point,
while initializing with the planted communities converges
to the accurate fixed point. This behavior is visible in the
figure, with two lines in each panel (in black) showing the
converged overlaps. Outside the coexistence region these
two lines agree but inside it they do not, showing that in
this region there is a fundamental difference in the power
of local vs. global information.

The remaining curves show the results for t = 1, 2, 4, 8
iterations. With the prior initialization these results fail
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FIG. 6: (Color online) The overlap Q and marginal overlap Qµ achieved by belief propagation on networks with q = 2 groups,
average degree c = 8, and δ = 0.6, as a function of ε = cin − cout. The black (middle) curve in each panel shows the result of
iterating belief propagation until it converges to a fixed point as in Fig. 1; the other curves show the overlap after 1 (top and
bottom curves) and 2 (second top and second bottom curves) iterations. The lower curves in each panel use initial messages
µi→j
a = γa equal to the prior probabilities of the groups as discussed in Section IV B; the upper curves use initial messages
µi→j
a = δa,si corresponding to the planted communities. Each measurement is averaged over ten different networks of size
n = 105.
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FIG. 7: (Color online) The overlap Q and marginal overlap Qµ for belief propagation on fully disassortative networks generated
by the stochastic block model with q = 5 groups and δ = 0.05, as a function of the average degree c. The two black curves in the
middle of each panel show the final converged result starting from the prior initialization and planted initialization respectively.
The other curves show the results of belief propagation after t = 1, 2, 4, 8 iterations (red, cyan, green, blue curves respectively,
i.e. from top to bottom for upper 4 curves and from bottom to top for lower 4 curves) starting from each initialization. The
converged result consists of one network at each point, and each measurement of the finite-step data is averaged over five
different networks of size n = 105.

to register the first-order transition, instead following an
analytic continuation of (an approximation to) the near-
trivial fixed point. Similarly, with the planted initializa-
tion we miss the spinodal transition and instead follow
an approximate continuation of the accurate fixed point.
As a result, convergence from the “wrong” initialization
to the final overlap is quite slow both above and below

the coexistence region.

VI. CONCLUSIONS

We have studied the detection of community structure
in networks generated by the stochastic block model, a
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standard model of networks with well-defined clusters of
nodes. Previous studies have revealed the presence of
a detectability transition in such networks, below which
the communities are undetectable by any means. In this
paper we study the case where the symmetry between
the groups is broken by having groups with unequal sizes
or unequal average degrees.

We find that for the well-studied case of two groups,
the detectability threshold disappears when the groups
are unequal, making the accuracy a smooth function of
the parameters of the model. On the other hand, for
q > 4 (or q ≥ 4 in the disassortative case), where the
detectability transition is first-order in the equal-groups
case, the transition persists up to a certain amount of
asymmetry. Before this point is reached there is a coex-
istence between two competing solutions—one with low
accuracy (but still better than chance) based on local
information, and the other with higher accuracy based

on global information. As the amount of asymmetry in-
creases, the coexistence region shrinks and finally disap-
pears at a critical point, beyond which there is no sharp
transition. We conjecture that this local/global distinc-
tion may be a generic phenomenon in statistical inference
whenever a symmetry is broken, both in networks and in
other kinds of data.
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052802 (2014).

[11] G. Ver Steeg, C. Moore, A. Galstyan, and A. Al-
lahverdyan, Europhys. Lett. 106, 48004 (2014).

[12] S. Franz and G. Parisi, Phys. Rev. Lett. 79, 2486 (1997).
[13] A. P. Dempster, N. M. Laird, and D. B. Rubin, J. R.

Statist. Soc. B 39, 185 (1977).
[14] K. Nowicki and T. A. B. Snijders, J. Amer. Stat. Assoc.

96, 1077 (2001).
[15] G. J. McLachlan and T. Krishnan, The EM Algorithm

and Extensions (Wiley-Interscience, New York, 2008),
2nd ed.

[16] J. Yedidia, W. Freeman, and Y. Weiss, in Interna-

tional Joint Conference on Artificial Intelligence (IJCAI)
(2001).

[17] J. S. Yedidia, W. T. Freeman, and Y. Weiss, IEEE Trans.
Inf. Theory 51, 2282 (2005).

[18] X. Yan, C. R. Shalizi, J. E. Jensen, F. Krzakala,
C. Moore, L. Zdeborova, P. Zhang, and Y. Zhu, J. Stat.
Mech. 2014, P05007 (2014).

[19] X. Zhang, T. Martin, and M. E. J. Newman, Preprint,
91, 032803 (2015).

[20] M. E. J. Newman and T. P. Peixoto, Preprint
arxiv:1505.07478 (2015).

[21] J. R. L. de Almeida and D. J. Thouless, J. Phys. A 11,
983 (1978).

[22] H. Kesten and B. P. Stigum, The Annals of Mathematical
Statistics 37, 1211 (1966).

[23] H. Kesten and B. P. Stigum, The Annals of Mathematical
Statistics 37, 1463 (1966).
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