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(Dated: December 18, 2015)

The ultimate semiclassical wave packet propagation technique is a complex, time-dependent WBK
method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming
many technical difficulties in order to be carried out fully in practice. In its place roughly twenty
years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center,
real trajectories for both classically integrable and chaotic dynamical systems that completely cap-
ture the dynamical transport. The connections between those methods and GGWPD are developed
in a way that enables a far more practical implementation of GGWPD. The generally complex sad-
dle point trajectories at its foundation are found using a multi-dimensional, Newton-Raphson root
search method that begins with the set of off-center, real trajectories. This is possible because there
is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real
trajectory form a path that crosses a unique saddle; there are exceptions which are straightforward
to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as
a function of ~ that comes with using the saddle point trajectories.

PACS numbers: 03.65.Sq,05.45.-a,05.45.Mt

I. INTRODUCTION

Gaussian wave packet propagation is an extremely im-
portant tool for understanding a vast array of physical
problems. For example, it has been applied to prob-
lems involving driven cold atoms [1], electrons in strong
fields [2], fidelity studies [3, 4], and a broad range of
spectroscopic and pump-probe experiments [5, 6]. In the
short wavelength limit, it is natural to rely on semiclassi-
cal methods and approximations as a way of understand-
ing the essential physics and for making practical calcu-
lations. The pinnacle of such approaches, excluding the
introduction of higher order uniformizations of caustics
or diffraction corrections, is a complex, time-dependent
WBK method. For Gaussian wave packet propagation
that was shown to be generalized Gaussian wave packet
dynamics (GGWPD) [7, 8]. Although it is not identi-
cal, there is substantial overlap between GGWPD and
the earlier work on the saddle point approximation ap-
plied to the path integral in a coherent state representa-
tion [9, 10].

In GGWPD, classical Lagrangian manifolds of com-
plex phase space points are identified for both initial and
final wave packet states; one can also identify the final
state as a position or momentum eigenvector and con-
struct the fully propagated wave packets as well. There
is a boundary value problem of identifying the initial
complex manifold of phase points as initial conditions,
propagating them, and intersecting the manifold of end-
ing phase points with the final complex manifold. That
determines the generally complex saddle points of an ana-
lytically continued, time-dependent WBK theory [11] for

propagating wave packets, and that information can be
used to generate the best semiclassical approximation to
the dynamics (neglecting uniformization and diffraction
extensions).
Direct, full implementation of GGWPD is rather

impractical for non-trivial, two and higher degree-of-
freedom dynamical systems. There are a few basic rea-
sons for this. First, for each degree of freedom, there are
four dimensions in the complexified phase space. The
initial and final Lagrangian manifolds have half the di-
mensions. In one-degree-of-freedom (D = 1) dynamical
systems, the saddle points lie at intersections of two two-
dimensional, unbounded manifolds in a four-dimensional
space. For D = 2 the manifolds are four-dimensional
in an eight dimensional phase space. Thus, increas-
ing the number of degrees of freedom appears to push
the boundary value problem beyond treatment. Second,
complexified classical mechanics has many challenging
complications related to the analytical structure of the
complexified phase space, such as “runaway” trajecto-
ries that have infinite values of position or momentum
within finite times, which are indicative of singularities
and branch cuts [8]. The determination of whether the
contribution of a particular saddle should be included,
i.e. is on the good side of a Stokes surface, can be very
challenging. As a final example, beginning with D ≥ 2
dynamical systems, there is a likely possibility of at least
some chaotic dynamics. As the length of the propagation
time increases, the number of necessary saddle points has
to explode exponentially rapidly. There is recent work on
the implementation of GGWPD [12, 13], though for the
most part, the above mentioned difficulties remain.
Considerable work on semiclassical wave packet meth-
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ods has been directed towards developing practical calcu-
lational tools, but with some compromises. Several ini-
tial value representations have been developed [14–17],
that effectively are sophisticated, hybrid semiclassical-
numerical integration methods. They have the advan-
tages of simpler implementation than GGWPD and the
uniformization of some kinds of caustic singularities. Sev-
eral difficulties exist with these methods as well [18], not
least of which are that increasing propagation times and
numbers of degrees-of-freedom tend to rapidly expand
the quantity of necessary trajectories, and some of the
methods weight most the least contributing trajectories
(that end up largely relying on phase cancellations to
reduce their importance).

Another approach is to generalize linear wave packet
dynamics [19, 20] to the use of representative, off-center,
but real trajectories. Each representative trajectory,
through the quadratic expansion of the classical action
function and subsequent integration is incorporating the
effects of a subset of an infinite number of like-behaving
trajectories found in continuous branches. In this way,
the representative, off-center, real trajectories have the
advantage of capturing the complete classical transport,
i.e. all classically allowed dynamical possibilities are iden-
tified and incorporated. Thus, any dynamical nonlinear-
ities are taken into account. These methods were ap-
plied to the hydrogen atom [21, 22], an integrable sys-
tem, the stadium billiard [23, 24], and the quantum bak-
ers map [25], the latter two systems being fully chaotic.
They proved to be extremely accurate to time scales far
beyond the Ehrenfest time [24–26] where linearized wave
packet dynamics break down.

For integrable systems, the desired off-center, real tra-
jectories are selected from a manifold of real phase points
that is normal to the energy surface. In local action-angle
coordinates, the angle variables are fixed on the mani-
fold, and the action values are varied over the part of the
phase space that has significant weight in the Wigner
transforms of the wave packets. So long as a single set
of action-angle variables is necessary within the wave
packet’s domain of the phase space, the corresponding
shearing trajectory sum captures the complete classical
transport.

For chaotic systems, the trajectory sum is over all tra-
jectories heteroclinic to the initial and final phase space
centroids of the wave packets. These are trajectories that
in the infinite past approach the infinite past of the ini-
tial wave packet’s phase space center, and hence lie on
its unstable manifold, and in the infinite future approach
the infinite future of the final wave packet’s center, and
hence lie on its stable manifold. The intersections of
the two manifolds identify the heteroclinic trajectories.
This classical transport problem is completely solved by
the resulting heteroclinic trajectory sums in the limit
that the corresponding classical densities are well local-
ized within convergence zones in the normal coordinate
forms [27, 28].

Although, well motivated by physical considerations,

off-center, real trajectory methods are not on as solid
mathematical foundations as GGWPD or more gener-
ally, time-dependent WBK methods [29]. Developing the
links between the two methods has multiple purposes.
It sheds light on the missing mathematical foundations
of off-center, real trajectory methods, provides an inter-
pretation and a more economical and intuitive means of
implementing GGWPD that incorporates the full clas-
sically allowed transport, and the ~-dependence can be
analyzed and contrasted for the two methods.
Each true saddle point found using a representative,

off-center, real trajectory corresponds to the classical
transport pathway represented by the aforementioned
branch of trajectories associated with that off-center, real
trajectory (i.e. its infinite subset of like-behaving trajec-
tories). Within that branch are real trajectories that to-
gether form a path that crosses from one side to the other
of the saddle. Of course, that path doesn’t pass through
the saddle point, which is complex. These saddles are
always on the good side of Stokes surfaces. The exis-
tence of saddle points other than these within GGWPD
would correspond to tunneling corrections or those that
must be excluded by being on the wrong side of Stokes
surfaces.
The paper is organized as follows, the next section

gives the background information needed for GGWPD
and off-center, real trajectory sums for integrable and
chaotic systems. This is followed by a description of an
immensely easier implementation method for GGWPD
beginning with the presumed known off-center, real tra-
jectories, and a derivation of the saddle point expres-
sion. A very simple, analytical example is worked out
in detail to illustrate the comparative workings of suc-
cessively sophisticated semiclassical approximations; i)
linearized wave packet dynamics, ii) off-center, real tra-
jectory methods, and iii) GGWPD. The GGWPD imple-
mentation method is applied to the kicked rotor in a near-
integrable regime and another that is strongly chaotic for
the purpose of showing the improvement of carrying out
GGWPD relative to off-center, real trajectory methods
as a function of ~. Lastly, we point to interesting direc-
tions for future work.

II. BACKGROUND

It is convenient to make use of both Dirac and wave
function notations. Using the greek letters, α, β as a
shorthand to denote the parameters that define particu-
lar kets associated with unit normalized Gaussian wave
packets,

|α〉 = |~pα, ~qα,bα〉 (1)

where the mean position and momentum parameters,
(~pα, ~qα), can be regarded as position and conjugate mo-
mentum variables in a 2D-dimensional real phase space,
and bα is a symmetric, positive definite D-dimensional
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variance/covariance matrix; this matrix could have com-
plex entries as long as all of its eigenvalues have positive
real parts (complex entries would give the flexibility of
building in “chirping” of the wave functions). This leads
to

〈~x|α〉 = 〈~x|~pα, ~qα,bα〉 = φα(~x)

=

(
2DDet[bα]

πD

)1/4

exp [− (~x− ~qα) · bα · (~x− ~qα)

+
i

~
~pα · (~x− ~qα)

]
(2)

where implicitly the right vectors are column vectors and
the left vectors are row vectors. The form of the normal-
ization constant is valid for bα real symmetric, otherwise
it has to be replaced by (bα + b

∗
α)/2

D; the equations
given ahead also assume bα real symmetric. To obtain
the normalization and several of the equations further
ahead in the text, a useful integral identity is

(
πD

Det[A]

)1/2

=

∫ ∞

−∞

d~x exp [− (~x− ~q0) ·A · (~x− ~q0)]

(3)
where the matrix A must satisfy the constraints on bα

mentioned above.
For mechanical dynamical systems with potentials of

constant, linear, or quadratic spatial dependence, even
if time-dependent, the evolution is such that an initial
Gaussian wave packet remains a Gaussian, albeit possi-
bly moved and distorted by the dynamics. Letting t0 = 0,
the unitary evolution of a system governed by a Hamil-
tonian H gives

UH(t)|α〉 = |αt〉 (4)

where the time-dependence of the parameters can be
solved by making use of the classical trajectory with
(~pα, ~qα) as its initial condition. For more general po-
tentials, this relation remains approximately true up to
the Ehrenfest time scale [30] on which the wave packet
remains localized well enough to correspond to a classi-
cal density, and is the approximation method known as
linearized wave packet dynamics [19, 20].
For physical problems in which knowing the dynamics

approximately up to the Ehrenfest time scale suffices, it is
an extraordinarily useful method [5]. The great simplifi-
cation is that there is no need to determine which trajec-
tory or trajectories to use, the initial condition is (~pα, ~qα).
Running this trajectory and solving the stability equa-
tions can be done in any number of degrees of freedom as
long as the Hamiltonian is known or well approximated.
In some cases, such as found in many spectroscopic ex-
periments, the quantity of interest may be a correlation
function (or it can be considered a matrix element of the
time-dependent Green function in a wave packet repre-
sentation or its Fourier transform), 〈β|UH(t)|α〉. Even
if the means of φβ(~x), φα(~x) cannot be connected by a
real trajectory, the limitations of using linearized wave

packet dynamics are roughly the same, i.e. it works up
to the Ehrenfest time, unless φβ(~x) is far in the tail of
〈~x|UH(t)|α〉, where the approximation would fail earlier,
but the overlap would also be quite small.

Generally speaking, beyond the Ehrenfest time scale
nonlinearities arise in the dynamics and the possibility
of multiple pathways for wave amplitudes to interfere
opens up. Both phenomena signal the breakdown of a
linearization of the dynamics and a more sophisticated
method becomes necessary that is capable of accounting
for all the nonlinearities and wave interference. As noted
in the introduction, the pinnacle of semiclassical approx-
imations for wave packets is GGWPD [7, 8] and it does
contain all the information about nonlinear dynamics in
the short wavelength regime.

A. GGWPD

One way to view the key element of a time-dependent
WBK theory is the identification of the appropriate La-
grangian manifold of trajectories for a given state. Ap-
proximate quantum propagation follows by the propaga-
tion of the manifold as a set of trajectory initial condi-
tions. If interest lies in the propagated state’s overlap
with a final state, then the intersections of the propa-
gated manifold with the manifold of the final state gives
the needed stationary phase points.

The key underlying GGWPD is the identification of
this manifold. If one allows for complex positions and
conjugate momenta, then there is an ambiguity in the
form of a wave packet as described by Eq. (2). Leav-
ing aside the global phase and normalization for a mo-
ment, any complexified pair of position, momentum val-

ues (~P , ~Q), which preserves the column vector relation,

2bα · ~Q+
i

~

~P = 2bα · ~qα +
i

~
~pα (5)

leaves the spatial dependence of the Gaussian wave pack-
ets identical. This can be verified by inspection of the
resultant quadratic forms of the exponential argument.

In fact, the set of all {(~Pα, ~Qα)} satisfying the ket equa-
tions is the appropriate Lagrangian manifold underlying
|α〉 [8]. Clearly, if one were to scale bα with ~

−1, then ~

drops out of the equation entirely. This scaling fixes the
overall shape of a wave packet’s phase space density, only
the volume is determined by ~. Since the locations of the
saddle points are independent of ~ with this scaling, this
gives an excellent approach to studying the accuracy of
the method as ~ → 0.

Although, all the points on the above manifold leave
the spatial dependence invariant, expressing Eq. (2) and
its bra vector version in terms of the complex phase space
variables does not leave the normalization and phase in-
variant. Consider a particular point on the ket manifold

as a complex center of the wave packet, say (~P0, ~Q0).
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Adjusting the normalization coefficient to

N 0
α =

(
2DDet[bα]

πD

)1/4

exp

[
i

~

(
~P0 · ~Q0 − ~pα · ~qα

)
+

~Q0 · bα · ~Q0 − ~qα · bα · ~qα
]

(6)

restores both the normalization and phase. This is al-
ready indicating something useful about the phase point

(~P0, ~Q0). By using Eq. (5) and its complex conjugate
form, the real variables (~pα, ~qα) can be eliminated from
Eq. (6). For the purpose of separating the contributions
to the normalization and phase explicitly, it is conve-
nient to have a notation for the real and imaginary parts

of the phase points. Denote them ~P0 = ~PR
0 + i ~PI

0 and
~Q0 = ~QR

0 + i ~QI
0, where ahead the 0 refers to time (initial

condition or final condition, t). After some algebra, one
finds

N 0
α =

(
2DDet[bα]

πD

)1/4

exp
[
F−
0 (α)

]

F−
0 (α) =

i

2~2
~PR
0 · b−1

α · ~PI
0 − 1

4~2
~PI
0 · b−1

α · ~PI
0

− ~QI
0 · bα · ~QI

0 −
1

~

~PR
0 · ~QI

0 (7)

where the − sign in the notation F−
0 is for a ket vector.

The first term adjusts the phase and the last three terms
the normalization. The bra vector version is given by

N t
β =

(
2DDet[bβ ]

πD

)1/4

exp
[
F+
t (β)

]

F+
t (β) =

i

2~2
~PR
t · b−1

β · ~PI
t − 1

4~2
~PI
t · b−1

β · ~PI
t

− ~QI
t · bβ · ~QI

t +
1

~

~PR
t · ~QI

t (8)

where three minor changes are necessary. In Eqs. (2,5-8),
the sign of the momenta are reversed, α is replaced by β
for the final wavepacket, and the time is replaced by the
final t instead of the initial t = 0.
In a number of works, a concept of complex, but

nearly real trajectories is used; see [31, 32] and refer-
ences therein. This has an important intuitive appeal,
but there does not appear to be any definition of the
meaning of nearly real. The normalization correction
terms of Eqs. (7,8) may provide a step in that direction.
Although, there is no measure of distance in real phase
space, let alone complex phase space, the sum of terms
given by imaginary momenta weighted by b

−1
α , imaginary

position weighted by bα, and the correlation between the
real momentum and imaginary position is unit free. Fur-
thermore, this sum contains a useful wave-packet-shape
and ~-dependence. Ahead it is seen to show up directly
in the expressions for propagating wave packets and cor-
relations functions, Eqs. (18,20), as an exponential decay
factor. One might then consider the complexity of any

complex phase point (~P0, ~Q0) to be greater, the greater

the decay factor given in Eq. (6). The measure of com-
plexity of a phase point is generally not the same for
F−
0 (α) and F+

t (β).

However, some caution is warranted and we find that
considering a saddle point trajectory to be nearly real can
be rather misleading. Instead, the property of whether
or not a saddle has a set of real trajectories that form a
path across itself is better defined and more fundamen-
tal. We call such saddles real crossing saddles and the
rest non-crossing ones. It is worth noting that the def-
inition of a real crossing saddle does not imply that its
saddle point is actually nearly real by any kind of intu-
itive logic. There generally are real crossing saddles with
very strongly Gaussian damped contributions.

For a quantity such as 〈β|UH(t)|α〉, the idea is to prop-
agate the initial conditions for a time t from the set of all

complex phase points {(~Pα, ~Qα)} satisfying Eq. (5) and

locate the intersections with the set {(~Pβ, ~Qβ)} associ-
ated with the final state. As each intersection indicates
a saddle point, following the method of steepest descents
gives a sum of contributions over these saddle points as
the approximation to 〈β|UH(t)|α〉. There are many pos-
sible complications, such as the existence of saddle points
which must be thrown away, but this is a brief outline of
the main ideas. Carrying out the direct implementation
of GGWPD means following this prescription, i.e. solving
the complex boundary value problem directly.

B. Off-center, real trajectory sums

Consider a system’s classical transport and how its
properties are captured by a time-dependent correlation
function between an initially localized Gaussian density
of phase space points ρα centered at point (~pα, ~qα) and
a final destination Gaussian density ρβ centered at point
(~pβ , ~qβ). For simplicity, let (~pα, ~qα) and (~pβ, ~qβ) be pe-
riodic trajectories of a continuous dynamical system or
fixed points of a dynamical map. t is the time of prop-
agation. In the limit of highly localized densities, it can
be expressed as a sum over certain trajectories [21–25]

Γβα(t) =
∑

γ

〈ρβ , T t
γρα〉 (9)

where each γ denotes a particular trajectory branch.
Each branch contains like-behaving trajectories that take
time t to leave the neighborhood of (~pα, ~qα) and arrive
in the neighborhood of (~pβ , ~qβ). Each term γ represents
a distinct dynamical pathway for connecting the two re-
gions. An individual T t

γ is a linearized dynamical time
propagation representing the behavior of a branch la-
belled γ. One trajectory is selected from γ as its rep-
resentative and its stability matrix is used to account for
all the other members of that branch.

The quantum mechanical analog in the semiclassical
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limit of the correlation function is

〈β|UH(t)|α〉 =
∑

γ

〈β|Uγ(t)|α〉 (10)

where |α〉 is the ket vector corresponding to a quantum
wave packet centered at (~pα, ~qα) and Uγ(t) is the appro-
priately linearized unitary time translation operator cor-
responding to the canonical transformation represented
by T t

γ . The summation is over the same branches as nec-
essary for the classical expression. These two equations
hold equally well for open or bounded systems.
There are Gaussian integrals to perform for these

methods generated by considering one of the represen-
tative trajectories and making a quadratic expansion of
its classical action to account for neighboring trajecto-
ries. This quadratic expansion is effectively constructing
a local, complex saddle, even though one is not seeking
the location of its saddle point. One is just doing the re-
sultant Gaussian integrals. The trajectories neighboring
the representative one form a continuous set that create
a path crossing this saddle. This effective saddle would
be the true saddle if the dynamics locally were strictly
linear. Local nonlinear dynamics introduce a degrada-
tion of the off-center, real trajectory method relative to
GGWPD, but one sees the connection between the two
methods; i.e. γ can be considered the index for real cross-
ing saddles. All of the parameters necessary to express
those integrals’ results analytically are given by the rep-
resentative trajectory’s classical action, geometric phase
index, and stability matrix elements. A good review of
the basic quadratic expansion techniques giving the ex-
plicit expressions relating the second action derivatives
with stability matrix elements can be found in [20].

1. Integrable dynamics

Implementing off-center, real trajectory methods for
integrable systems was developed in [21, 22] and ap-
plied to the Coulomb potential with vanishing angular
momentum. The only way to classically transport from
one region to the other is along tori that are common to
both regions (intersect both regions). Making a canoni-
cal transformation to local action-angle variables for the
initial state region identifies the tori which potentially
may intersect the final state region. It is not necessary
to run multiple trajectories on a single torus as that gives
redundant transport information. Instead, by fixing the
angle variables and varying the actions, one is maximally
exploring the set of transport possibilities. Somewhat
ideally, one would find the coordinate transformation to
action-angle variables for the phase point (~pα, ~qα) and
invoke the short wavelength approximation to justify ex-
panding the Hamiltonian locally up to quadratic order in
these action-angle variables; that gives the energy, and
periods of motion and shearing rates for each of the de-
grees of freedom. In practice, it is possible to avoid the
explicit construction of local action-angle variables much

like as done in [22]. There approximate fixed angle tra-
jectory manifolds are constructed intuitively for (~pα, ~qα)
and (~pβ , ~qβ). However, the method is very weakly depen-
dent on the exact representative trajectory being used,
and any of the other trajectories in its neighborhood give
nearly the same result. It is not really necessary to have
the angle variables fixed as the action variables change
over the manifold. However selected, the former mani-
fold is propagated a time t numerically and intersections
are found with the latter manifold.

2. Chaotic dynamics

For chaotic systems, there are heteroclinic trajectories
that converge to (~pα, ~qα) for t → −∞ and converge to
(~pβ , ~qβ) for t → ∞ [23–25], if (~pα, ~qα) and (~pβ , ~qβ) are
chosen as periodic orbits. Otherwise, the mental im-
age becomes slightly more complicated. They provide
a convenient set of representative trajectories as they
are in one-to-one correspondence with the necessary γ
branches. The summation is over finite-time segments of
the infinite histories of the heteroclinic trajectories that
satisfy the fixed time constraint. This is a complete so-
lution of the classical transport problem in the limit of a
shrinking, localized density, which at some point is within
a convergence zone shown to exist in the normal coor-
dinate form [27, 28]. There are no transport pathways
from the neighborhood of (~pα, ~qα) to the neighborhood
of (~pβ , ~qβ) not accounted for by some heteroclinic tra-
jectory. The trajectories are found by constructing the
unstable manifold of (~pα, ~qα) and the stable manifold of
(~pβ , ~qβ), and intersecting them. The necessary classical
information and quadratic expansions follow by the same
general methods as for the integrable systems.

III. IMPLEMENTING GGWPD

To begin, consider the essential ingredient in the
method of steepest descents. Once a complex trajec-
tory that serves as a saddle point is found, there is a
quadratic expansion performed about the saddle point, a
deformation of a path for a line integral, and a Gaussian
integral evaluated. To the extent that the exponential ar-
gument is a purely quadratic function, one could expand
it to second order about any other point and get exactly
the same results as if expanded about the saddle point,
i.e. where the linear term disappears. However, if there
are cubic and higher order corrections, expanding about
the saddle is optimal. Depending on the strength of the
higher order terms, there still has to be a neighborhood
of points about the saddle point where if a quadratic
expansion and integration are performed, the result will
still be very nearly the same as the optimal one.
Suppose that it is a real crossing saddle, i.e. there

exists a path of real trajectories crossing it. Suppose fur-
ther that some of those trajectories are close enough to
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the true saddle trajectory to give nearly the same result;
i.e. both expansions lead to rather different-looking Gaus-
sian integrals, but the implied saddle constructed by the
quadratic expansion about the real trajectory has nearly
the same shape and location. Then one would also ex-
pect that one could construct a Newton-Raphson scheme
starting with that real trajectory as an initial guess that
would converge rapidly to the complex trajectory repre-
sented by the saddle point. Indeed, the Newton-Raphson
scheme has been introduced as a way of finding “nearly-
real” complex trajectories [31, 32]. Here, the idea is
to apply the Newton-Raphson scheme to the full set of
representative, off-center, real trajectories for any given
dynamical system. In the case that the neglected local
dynamical nonlinearities are strong enough, the Newton-
Raphson scheme may not converge. If so, some alteration
of the search method must be incorporated, but there is
still the γ one-to-one correspondence of representative,
off-center, real orbits and real crossing saddles up to the
point where nonlinearities create saddles that coalesce
and merge into each other.

As happens for any root in this scheme, there is a set
of neighboring points in its neighborhood for which the
method converges, which may be considered a basin of
convergence. Note that all the basins of convergence of
various distinct roots must be mutually exclusive. The
representative, off-center, real trajectory lies somewhere
on only one particular saddle, the one to which it is asso-
ciated, even if it cannot be guaranteed that it is inside the
basin of convergence. If the representative trajectory is
close enough and the local dynamics linear enough, the
Newton-Raphson iterative procedure rapidly converges
to the saddle point for that saddle. The interpretation of
the saddle point’s contribution is given by its associated
real trajectory branch.

If the representative trajectory is not close enough or
the branch has enough curvature, then before attempting
to apply a Newton-Raphson search, it would be neces-
sary to add an extra step in the process. One might first
find a more optimal real trajectory from the branch or
perhaps, just to put a brake into the Newton-Raphson
scheme. Since this involves real-crossing saddles, there is
a best trajectory from the branch to use (the one that
lies on the curve of steepest ”ascents”). After finding
it, presumably the Newton-Raphson method would de-
scend toward the actual saddle point. Since the represen-
tative, off-center, real trajectory sums describe the com-
plete classical transport, this method locates every saddle
point that can be interpreted a result of a classically al-
lowed process. Those saddle points that are non-crossing
must necessarily be related to classically non-allowed pro-
cesses, i.e. tunneling, or be on the wrong side of Stoke’s
surfaces and unphysical. Such saddle points are left for
future investigations.

It is known that for even the simplest functions with
multiple roots of a single complex variable, the domains
of convergence are fractals. Nevertheless, exceptions to
the one-to-one correspondence require sufficiently strong

higher order curvature corrections to coalesce saddles.
The lowest order curvature correction is determined by
the locally evaluated third derivatives of the action func-
tion. These corrections turn out to be visible as strong
curvatures in the branch under consideration. So in spite
of the complicated nature of the exact basins of conver-
gence, it is clear when the search scheme from off-center,
real trajectory to its associated saddle point may lead to
failure.
For continuous time dynamical systems, each saddle

point found at some fixed time contributes throughout a
continuous time window. As time continuously changes,
the saddle point trajectory continuously changes as well.
The trajectory also shifts its energy. At some point, ear-
lier in time and later in time, its energy is shifted so
far outside of the energy uncertainty of the wave packet
that its contribution fades away. The end result of this
one-dimensional parameter family of saddle points typi-
cally produces a chirped-like smooth function of time to
propagating wave packets or correlation functions. This
is illustrated in the earlier work on the stadium in their
Fig. 16 [24].

A. Identifying the associated complex trajectories

For the correlation function expression given in
Eq. (10) consider one member from the set of off-center,
real trajectory initial conditions, {~pγ0 , ~qγ0 }. Assuming the
local dynamics are linear enough, it lies in the basin of
attraction of a saddle point trajectory one wishes to lo-

cate. Label its initial condition
(
~Pγ
0 ,

~Qγ
0

)
. The con-

straints that the trajectory of interest must satisfy are
obtained by subtracting the right hand side of Eq. (5)

using the initial condition
(
~Pγ
0 ,

~Qγ
0

)
that propagates to

(
~Pγ
t ,

~Qγ
t

)
. Thus, a saddle point trajectory must satisfy

2bα ·
(
~Qγ
0 − ~qα

)
+

i

~

(
~Pγ
0 − ~pα

)
= ~0

2bβ ·
(
~Qγ
t − ~qβ

)
− i

~

(
~Pγ
t − ~pβ

)
= ~0 (11)

where clearly this just indicates that
(
~Pγ
0 ,

~Qγ
0

)
is one

member of the set
{(

~Pα, ~Qα

)}
and

(
~Pγ
t ,

~Qγ
t

)
is the as-

sociated propagated member of the set
{(

~Pβ , ~Qβ

)}
.

If some
(
~P0, ~Q0

)
, such as one member of the set

{~pγ0 , ~qγ0}, is not a saddle point trajectory, then the right
hand sides of Eqs. (11) do not vanish, but rather equal

some complex constant vectors ~C0 and ~Ct, respectively.
The basic idea is to use (~C0, ~Ct) to solve for a shift of(
~P0, ~Q0

)
towards

(
~Pγ
0 ,

~Qγ
0

)
, i.e. solve for

~P ′
0 = ~P0 + δ ~P0

~Q′
0 = ~Q0 + δ ~Q0

(12)
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where
(
~P ′
0,

~Q′
0

)
is a much better approximation of

(
~Pγ
0 ,

~Qγ
0

)
. Then one updates the initial conditions

(
~P ′
0,

~Q′
0

)
→
(
~P0, ~Q0

)
, recalculates (~C0, ~Ct), and solves

for a new set of shifts
(
δ ~P0, δ ~Q0

)
. This is repeated until

the procedure converges to the saddle point of interest.

In Eq. (11) there appears to be 8D unknown quantities

and only 4D constraints, but
(
~Pγ
t , ~Qγ

t

)
is precisely de-

termined by the initial conditions
(
~Pγ
0 ,

~Qγ
0

)
. Thus, the

shifts
(
δ ~P0, δ ~Q0

)
also determine

(
δ ~Pt, δ ~Qt

)
. For small

(
δ ~P0, δ ~Q0

)
, a very accurate approximation is to use the

stability matrix of the trajectory whose initial conditions

are given by
(
~P0, ~Q0

)
,

(
δ ~Pt

δ ~Qt

)
=

(
M11

M21

M12

M22

)(
δ ~P0

δ ~Q0

)
(13)

to replace the quantities
(
δ ~Pt, δ ~Qt

)
. This approxima-

tion is the complex, multi-dimensional equivalent of us-
ing the slope in a Newton-Raphson recursive root finding
method. After a couple steps of algebra, the relations to
use recursively are found to be,

−~C0 = 2bα · δ ~Q0 +
i

~
δ ~P0

−~Ct = 2bβ ·
(
M21 · δ ~P0 +M22 · δ ~Q0

)
−

i

~

(
M11 · δ ~P0 +M12 · δ ~Q0

)
(14)

Being linear, these equations are straightforwardly solved

for
(
δ ~P0, δ ~Q0

)
. The updated constants ~C0 and ~Ct rapidly

approach null vectors, and thus the sequence of updated(
~P0, ~Q0

)
similarly approach the saddle point trajectory

(
~Pγ
0 ,

~Qγ
0

)
associated with the classically allowed trans-

port following (~pγ0 , ~q
γ
0 ).

B. Explicit saddle point expressions

The explicit multi-degree-of-freedom expressions deriv-
ing from the GGWPD method can be determined us-
ing an analytically continued version of the van Vleck-
Gutzwiller propagator for incorporating the quantum dy-
namics; see [33]. Attention must be paid to both the
phase and prefactor. A quadratic expansion of the ex-
ponential argument in terms of stability matrix elements
gives the most explicit form of the results.

1. Taylor series expansion of the propagator

The usual form of the van Vleck-Gutzwiller propagator
is given as

G(~x, ~x′; t) =

(
1

2πi~

)D/2∑

γ

∣∣∣∣∣
1

Det (M21)γ

∣∣∣∣∣

1/2

× exp

(
i

~
Sγ(~x, ~x

′; t)− iνγπ

2

)
(15)

where the γ summation is over all the trajectories that
begin at ~x′ and finish at ~x in exactly a time t. In order
to use this propagator to arrive at the desired results,
there are two main issues that need to be addressed, the
multi-dimensional complex quadratic expansion of the
action function and how to interpret the absolute value of
the determinant after analytical continuation to complex
variables.
One way to obtain the desired relationship between

second derivatives of a complexified version of Sγ(~x, ~x
′; t)

and stability matrix elements follows by recognizing that
the relation

(
δ~pt
−δ~p0

)
=




∂2Sγ

∂~x∂~x
∂2Sγ

∂~x′∂~x

∂2Sγ

∂~x∂~x′

∂2Sγ

∂~x′∂~x′




∣∣∣∣∣∣∣
~qt,~q0

·
(

δ~qt
δ~q0

)
(16)

can be algebraically rearranged for the variables to be in
the same column vectors as found in Eq. (13), and it is
sufficient to reinterpret the derivatives as being due to
complex positions. This algebraic rearrangement gener-
ates the relations




∂2Sγ

∂ ~Qt∂ ~Qt

∂2Sγ

∂ ~Q0∂ ~Qt

∂2Sγ

∂ ~Qt∂ ~Q0

∂2Sγ

∂ ~Q0∂ ~Q0


 =

(
M11 ·M21

−1
M12 −M11 ·M21

−1 ·M22

−M21

−1
M21

−1 ·M22

)
(17)

where the stability matrix elements may now be com-
plex. Thinking ahead of using this matrix for evaluating
multivariate Gaussian integrals, it is necessary to know
whether it is symmetric. That is assured by the possibil-
ity of applying the derivatives in the opposite order and

obtaining the same result. It is amusing to note that for
free particle propagation of complex initial conditions,
the stability elements remain real, but for general dy-
namical systems that is not the case.

Next consider the question about the interpretation
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of the absolute value of the determinant. For real
trajectories, it can only be positive or negative. Taking
the absolute value and using the geometric index ν is
just a way of keeping track of the sheet of a multivalued
function, and making sure that phase variation remains
smooth (no discontinuous jumps when changing sheets
of the function). Extended to complex trajectories, the
determinant’s phase can be anywhere on the unit circle,
not just plus or minus unity. However, applying the
same logic of maintaining smooth phase evolution, the
phase index is just keeping track of the correct square
root branch (it has a positive real part). One does not
want the absolute value, the phase is necessary as well.
Thus, the issue is resolved by taking the correct branch
of the square root, not taking the absolute value. The
absolute value notation is dropped on the determinant,

but no new notation is added to indicate taking the
correct branch of the square root. It is left implied.
Ahead, this enables algebraic simplifications involving
this square root, and it eventually disappears.

2. Time-evolving wave functions

All the ingredients exist at this point to write down the
explicit expression for the full GGWPD multi-degree-of-
freedom equation for the evolution of the wave packet
φα(~x). It is given by applying Eq. (3) and doing a bit of
algebra,

φα(~x; t) =

∫ ∞

−∞

d~x′G(~x, ~x′; t)φα(~x
′)

=

(
1

2πi~

)D/2(
2DDet[bα]

πD

)1/4∑

γ

exp

[
i

~
S(~x, ~Qγ

0 ; t)−
iνγπ

2
+ F−

0 (α, γ)

](
1

Det [M21]γ

)1/2

∫ ∞

−∞

d~x′ exp

[
−
(
~x′ − ~Qγ

0

)
·
(
bα − i

2~
M

−1

21 M22

)
·
(
~x′ − ~Qγ

0

)]

=

(
2DDet [bα]

πD

)1/4∑

γ

exp
[
i
~
S(~x, ~Qγ

0 ; t)− iνγπ
2

+ F−
0 (α, γ)

]

(Det [M22 + 2i~M21 · bα])
1/2

(18)

The set of saddle point trajectories γ depends in a compli-
cated way on the position ~x and the dynamics generated
by H , and thus φα(~x) is no longer in the form of a Gaus-
sian wave packet nor a sum over Gaussian wave packets.
However, if H is no greater than quadratic in the phase
space variables, the sum reduces to a single term. The
expression can, after some work, be reduced to that of
linearized wave packet dynamics, which of course, gives
a Gaussian wave packet form. Because the saddle point
depends continuously on the value of ~x and there is only
one trajectory for linearized wave packet dynamics, the
work involved is to show that for every value ~x, the two
expressions are equivalent.

3. Correlation functions

Similarly, all the ingredients exist to give the ex-
plicit expression for time-dependent correlation functions

〈β|UH(t)|α〉, or less generally, the coherent state repre-
sentation of the time-dependent Green function. The
necessary algebra is slightly more complicated and three
linear algebra identities are very helpful. They are in no
particular order,

Det[A]Det[B] = Det [AB]

Det[A] = Det

[
1 0

0 A

]

Det

[
A B

C D

]
= Det

[
A−BD

−1
C
]
Det [D] (19)

After applying Eq. (3) and some linear algebra



9

〈β|UH(t)|α〉 =
∫ ∞

−∞

d~xd~x′φ∗
β(~x)G(~x, ~x′; t)φα(~x

′)

=

(
1

2πi~

)D
2

N 0
αN t

β

∑

γ

exp

[
i

~
S( ~Qγ

t , ~Qγ
0 ; t)−

iνγπ

2

](
1

Det [M21]γ

) 1

2 ∫ ∞

−∞

d~xd~x′

exp


−

(
~x− ~Qγ

t , ~x
′ − ~Qγ

0

)
·



bβ − i

2~
M11M

−1
21

i
2~

(
M11 ·M−1

21 ·M22 −M12

)

i
2~
M

−1

21 bα − i
2~
M

−1

21 M22


 ·
(

~x− ~Qγ
t

~x′ − ~Qγ
0

)


=
(
4DDet [bα] Det[bβ ]

)1/4∑

γ

exp
[
i
~
S( ~Qγ

t ,
~Qγ
0 ; t)− iνγπ

2
+ F−

0 (α, γ) + F+
t (β, γ)

]

(
Det

[
M11 · bα + bβ ·M

22
+ 2i~bβ ·M21 · bα − i

2~
M12

])1/2 (20)

It is worth noting that this expression, at least super-
ficially, is much simpler than the one required for off-
center, real trajectory methods because of the compli-
cated looking terms introduced by non-vanishing linear
terms in the Gaussian integrals; see the Appendix. It is
also separated into parts that can be interpreted more
easily. There is the classical action of the complex tra-
jectory, its stability matrix, and the functions F−

0 (α, γ)
and F+

t (β, γ) that contain a phase and a measure of how
complex are the initial and final coordinates of the tra-
jectory. This expression is used with the kicked rotor in
the next section to illustrate the comparison of accuracy
of GGWPD and off-center, real trajectory methods.

4. Comparing semiclassical methods: instructive analytic

example

It is instructive to compare the basic workings of lin-
earized wave packet dynamics, off-center, real trajectory
methods, and GGWPD, where this ordering is in terms of
increasing sophistication. Perhaps, the simplest example
in which the trajectories can be worked out analytically
for all three approximations is for free particle propa-
gation. In addition, all three approximations are exact,
and thus contain identical information. They are just ob-
taining it from the trajectories and organizing it in their
respective expressions differently.

For the purposes of this comparison, a single degree of
freedom gives a sufficient illustration. Let b−1

α = 4σ2 and
κ = ~t/(2mσ2). The stability matrix for every possible
trajectory, real or complex is

Mt =

(
1 0

t/m 1

)
(21)

The exact expression for a propagated wave packet can
be written in the form that comes from linearized wave

packet dynamics as follows

φα(~x; t) =

(
1

2πσ2

)1/4(
1

1 + iκ

)1/2

×

exp

[
− (x− qt)

2

4σ2(1 + iκ)
+

ipt
~

(x− qt) +
ip2t t

2m~

]

(22)

where the trajectory with initial conditions (p0, q0) =
(pα, qα) gives the classical trajectory

pt =
qt =

pα
qα + t

mpα
(23)

The last term in the exponential is the phase that comes

from
∫ t Ldt′, κ “chirps” the Gaussian, i.e. puts fast phase

oscillation out front and slow phase oscillation behind the
wave packet center, and (pt, qt) shifts the center appro-
priately.
The off-center, real trajectory method arrives at this

result in a very different way. A different trajectory is
used for every argument x of the wave packet. Given that
momentum is the action variable for free particle motion,
to locate the representative off-center, real trajectory for
some given value of x, one propagates the set of initial
conditions (p0, qα) for all real p0, and finds which one
intersects the with the set (pt, x) for all pt. The initial
conditions and trajectories as a function of x are thus,

p0 =
q0 =

pα + m
t (x− qt)

qα
(24)

Only if x coincides with the moving wave packet’s cen-
ter does the off-center, real trajectory equal the linearized
wave packet trajectory. Otherwise, the initial momentum
is detuned from pα so that the trajectory arrives exactly
at x no matter what value of x or time t is considered.
As time varies, the method uses trajectories across the
entire wave packet, short times - high momenta, long
times - low momenta. In more general nonlinear dynam-
ical systems, the local dynamics of all the phase space
of the packet is explored and there is the capacity to in-
clude multiple contributions that cannot be accounted for
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in linearized wave packet dynamics. The improvements
with this method for problems with nonlinear dynamics
are optimized if the bα matrix stretches the wave packet
more along the set of propagated initial conditions rather
than transverse.
The GGWPD method improves further on the off-

center, real trajectory method by incorporating informa-
tion about the shape of the initial wave packet into the
complexified trajectories. The initial conditions for the
saddle point trajectories are given by

P0 = pα +
iκm

t

(
x− qt
1 + iκ

)

Q0 = qα +
x− qt
1 + iκ

(25)

The initial conditions are a function of the final real po-
sition x as for the off-center, real trajectory method, but
are shifted from the linearized wave packet trajectory by
complex terms that contain information about the shear-
ing and shape parameter κ, and the distance of x from
the moving wave packet center qt.
Since the off-center, real trajectories are supposed to be

close to the saddle point trajectories, consider the com-
parison of the real parts of the initial conditions of the
saddle point trajectories and the off-center, real trajec-
tory initial conditions. After some algebra, one finds

PR
0 − p0 = −m

t

(
x− qt
1 + κ2

)

QR
0 − q0 =

x− qt
1 + κ2

(26)

The wave packet amplitude is extremely small unless x is
within a few widths of qt, and κ increases proportionally
with time. Thus, for x where there is some chance of non-
negligible contribution, the real parts of the saddle point
trajectories approach the off-center, real trajectory initial
conditions as t increases. Consistent with this, the imag-
inary parts shrink with time as well. However, it can be
rather misleading to think of the off-center, real trajec-
tory as being near the saddle point trajectory in any case
where x is not so close to qt. Finally, it turns out that
the final term in F−

0 (α) from Eq. (7) (has real momen-
tum and imaginary position) cancels with the damping
term in the complexified classical action. Thus, for free
particle motion, the overall damping factor is given by
the other two real terms in that expression, which in-
volve only the squared imaginary parts of the position
and momentum, respectively.
Overall, this simple example helps to illustrate the

increasing level of sophistication of the three kinds of
semiclassical approximations. The first, linearized wave
packet dynamics, is fine until nonlinear dynamics ap-
pears. This is the Ehrenfest time scale, beyond which,
being restricted to a single orbit, it has no built-in
mechanism to handle the nonlinearities. The off-center,
real trajectory method builds in all the nonlinearities in
the dynamics and is not limited by the Ehrenfest time
scale whatsoever, but the nonlinearities are accounted for

without taking account of the wave packet shape. GG-
WPD does do this, and in addition, though beyond the
scope of this paper, has the capacity to incorporate tun-
neling through the existence of additional saddle points.
So long as transport is dominant (tunneling is a tiny com-
ponent) and the wave packet shape is well adapted to
the problem, the off-center, real trajectory method and
GGWPD should return compatible results. In the next
section, GGWPD is seen to be more accurate though.

IV. THE KICKED ROTOR

The kicked rotor is a simple, yet extraordinary
paradigm for both classical and quantum dynamical sys-
tems, which as a function of a parameter, spans the pos-
sibilities from classically integrable to strongly chaotic
dynamics. It has also been experimentally realized with
cold atoms and a BEC in a kicked optical lattice [34, 35].
A great deal is known about its classical and quantum
dynamics [36–38]. It is a mechanical-type particle con-
strained to move on a ring that is kicked instantaneously
every multiple of a unit time, t = n. The Hamiltonian is

H(q, p) =
p2

2
− K

4π2
cos(2πq)

∞∑

n=−∞

δ(t− n) (27)

The classical mapping equations for the version on the
unit phase space torus are:

pn+1 = pn − K

2π
sin(2πqn) (mod 1)

qn+1 = qn + pn+1 (mod 1)
(28)

For the kicking strength parameter K = 0, the system is
integrable, and for very small values, the system remains
nearly integrable. For K values exceeding 2π, the system
is strongly and almost completely chaotic. The stability
matrix for a single iteration of a trajectory is,

Mn =

(
1 −K sin (2πqn)
1 1−K sin (2πqn)

)
, (29)

which are multiplied together consecutively for trajecto-
ries with greater numbers of iterations.
In its quantum realization, the dynamics are generated

by iterations of the unitary Floquet operator,

F̂ = exp

(−ip̂2

2~

)
exp

[
iK

4π~2
cos 2πq̂

]
. (30)

Its corresponding matrix elements in configuration space,

Frs = 〈qr | F̂ | qs〉, are

Frs =
1√
iN

exp

[
iπ(r − s)2

N

]
exp

[
iNK

2π
cos

2πs

N

]
,

(31)
where N is the Hilbert space dimension; 1 ≤ r, s ≤ N .
Thus, the value of Planck’s constant is fixed by 2π~N =
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1. By increasing N , or equivalently decreasing ~, the
semiclassical limit can be studied in great detail. The
initial state is taken to be a wave packet whose posi-
tion representation is evaluated at the discrete set of N
position values qs = s/N using Eq. (2) to obtain the am-
plitude with the caveat that due to the discrete nature
of the basis, the prefactor is somewhat modified in order
to obtain a true unit norm. Propagation then proceeds
by the expected matrix multiplication with the Floquet
operator.

In all of the calculations, the choice of position repre-
sentation variance of the wave packet (b−1

α = 4σ2 = 2~ =
1/(πN)) is such that the momentum and position uncer-
tainties are equal. Thus, the shape of the wave packet’s
phase space analogy appears circular in the plots and
remains so for all values of ~. The area inside the 2σ
contour for any wave packet then is equal to h = 1/N .
As mentioned above, the saddle points are independent
of ~ with this choice, which simplifies the interpretation
and calculations for comparing the accuracies of the semi-
classical approximations as a function of ~.

A. Preliminaries

The geometry of phase space is more complicated for

the phase space with complex (~P , ~Q), and is no longer
a torus as the space is not periodic in imaginary posi-
tion and momentum. For this and other reasons, in the
phase space of real variables, it turns out to be conve-
nient to use the “unfolded torus”, meaning that by not
invoking the modulus 1 operations in the mapping equa-
tions, there is a “flat” phase space that extends to infin-
ity. Each unit square is a repetition of the fundamental
torus, which is taken to be the [0, 1)× [0, 1) square. Any
two real points separated by an integer in either q or p
are the same point; i.e. (p, q) and (p+np, q+nq) are the
same point. The integers np and nq can be thought of as
winding numbers (including negative integers), i.e. how
many times a particle has wrapped around the cycles of
the torus, which generally do have phase consequences in
quantum mechanics. A Gaussian wave packet has an im-
age within each unit square. However, for small enough
values of ~ and our choice of variance, the tails of the im-
ages have fallen sufficiently in magnitude before reaching
the original wave packet, and can be neglected.

It is sufficient to understand the classical transport of
the single Gaussian density for the purposes of finding the
set {γ} of trajectories to use for implementing GGWPD;
one must consider its contributions to all the final images
in determining {γ} however. The analytically continued
mapping equations, stability matrices, and action func-

tions are needed for this. They are given by

Pn+1 = Pn − K

2π
sin (2πQn)

Qn+1 = Qn + Pn+1

Mn =

(
1 −K sin (2πQn)
1 1−K sin (2πQn)

)

S (Qt,Q0) =
t−1∑

n=0

S (Qn+1,Qn)

S (Qn+1,Qn) =
(Qn+1 −Qn)

2

2
+

K

4π2
cos (2πQn)

(32)

where the modulus operation is not being applied.

B. An integrable example

The goals of providing the kicked rotor examples are
to demonstrate: i) the relationship between the represen-
tative, off-center, real trajectories and the saddle points
for both integrable and chaotic systems, ii) the improve-
ments that arise using the full GGWPD, particularly as
compared with off-center, real trajectory methods, and
iii) the behavior in the semiclassical limit, i.e. ~ → 0.
For this it is helpful to identify an example with at most
one or two saddle points. To begin, consider an inte-
grable (near-integrable) system for which K = 0.05. The
real phase space structure, and initial and final classi-
cal densities corresponding to Gaussian wave packets are

FIG. 1. The phase space structure of the example integrable
dynamics for which K = 0.05. An initial classical Gaussian
density is centered at (pα, qα) = (0.815, 0.2) and a final one
at (pβ, qβ) = (0.77, 0.8). The 2σ contours are shown that
correspond to the large and small limiting values of ~ in the
quantum calculations. The light, mostly horizontal curves
are the tori underlying the dynamics. The sloped dashed line
on the right is the result of propagating the initially vertical
dashed line of initial conditions pictured on the left for two
time steps. The off-center, real trajectory lies at the intersec-
tion of the dashed sloped and solid vertical lines on the right.
The torus on which it resides is darkened.

shown in Fig. 1. The initial wave packet’s analogous clas-
sical density is pictured on the left. The circles represent
the 2σ contours for the density. The large circle is for
h = 1/50 and the small one for h = 1/700, the range of h
over which the ~-dependence is calculated in the various
figures. The same is pictured on the right for the final
wave packet’s analogous classical density. The vertical
line through the center of the left density is the collection
of shearing trajectories that the off-center, real trajec-
tory method uses. After two iterations forward in time,
it ends up as the long sloped line. Its intersection with
the right vertical line representing the final state’s trajec-
tory collection gives the off-center, real trajectory to be
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used in the off-center, real trajectory method [21, 22]. It
also provides the initial guess for finding the true saddle
point. In this example, there is clearly one and only one
saddle point. The fact that the sloped line is so straight
indicates that locally the dynamics are very well captured
by a linearization, and that the off-center, real trajectory
method is expected to give an excellent approximation.
One also expects the Newton-Raphson method to rapidly
converge under such circumstances and the saddle point
trajectory is converged to double precision with four iter-
ations. Note that the off-center, real trajectory method is
better optimized than linearized wave packet dynamics,
and a better approximation.
The overall accuracy of the two semiclassical meth-

ods are compared in Fig. 2. The overlap magnitude of
〈β|UH(t = 2)|α〉 is plotted as a function of inverse-~ (N).

FIG. 2. The absolute magnitude of the quantum,
off-center, real trajectory, and GGWPD results versus
N . The off-center, real trajectory initial condition is
(p0, q0) = (0.8075799, 0.20) and the saddle point (P0,Q0) =
(0.8019843+ i0.0062830, 0.2062830+ i0.0130157). Both semi-
classical methods give very accurate results. The overall de-
crease with increasing N is due to the fact that the overlap-
ping density gets further away from the wave packet centers
measured in terms of the shrinking widths.

Clearly, both semiclassical theories accurately represent
the quantum propagation. It is not possible to see which
semiclassical theory is the better approximation from this
figure. A more sensitive view of the absolute magnitude
of the errors in the semiclassical approximations is shown
in Fig. 3. The agreement is excellent for both semiclas-

FIG. 3. Differences of the quantum overlap and semiclas-
sical approximations. The notation on the y-axis is C =
〈β|UH(2)|α〉 with the subscript indicating the evaluation. The
difference of the magnitudes are shown on a logarithmic scale.

sical methods, but GGWPD is improving more quickly
as ~ → 0 and is approaching two orders of magnitude of
improvement. Given how linear the shearing trajectory
manifold slicing through final wave packet is, this is a
somewhat surprising improvement in accuracy.
There are two interesting features of the errors in the

off-center, real trajectory method not present in the GG-
WPD results. First as shown in Fig. 4, although the abso-
lute error is decreasing, the relative error does not appear
to vanishing for the off-center, real trajectory method.
This is seen by the fact that the ratio of quantum magni-
tude to its magnitude does not appear to be approaching
unity as it does for GGWPD. So it has the feature of an
absolute error which is shrinking even though its relative
error is not. There is no contradiction with the idea that
in the ~-limit the error should vanish because in this limit
the off-center, real trajectory moves further and further
away from the wave packet center measured in widths. At
some point, it is beyond or outside the phase space region

FIG. 4. Relative magnitude errors of the two semiclassical
methods. The notation on the y-axis is A = |〈β|UH(2)|α〉|
with the subscript indicating the evaluation. The ratio of
the quantum magnitude to the semiclassical magnitudes are
shown as a function of N . Note that whereas the GGWPD
method approaches unity with increasing N , the off-center,
real trajectory method apparently does not.

that needs to be taken into account and it would not even
be included. If at longer times there were a trajectory
close enough to the wave packet centers to be included,
it would give a more accurate contribution. Second as
seen in Fig. 5, there is a slight drift in the phase relative

FIG. 5. Phase errors of the two semiclassical methods. The
notation is Aeiφ = 〈β|UH(2)|α〉 with the subscript indicating
the method.

to the quantum phase. It is rather small, but unlike in
GGWPD, it does not approach a vanishing phase differ-
ence. In spite of these two features, the off-center, real
trajectory method is nevertheless quite good. It is just
not as excellent as GGWPD.

C. A chaotic example

Consider a strongly chaotic system with K = 8.25.
There are two very convenient fixed points of the map-
ping on which to place the initial and final densities,
respectively, and the related wave packets as shown in
Fig. 6a. Due to the phase space being a torus, in principle
all the images of the final density should be shown for a
complete figure. Adding any positive or negative integer

FIG. 6. Phase space structure of a chaotic example. In
the upper panel, the unstable manifold of the initial Gaus-
sian density at (pα, qα) = (0, 0) (dashed line) is propagated
two iterations and overlapped with the Gaussian density at
(pβ, qβ) = (0.0, 0.5) = (1.0, 1.5) = (0.0,−0.5) (torus repeti-
tions of the same density). The steep branches inside the
initial density squeeze, stretch, and translate into the shapes
and locations seen by the branches in the final density. The
stable manifold of the final density (dotted line) shows the
orientation of the branch inside the initial density. In the
lower panel is an expanded view of the initial wave packet’s
phase space inside the dashed square. Two heteroclinic tra-
jectory initial conditions denoted by dots inside their re-
spective branches are (p0, q0)1 = (−0.0892369,−0.0766275)
and (p0, q0)2 = (−0.1125783,−0.0966593) (the other two are
found by reflection through the origin). The saddle point
trajectory initial conditions are (P0,Q0)1 = (0.0095152 −
i0.0611558,−0.0611558 − i0.0095152) and (P0,Q0)2 =
(0.0115409 − i0.0764952,−0.0764952 − i0.0115409); the real
parts are denoted by diamonds and they are seen to reside in
the branches as well. Inspection reveals P0 = iQ0 as required
by Eq. (11) for a wave packet centered at (pα, qα) = (0, 0)
with 2σ2 = ~.
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to the p or q-value represents the same phase space point.
Only three images of the final density are shown to sim-
plify the figure. The solid line circles correspond to the 5σ
contours for the largest and smallest value of h. The het-
eroclinic trajectories lie on the intersections of the unsta-
ble manifold of (pα, qα) = (0, 0) and the stable manifold
of (pβ, qβ) = (0.0, 0.5) (and its images); as just mentioned
the images at (pβ , qβ) = (1.0, 1.5) = (0.0,−0.5) represent
the same density. For t = 2, there are 2 heteroclinic
trajectories (actually 4 trajectories, but due to reflection
symmetry they come in pairs, it simply doubles the semi-
classical result). However, a third heteroclinic trajectory
not included in the calculations would be found if the fi-
nal phase space density centered at (pβ , qβ) = (1.0, 0.5) or
(−1.0,−0.5) were used. The branch represented by this
heteroclinic trajectory is further from the center of the
initial and final densities and exponentially suppressed
compared to the other two (the fact that it is left out
affects the accuracy of GGWPD only for the largest val-
ues of ~). As for the near-integrable case, the Newton-
Raphson procedure converged to double precision on the
saddle point trajectories with four iterations. For very
strongly chaotic systems and longer time dynamics, the
procedure leading to Eq. (14) may prove less reliable be-
cause the trajectory is too unstable to follow or even
maintain the unit determinant of its stability matrix. In-
corporating techniques, such as found in [39], may help
alleviate this problem.
The two heteroclinic trajectories do not appear to be

the best representative trajectories for their respective
branches due to the way the unstable and stable mani-
folds intersect. This is illustrated in Fig. 6b, where the
phase space density corresponding to the initial wave
packet is expanded. The heteroclinic and real parts of
the saddle point trajectories are shown. The heteroclinic
trajectories are a greater number of widths from the cen-
ter than many other trajectories within their respective
branches. Not too surprisingly, an interesting shift oc-
curs in the real parts of the saddle points relative to the
heteroclinic trajectories. The real parts remain inside
their respective branches, but end up very close to the
regions where the branches would be tangent to the cir-
cular width contours, and thus closest to the center of
the density.
Both semiclassical approximations work very well,

much like the integrable case. The absolute magnitude of
the errors of both semiclassical methods are illustrated in

FIG. 7. Differences of the quantum overlap and semiclassical
approximations. The notation is the same as Fig. (3). The
difference magnitudes are shown on a logarithmic scale. The
GGWPD errors are multiple orders of magnitude smaller and
an oscillation appears in the errors as the phase relationship
between the two contributions varies with N .

Fig. 7. Again, the errors in magnitude of the difference
from the quantum value decrease with shrinking ~ and
the GGWPD errors shrink more rapidly. The new fea-

ture is the introduction of a small oscillation. As there
are two saddle points or two off-center, real trajectories,
varying ~ varies the phase relationship between the two
contributions smoothly. For certain values, the two con-
tributions and their errors destructively interfere and at
other values, they constructively interfere. As ~ shrinks,
one of the contributions becomes more prominent and
the oscillations fade.

FIG. 8. Relative magnitude errors of the two semiclassical
methods. The notation is the same as Fig. (4). The ratio of
the quantum magnitude to the semiclassical magnitudes are
shown as a function of N . Note that whereas the GGWPD
method approaches unity with increasing N , the off-center,
real trajectory method apparently does not.

Consider the relative magnitude errors shown in Fig. 8.
The heteroclinic trajectory sum has a magnitude that di-
verges from the quantum result, unlike the GGWPD re-
sult, even though the absolute errors are shrinking. This
is similar to the integrable example, except a bit worse
since there the integrable example appeared to approach
a constant relative error, just not converge. Finally, con-

FIG. 9. Phase errors of the two semiclassical methods. The
notation is the same as in Fig. (5). The GGWPD phase error
vanishes quickly in the semiclassical limit, but the heteroclinic
trajectories’ errors go through interference oscillations of de-
creasing magnitude with ~. Unlike the integrable example,
there does not seem to be a small phase drift.

sider the phase errors shown in Fig. 9. The interfer-
ence oscillations of the two contributions with ~ are most
prominent in this case for the off-center, real trajectory
method. In fact, is not entirely clear if the heteroclinic
trajectory sum phase error is vanishing, but it is quite
small. On the other hand, the GGWPD result rapidly
converges to the correct phase without the phase error os-
cillations seen for the off-center, real trajectory method.

V. CONCLUSIONS AND OPEN PROBLEMS

Without adding corrections for diffraction and uni-
formizations to account for coalescing saddle points, the
ultimate semiclassical theory for propagating wave pack-
ets is GGWPD. It entails carrying out in full details, the
method of steepest descents applied to such quantities
as φ(~x; t) and 〈β|UH(t)|α〉. The latter quantity, in some
circumstances, can be considered the same as part of a
coherent state representation of the Feynman path inte-
gral [9] and has been the subject of many studies; see [33]
and references therein. The method has the potential to
give very accurate results for a wide variety of physical
problems that are effectively in a short wavelength limit,
and in addition, the potential to give very physical inter-
pretations of the essential physics in such problems.
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The GGWPD method has been in existence for more
than 25 years [8], but has not developed into a widely
used and practical technique. The barriers to its direct
implementation are considerable. Most important are the
difficulties of analytically continuing classical dynamics
in a complex domain where both position and momenta
are complex. It requires high dimensional root searches
in multiple degrees of freedom with quantities exhibiting
highly complicated functional behaviors. It also requires
determining whether a particular saddle should be kept
or dropped. However, by recognizing that real classical
dynamics imprints itself on the complex dynamics, it is
possible to develop indirect root search methods that are
vastly easier to implement and avoid several of the pitfalls
that a direct root search method would have to confront.
The research contained in [31, 32, 40] are noteworthy in
this regard for their advances and understanding, and
they rely explicitly or implicitly on the notion of a com-
plex trajectory being “nearly real.”

Although the concept of nearly real may be important,
it is also rather nebulous. We adopt a different perspec-
tive, but for some trajectories it is clearly related, that of
real crossing saddles. The representative, off-center, real
trajectory methods introduced more than twenty years
ago [21–25] sidestepped the complex trajectories issue
raised by GGWPD [8]. It is worth emphasizing that the
off-center, real trajectory methods have no connection
to initial value representations [14–17]. They begin by
giving complete classical transport solutions of initially
localized phase space densities in integrable and chaotic
systems.

With this complete set of representative trajectories,
each relating to a distinct classical transport process,
carrying out wave packet dynamics leads to a Gaussian
integral for each representative trajectory that can be
considered the construction of an approximate saddle,
but without going through the trouble of locating the
actual saddle point. The saddle points of those approxi-
mate saddles are complex, but there exists a line of real
trajectories in each integral that crosses the saddle, and
the notion of complex trajectories was entirely avoided.
Here, we have shown that there is a one-to-one correspon-
dence between the approximate representative trajectory
saddles and a subset of the true complex saddles of GG-
WPD, and that these saddles are easily found with a
Newton-Raphson scheme if the branches are locally lin-
ear. Since, the representative trajectory method gives
a complete transport solution, that accounts for a com-
plete set of saddles associated with classically allowed
processes. Any remaining saddles not found with in this
way are necessarily related to classically non-allowed pro-
cesses, such as tunneling, or are to be rejected for being
on the wrong side of Stokes surfaces. The saddles found
with the representative, real trajectories are always on
the good side.

One of the most vexing problems of root searching is
identifying the set of basins of convergence within which
there lies a single root. These basins may be extremely

small or buried deep in a space of enormous volume. Nev-
ertheless, generally speaking, once a single point within
a basin of attraction is identified, using it to initiate a re-
cursive search algorithm tends to converge rapidly to the
desired root. From this perspective, the representative,
real trajectories provide a meaningful way to generate
one and only one point either within or close to every
basin of convergence of a unique saddle, so long as the
saddle point is associated with a classically allowed trans-
port process. If the trajectory is only close to the basin
of convergence, an additional initial step must be added
to the Newton-Raphson scheme. This not only greatly
simplifies the root search problem, it inextricably links
the physical interpretation of the real trajectory to the
saddle point trajectory within whose basin of attraction
it lies. It may be rather difficult to find an interpretation
of a complex trajectory without this connection.

The relationship between off-center, real trajectories
and saddle points is illustrated here with the kicked ro-
tor for a number of reasons. First, by changing kicking
strength, it is possible to have an integrable (or nearly-
integrable) system and a strongly chaotic one. Second
as a map, it provides an extremely simple example that
allows for a very detailed view of the how everything
works. For a continuous time system, if one identifies a
saddle point at one time, then as time changes the saddle
point trajectory deforms continuously and has to be fol-
lowed as a function of time. This is straightforward due
to continuity (except in presumably rare cases passing
through bifurcations or crossing branch cuts), but adds
an unnecessary level of difficulty for initially demonstrat-
ing the off-center/saddle point (real-crossing) connection.
Third, it was possible for simplicity to use convenient
fixed points and arrange for only one or two off-center,
real trajectories to be involved. Finally, it was possible
to compare and contrast the quality of the two approx-
imations as a function of ~. Not surprisingly, although
both methods worked very well, GGWPD improved the
results greatly, even though the cases treated had a local
dynamics with very linear branches. The off-center, real
trajectory method contained a couple of novel features
in its errors that were cured in the GGWPD approach.
The off-center, real trajectory method’s degradation of
the GGWPD method would become rather important in
a dynamical system where the off-center, real trajectory
branches exhibited more curvature. The greater the cur-
vature of the real trajectory manifolds, the greater the
degradation of the GGWPD result.

Within a broad range of semiclassical approximations,
it is often taken for granted that, in practice, initial value
representations are superior to methods that require root
searches. This is not necessarily so. It depends on the
problem, the goals (e.g. whether a “black box” technique
is sought), and it depends on the the level of sophistica-
tion that can be applied to the root search. There are
always vastly fewer representative, off-center, real trajec-
tories or saddle points needed than the number of trajec-
tories required for initial value representations. In fact,
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it is not surprising to the authors that systems, such as
the strongly chaotic stadium billiard where the off-center
branches or saddle points explode in number exponen-
tially fast, have only been treated by off-center, real tra-
jectory methods, not initial value representations. Using
the method of this paper continuing with the stadium
example, GGWPD would be both straightforward to im-
plement, take almost no additional computational time,
and be more accurate than the original heteroclinic sum-
mation technique [24]. Even the far simpler Coulomb
problem displaying revivals and fractional revivals that
are treatable semiclassically [22] may not have been done
yet with an initial value representation method. In ad-
dition, the fact that either a representative or saddle
point trajectory represents a branch of trajectories gives
a clear physical interpretation. Each representative (sad-
dle point) trajectory reflects a unique transport pathway.
As seen in the Coulomb revival problem [22], after 20 pe-
riods of motion, a transport branch for 17, 18, 19,... 23
collisions with the nucleus all return with a 2π phase shift
between branches of consecutive collision number. One
might say as a shorthand that 7 orbits are sufficient to ex-
plain the first revival, but the true meaning is that there
are 7 contributing transport pathways (branches) chang-
ing continuously with time in the time neighborhood of
the revival. Initial value representation methods do not
automatically provide interpretations of this kind, and if
one goes through the process of classifying the transport
pathways with their trajectories, then one has done all

the essential work required for a root search method.
There are a number of further directions suggested by

this work. Wave packet propagation shows up in an in-
credibly broad range of systems. Applying the method to
interesting physical systems possessing multiple degrees
of freedom is an obvious extension to pursue. That would
open up many new possibilities. Although, we did not
give such an application here, the necessary expressions
were given. Possible systems of interest are not limited to
quantum ones as other wave mechanical systems, such as
found in acoustics and optics, also provide many impor-
tant applications. Some wave systems are amenable to
paraxial optical approximations in which the results here
would apply directly. Otherwise, new expressions may
be derived for the propagation proceeding via the wave
equation. Another direction that would be very inter-
esting is to develop a method to locate tunneling saddle
point trajectories without having to use a direct, complex
approach. Despite their not being related to classically
allowed processes, there may yet exist methods to locate
them with a sufficient understanding of the connections
between real and complex classical dynamics.

Appendix A

The expression for the representative, off-center, real
trajectory method needed for the kicked rotor section is
given here for completeness. It is,

〈β|UH(t)|α〉 =
∑

γ

〈β|Uγ(t)|α〉 =
∑

γ

(
2

A0

)1/2

exp

[
i

~
{S(xγ

t , x
γ
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0 )} −
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2

− 1
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{
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2
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2
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2
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(A1)
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