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We compare two calculations of the particle density in the superfluid phase of the O(2) model
with a chemical potential µ in 1+1 dimensions. The first relies on exact blocking formulas from the
Tensor Renormalization Group (TRG) formulation of the transfer matrix. The second is a worm
algorithm. We show that the particle number distributions obtained with the two methods agree
well. We use the TRG method to calculate the thermal entropy and the entanglement entropy. We
describe the particle density, the two entropies and the topology of the world lines as we increase
µ to go across the superfluid phase between the first two Mott insulating phases. For a sufficiently
large temporal size, this process reveals an interesting fine structure: the average particle number
and the winding number of most of the world lines in the Euclidean time direction increase by one
unit at a time. At each step, the thermal entropy develops a peak and the entanglement entropy
increases until we reach half-filling and then decreases in a way that approximately mirrors the
ascent. This suggests an approximate fermionic picture.

PACS numbers: 05.50.+q, 05.10.Cc, 67.25.D-, 64.60.De

I. INTRODUCTION

The O(2) model, also called the classical XY model,
in one space and one Euclidean time (1+1) dimensions
plays an important role in the field theoretical approach
of condensed matter phenomena and is prominently
featured in standard textbooks[1–4]. This model
provides the simplest example of a Berezinski-Kosterlitz-
Thouless transition [5, 6] and it may be used as
an effective theory for the Bose-Hubbard model [7].
More generally, its associated quantum Hamiltonian of
Abelian rotors appears in many different contexts such
as the formulation of Abelian lattice gauge theories [8],
Josephson junctions arrays [9] and cold atom simulators
[10, 11].

When a chemical potential µ is introduced, the model
displays a rich phase diagram depicted in Ref. 10.
For sufficiently small β, the inverse temperature of the
classical model, if we increase µ, we go from a Mott
insulating (MI) phase where the average particle number
ρ remains zero until it reaches a superfluid (SF) phase
where ρ starts increasing with µ. This proceeds until
ρ reaches one per site and we enter in a new MI phase
where it stabilizes at this value. For β small enough, this
alternation of MI and SF phases repeats several times.
In suitable coordinates [10], the phase diagram is similar
to what is found for the one-dimensional quantum Bose-
Hubbard model [12, 13].

A simple way to locate approximately the SF phase
consists in calculating the thermal entropy, defined
precisely in Eq. (16), on a lattice with a large enough
temporal size. An example is shown in Fig. 1. The
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central line at β=0.1, where we do calculations hereafter,
covers the first SF phase and the MI phases with ρ = 0
and 1. As we increase µ the thermal entropy goes
through a sequence of peaks culminating around ln 2,
signaling level crossings that will be explained below.
The number of peaks equals the number of sites in the
spatial direction. This is clearly a finite size feature, while
the notion of phase used above should be understood in
the limit of an infinite number of sites.
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FIG. 1. (Color online). Intensity plot for the thermal entropy
of the O(2) model on a 4× 128 lattice in the β-µ plane. The
dark (blue) regions are close to zero and the light (yellow
ochre) regions peak near ln 2. The MI phase with ρ=0 is below
the lowest light band, the MI phase with ρ=1 is above the
highest light band and there is a single SF phase in between
the two MI phases.

In this article, we describe microscopically the rich
sequence of changes which occurs as we move across the
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SF phase along a line of constant β as described above
and illustrated in Fig. 1. The figure can be embedded
in the phase diagrams of Ref. 10: the lower and upper
light lines ending at the tips of the the two MI phases.
The fine structure that we report here is first studied for
a small spatial size of four sites and then for larger sizes.
At infinite spatial size, there are three phases in Fig. 1,
the SF phase approximately covering the four light bands
with larger values of the thermal entropy and the three
darker regions in between. We also report about the
numerical methods that we developed in this process.

The specific O(2) model used in this article is a planar
version of the Ising model with a O(2) symmetry, on a
Lx ×Lt lattice. The notations used later to characterize
the model and the basic numerical methods are provided
in Sec. II. Most of the calculations done in this article
will rely on the tensor renormalization group (TRG)
method [14] which can be used to write exact blocking
formulas for the model considered [15–17] . In Sec.
II B, we remind how the method can be applied to the
calculation of the transfer matrix [10].

It should be noticed that the presence of µ causes the
action to be complex. This sign problem prevents the use
of Monte Carlo simulations when µ is too large to rely on
reweighing methods. However, using a Fourier expansion
of the Boltzmann weights [18], it is possible to find a
formulation of the partition function in terms of world
lines with a positive weight as long as µ is real. This
positivity allows statistical sampling [19] using a classical
version of the worm algorithm [20]. The computational
methods used for the worm algorithm are briefly reviewed
in Sec. II C.

The TRG method can be used for arbitrary complex
values [21] of β and µ. The only sources of error are the
truncations of the infinite sum to finite ones as required
for the numerical treatment. These truncations take
place in the original formulation of the partition function
and also at each step of the coarse-graining process. A
first check of the agreement between the TRG and the
worm methods is provided in Sec. III where we compare
particle number density histograms and show that they
agree well.

In the SF phase, the model is gapless in the the limit
Lx → ∞. At finite Lx and small β, the gap is expected
to scale like 1/L2

x. This follows from a non-relativistic
dispersion relation and can be justified using degenerate
perturbation theory. An invaluable method to study
the long range correlations in near gapless situations is
to calculate the entanglement entropy. Interestingly, it
seems possible to measure the entanglement entropy in
many-body systems implemented in cold atoms [22–28].
This includes studies of rather small Lx systems. The
entanglement entropy needs to be distinguished from
the thermal entropy [25]. For this reason, in Sec. IV
we discuss these two entropies using the transfer matrix
formalism.

We use a lattice version of the setup of Calabrese
and Cardy [29, 30] for 1+1 dimensional nonlinear sigma

models. We consider the case of finite, but often large,
Lt. A finite Lt introduces a temperature proportional to
1/Lt, distinct from 1/β used in the classical formulation,
and therefore we have a thermal density matrix. In this
context, the relation between the two entropies is a rather
open topic of investigation[31]. Numerical calculations
of the related Renyi entropy of the classical XY model,
without chemical potential, were presented in Ref. 32.

In the theoretical framework developed in Refs. 29
and 30, it is common to move back and forth between
the classical and quantum formulation using the transfer
matrix. An interesting example is given in Ref. 33 for
the O(N) model. In our article, the discussion is focused
on the classical formulation. A quantum Hamiltonian
corresponding to the model considered here is provided
in Eq. (30) of Ref. 11. Reasonable approximations are
obtained for a spin-1 truncation (3 states per sites). In
general, the spin-1 quantum XY model with an extra
(Sz)2 term in the Hamiltonian is closely related to
the model studied here. In addition, the relationship
between these quantum models and a family of Bose-
Hubbard models with large on-site repulsion, possibly
implementable on optical lattices, is discussed in Refs. 10
and 11. The approximate description in terms of hard-
core bosons suggests an underlying fermionic description
of our findings. Furthermore, for µ corresponding to the
superfluid region, the state |Sz = −1〉 plays a negligible
role and an approximate connection with the spin-1/2
quantum XY model with a magnetic field emerges. This
can be explained by the fact that Sz and (Sz)2 have the
same effect on the remaining subspace of with eigenvalues
0 and 1.

With the TRG method, we approximate the reduced
density matrix by a finite dimensional matrix which
can be diagonalized numerically and we do not need to
use the replica trick as in Refs. 29, 30, and 32. We
then show how to use the TRG method to express the
entanglement entropy for a bipartition of the system. We
show that for small Lt, the thermal entropy is larger than
the entanglement entropy but the entanglement entropy
becomes larger as Lt is increased.

In Sec. V, we use degenerate perturbation theory to
get an approximate idea of the large structure (location
of SF phases) and fine structure (changes of ρ and
entanglement entropy across one SF phase) of the phase
diagram. We relate in some approximate way, the
eigenvectors of the transfer matrix with particle number
n to world-line configurations with a winding number
which is also n. We then calculate numerically the
average particle number density, the thermal entropy and
the entanglement entropy for values of µ spanning the
first SF phase as explained above.

For sufficiently large Lt, the results show an interesting
fine structure: the particle number and the winding
number of (most of) the world lines increase by one unit
at a time as we keep increasing µ. At each step, the
thermal entropy develops a peak and the entanglement
entropy increases with µ until ρ reaches half-filling. As
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we keep increasing µ beyond this value, the entanglement
entropy decreases in a way that approximately mirrors its
ascent. This approximate symmetry can be justified by
noticing that if we interchange the occupied links with
the unoccupied links in the world lines, we transform
a configuration with particle number n to one with a
particle number Lx − n. This approximate particle-
hole transformation can be reformulated in the context
of degenerate perturbation theory and is similar to an
exact symmetry of the spin-1/2 quantum XY model
in an external magnetic field briefly explained in the
conclusions.

Our results are summarized in Sec. VI where we also
briefly discuss work in progress. We suggest ways to
reduce the small truncation errors reported in Sec. III
and to interpret the approximate particle-hole symmetry
found in Sec. V. We also briefly discuss the relationship
of our work with Polyakov’s loop studies [34, 35] and with
recently proposed cold atom experiments [36].

II. NOTATIONS AND NUMERICAL METHODS

In this section, we introduce the O(2) model with
a chemical potential. We describe the two numerical
methods used in this article. The first is the TRG
which relies on coarse-graining, the second is a worm
algorithm which relies on sampling. This section contains
important concepts used in the next sections, such as
the representation of the partition function in terms of
integers labeling Fourier modes attached to the links,
also called bonds, of the lattice, their use in the transfer
matrix formulation and their graphical illustration as
world lines. The section also contains technical details
about the numerical implementations that are given for
completeness.

A. The model

We consider the O(2) model, sometimes called the
classical XY model, with one space and one Euclidean
time direction, and a chemical potential µ. One can
interpret µ as the imaginary part of a constant gauge field
in the temporal direction. The sites of the rectangular
lattice are labelled (x, t) and the unit vectors denoted
x̂ and t̂. The line segments joining two nearest neighbor
sites are called links. The total number of sites is Lx×Lt.
In the following, we are typically interested in the case
Lt >> Lx. We assume periodic boundary conditions in
space and time. The partition function reads

Z =

∫ ∏
(x,t)

dθ(x,t)

2π
e−S (1)

with

S =− βt̂
∑
(x,t)

cos(θ(x,t+1) − θ(x,t) − iµ)

− βx̂
∑
(x,t)

cos(θ(x+1,t) − θ(x,t)). (2)

In all the numerical calculations done in this article, we
consider space-time isotropic couplings βx̂ = βt̂ = β.
However, if we set βx̂ to zero, the model becomes a
collection of decoupled solvable models. For analytical
purposes, when β is small, it is sometimes convenient to
first consider the solvable case βx̂=0 and then restore the
isotropic situation βx̂ = βt̂ = β perturbatively (see Sec.
V).

As explained in Refs. 10, 18, and 19, one can use the
Fourier expansion of eβ cos θ in terms of modified Bessel
function of the first kind and then integrate out the
θ(x,t) variables. The Fourier indices associated with the
links coming out of the site (x, t) in the space and time
directions are denoted n(x,t),x̂ and n(x,t),t̂ respectively.
They can be graphically interpreted as currents passing
through the links. The partition function can then be
expressed as a sum of product of Bessel functions:

Z =
∑
{n}

∏
(x,t)

In(x,t),x̂
(βx̂)In(x,t),t̂

(βt̂)e
µn(x,t),t̂

× δn(x−1,t),x̂+n(x,t−1),t̂,n(x,t),x̂+n(x,t),t̂
. (3)

The Kronecker delta function in Eq. (3) can be
interpreted as a current conservation and the terms in
the partition function as current loops (also called world
lines) which can then be statistically sampled [19].

The action given in Eq. (2) has a manifest global O(2)
symmetry which corresponds to shifting all the angles
θ(x,t) by the same arbitrary amount. This symmetry is
the same as the U(1) symmetry of a relativistic complex
scalar field, where the invariance under multiplication by
a global phase implies the particle number conservation.
The sum of the n(x,t),t̂ on the time links between two time
slices is conserved and is the particle number. In Refs. 10
and 11, we discuss Bose-Hubbard models related to the
O(2) model discussed here where the particle number is
actually related to numbers of bosonic atoms.

For a system with periodic boundary condition in
both space and time directions, as considered in this
paper, the world line can wind around in both directions.
The winding numbers are important to understand the
superfluid properties of the system [37].

An typical allowed configuration for β=0.1 and µ =
3 is shown in Fig. 2 for Lx=4 and Lt=32. Sites at
the boundary should be identified as explained in the
figure caption. The uncovered links on the grid have
n=0, the more pronounced dark lines have |n| =1 and
the wider lines have n=2. A discussion regarding the
sign convention and the spatial winding number of Fig.
2 can be found in Appendix A.

This configuration can be used to visualize a transfer
matrix that connects consecutive time slices. For
instance, in Fig. 2, the time slice 5 represents a transition
between |1100〉 and |0200〉 and its relative statistical
weight can be obtained from a transfer matrix that
will be discussed in Sec. II B. The configuration was
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FIG. 2. (Color online). Graphical representation of an
allowed configuration of {n} for a 4 by 32 lattice, β = 0.1
and µ = 3.0. The uncovered links on the grid have n=0,
the more pronounced dark lines have |n|=1 and the wider
lines have n=2. The signs of the links with |n|=1 lines are
discussed in the Appendix A. The large dots on the vertical
boundaries (red) need to be identified in pairs with the same
t coordinates. Similarly, the slightly smaller dots (blue) on
the horizontal boundaries have to be identified in pairs with
the same x coordinate.

generated using a sampling method designed in Ref. 19
and briefly discussed in Sec. II C.

B. TRG approach of the transfer matrix

As explained in Ref. 10, the partition function can be
expressed in terms of a transfer matrix:

Z = TrTLt . (4)

The matrix elements of T can be expressed as a product
of tensors associated with the sites of a time slice (fixed t)
and traced over the space indices. To make the equations
easier to read, we use the notations nx for the time indices
in the past (n(x,t−1),t̂), the primed symbols n′x for the

time indices in the future (n(x,t),t̂) and ñx for the space

indices (n(x,t),x̂). The matrix elements of T have the

explicit form

T(n1,n2,...,nLx )(n
′
1,n
′
2,...,n

′
Lx

) =∑
ñ1ñ2...ñLx

T
(1,t)
ñLx ñ1n1n′1

T
(2,t)
ñ1ñ2n2n′2...

. . . T
(Lx,t)
ñLx−1

ñLxnLxn
′
Lx

, (5)

with

T
(x,t)
ñx−1ñxnxn′x

=
√
Inx(βt̂)In′x(βt̂) exp(µ(nx + n′x))√
Iñx−1

(βx̂)Iñx
(βx̂)δñx−1+nx,ñx+n′x

.(6)

This construction can be represented graphically in a
way that helps understanding the allowed configurations
such as the one depicted in Fig. 2. The building
blocks are the microscopic tensors of Eq. (6) which
are represented as crosses with spacial half links in
the horizontal direction representing the ñ indices and
vertical half links representing the n (bottom) and n′

(top) indices. The traces over the spacial indices ñ in
Eq. (5) are represented in Fig. 3 as joined half links
forming a complete horizontal link. The product of
transfer matrices are obtained by tracing the time indices
and can be represented by piling up copies of Fig. 3 in the
vertical direction. The trace in Eq. (4) can be visualized
as a cylinder, or a torus if periodic boundary conditions
in space are imposed.

FIG. 3. Graphical representation of the transfer matrix
T(n1,n2,...,nLx )(n′1,n

′
2,...,n

′
Lx

) as defined in Eq. (5). The

horizontal indices are summed over and the vertical indices
are left open as explained in the text.

The Kronecker delta function in Eq. (6) is the same
as in Eq. (3) and reflects the existence of a conserved
current as discussed above, that we will call “particle
number” in the following. For periodic (spatial trace)
or open (zero spatial indices at both ends) boundary
condition, the local conservation law implies that the
transfer matrix elements are zero unless the sum of the
two sets of indices (respectively denoted n and n′ in
Eq. (5)) are equal. In other words, the transfer matrix
is block diagonal in each particle number sector. The
particle number that reflects the above conservation law
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is defined as

n =

Lx∑
x=1

nx =

Lx∑
x=1

n′x . (7)

When the chemical potential µ is zero, there is a
charge conjugation symmetry which allows us to change
the sign of all the n’s in all the temporal sums without
affecting the final results. Given the rapid decay of the
modified Bessel function when the index n increases,
good approximations can be obtained by replacing the
infinite sums by sums restricted from −nmax to nmax.
When the chemical potential is nonzero, it is more
efficient to shift the range in the same direction as the
sign of the chemical potential. In general, we call Ds the
number of states kept after truncation. In the following,
we will use a coarse-graining procedure for the transfer
matrix where we repeatedly apply a truncation at the
same value Ds.

For numerical purposes, we reduce the size of the
transfer matrix by using a blocking procedure [14, 16].
It consists in iteratively replacing blocks of size two in
the transfer matrix by a single site using a higher order
singular value decomposition. During the truncation,
for a given pair of sites, we replace the direct product
D2
s × D2

s matrix by a Ds × Ds matrix. The process
is illustrated in Fig. 4. The Y-shaped parts in the
bottom part of the figure and their mirror versions in
the top part, as the truncating matrix D2

s × Ds [14] in
the tensor product, schematically represent this coarse-
graining process. The full technical details can be found
in Refs. 14 and 16.

FIG. 4. Graphical representation of the coarse graining
truncation of the transfer matrix described in Fig. 3. The
blocking procedure of replacing blocks of two sites in the
transfer matrix into a single site represented by the Y-shaped
structure.

C. The worm algorithm

Because of the conservation law in Eq. (6), the terms of
the partition function can be interpreted as current loops
which can be statistically sampled [19]. The sampling

procedure for one complete worm algorithm update goes
as follows. We pick randomly a site on the lattice, then
pick randomly a neighboring direction in the (positive or
negative) spatial or time direction, change the current
n to n ± 1 with a given probability(the details of the
accept-reject procedure are given in the Appendix A
of Ref. 19). We repeat the above procedure until we
come back to the original random site. Because of the
conservation law, a particle number can be attributed to
a configuration. It can be calculated by summing the
temporal n’s between any two time slices. The particle
number distribution can be calculated by generating a
large number of configurations according to the above
procedure.

An easily controllable source of error is the limited
statistics. There is also an unavoidable truncation
error. Following Ref. 19, |n| is constrained to be
not larger than 20 in Eq. (3). However, given that
I20(0.1) exp(3×20)/I0(0.1) ' 4×10−19, this is negligible
for our calculations. By construction, there is a single
worm and the algorithm cannot generate disconnected
loops. This is not believed to be a significant source
of error. Comparisons at small volumes where the
truncation errors are controllable [38] indicate that the
worm algorithm is statistically exact.

III. PARTICLE DENSITY CALCULATIONS

In this section, we show how to calculate the average
particle density using the TRG formulation. We then
apply the method numerically and compare the results
with the ones obtained with the worm algorithm. The
particle number conservation can also be exploited in the
TRG approach. For the initial one-site tensor T (x,t) in
Eq. (6), we have

T ′
(x,t) ≡ ∂T (x,t)/∂µ =

1

2
(nx + n′x)T (x,t) . (8)

Here, nx and n′x are the particle number associated with
the time indices of the original tensor T (x,t) in Eq. (6)
with the tensor indices omitted. Consequently, we can
associate a particle number n(i) with each eigenvalue λi
of the transfer matrix T. The average particle number
density is an extensive quantity defined as

ρ =
1

LxLt

∂ lnZ

∂µ
. (9)

From the expression of Z in terms of the transfer matrix
and the cyclicity of the trace, we have

∂Z/∂µ = LtTr(T′TLt−1), (10)

where T′ = ∂T/∂µ can be calculated by applying the
chain rule to Eq. (5). This can be achieved iteratively
by defining an “impurity” tensor initialized with the
derivative of the initial tensor and then blocked and
symmetrized with the original “pure” tensor. This
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guarantees the recursive replacement of T (x,t) by T ′
(x,t)

in the transfer matrix as prescribed by the chain rule.
This procedure can be simplified if we know the particle
number n(i) associated with each eigenvalue λi as
discussed above. We can then write

1

Lt

∂ lnZ

∂µ
=

∑
i λ

Lt
i n(i)∑
i λ

Lt
i

. (11)

In practice, finding the particle number associated with
the eigenvalues is not completely straightforward. It
requires to keep track of the particle number in the
projected basis or to write the blocking algorithm sector
by sector. The enforcement of the conservation law in the
coarse-graining process makes the numerical calculation
more stable. The tensor elements that violating the
conservation law are exactly zero. If we only handle non-
zero elements, we can reach relatively larger values of
the dimension Ds in the truncation procedure and get
more accurate results. We enforce the conservation law
in TRG calculations done below.

Knowing the n(i) associated with λi also allows us to
define a probability P (n) for the particle number n:

P (n) =
∑

i:n(i)=n

λLt
i /

∑
i

λLt
i . (12)

These probabilities can also be calculated directly from
histograms obtained with the worm algorithm. Both
methods can be used to calculate and compare the
average particle number density using

ρ =
1

Lx

∑
n

nP (n) . (13)

With the TRG method, we studied the distribution of
P (n) for various values of µ spanning a range covering
the boundary of the MI phase and the SF phase. The
other parameters are kept fixed at Ds = 201, β = 0.1,
Lx = 32, and Lt = 128. When µ = 2.8 and 2.85,
the distribution bears one-bin structure with n = 0,
corresponding to the MI phase. When µ = 2.9, 2.95
and 3, the distribution carries more bins, corresponding
to the SF phase, which shows that the phase transition
occurs in the range µ = (2.85, 2.9) as illustrated in Fig.
5. We then compared the distributions obtained with the
TRG and the worm algorithm for µ=3, which is near the
middle to the SF phase. The results are shown in Fig. 6.
To the best of our knowledge, the errors associated with
the worm calculations are purely statistical. The errors
made with the TRG are due to the repeated truncation
from D2

s to Ds indices in the coarse-graining process.
We have used Ds=101, 201 and 301 and the variations
are comparable to the worm errors. Overall, the results
from Ds = 301 are very close to the worm calculation.
The particle number distribution calculated from the
worm histograms are from averaging over configurations
generated with twelve different initial random seeds and
one million configurations per seed. When the truncation

0 5 1 0 1 5 2 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

P(n
)

n

µ=2.8
µ=2.85
µ=2.9
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β=0.1, D s = 2 0 1 ,
L x = 3 2 , L t = 1 2 8

FIG. 5. (Color online). The particle number distribution
P (n) with β=0.1 when µ varies between the MI and SF
phases. For µ = 2.80 and 2.85, we only have n = 0. For
µ = 2.90, 2.95 and 3.0, there are three visible groups of bins.
With µ increasing, the distribution shifts to the right with
larger most probable particle number.

1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 10 . 0
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 P(n
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n

 D s = 1 0 1
 D s = 2 0 1
 D s = 3 0 1
 W o r m

β  =  0 . 1 ,  µ= 3 ,
L x  = 3 2 ,  L t  = 1 2 8

FIG. 6. (Color online). Comparison of the particle number
distribution P (n) between the worm algorithm and TRG with
different Ds.

dimension Ds is fixed, the accuracy becomes worse with
increasing Lx. When the time dimension Lt becomes
large enough, the particle density distribution is almost
centralized in one bin and therefore varies less with
increasing Ds.

IV. CALCULATION OF THE THERMAL AND
ENTANGLEMENT ENTROPY

In this section, we explain how to compute the thermal
entropy and the entanglement entropy in a consistent
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way. We construct the reduced density matrix following
Refs. 29 and 30. More specifically, we consider the path
integral representation of the thermal density matrix (Eq.
(6) in Ref. 29) for the O(2) model. However, we use the
(n1, n2, · · · , nLx

) representation and the corresponding
transfer matrix introduced in Sec. II B rather than the
original spin variables. In the following, the eigenstates
of the transfer matrix will be treated as quantum states.

We consider a system, denoted AB, and subdivide it
into two parts denoted A and B. We first define the
thermal density matrix ρ̂AB for the whole system

ρ̂AB ≡ TLt/Z . (14)

We have the usual normalization Tr ρ̂AB = 1. If the
largest eigenvalue of the transfer matrix is non degenerate
with an eigenstate denoted |Ω〉, we have the pure state
limit

lim
Lt→∞

ρ̂AB = |Ω〉 〈Ω| . (15)

In the following, we will work at finite Lt and will deal
with the entanglement of thermal states [39]. In general,
the eigenvalue spectrum {ρABi

} of ρ̂AB can then be used
to define the thermal entropy

ST = −
∑
i

ρABi
ln(ρABi

). (16)

The subdivision of AB into A and B refers to a
subdivision of the spatial indices. We define the reduced
density matrix ρ̂A as

ρ̂A ≡ TrB ρ̂AB . (17)

We define the entanglement entropy of A with respect
to B as the von Neumann entropy of this reduced
density matrix ρ̂A. The eigenvalue spectrum {ρAi} of
the reduced density matrix can then be used to calculate
the entanglement entropy

SE = −
∑
i

ρAi
ln(ρAi

). (18)

The computation of the thermal entropy can be
performed using the eigenvalues of the transfer matrix λi
discussed in Sec. III together with the normalization ρi =
λLt
i /

∑
j λ

Lt
j . Note that if we introduce a temperature T

and energy levels by identifying λLt
i with exp(−Ei/T ),

we recover the standard relation ST = 〈E〉 /T + lnZ.
This identification makes clear that T ∝ 1/Lt. Later, in
Eq.(19), we will use units where T = 1/Lt.

For the computation of the entanglement entropy , we
assume that A has 2`A sites and B has 2`B sites and
then perform the `A and `B blockings for the subsystems.
The coarse-graining along the spatial direction ends with
two sites, one for A and the other for B. We can
then contract the indices from the two sites in the time
direction without further truncation. Tracing over the

FIG. 7. (Color online). Illustration of the entanglement
entropy calculation. The horizontal lines represent the traces
over the space indices. There are Lt of them, the missing ones
being represented by dots. The two vertical lines represent the
traces over the blocked time indices in A and B.

space indices linking A and B, we obtain the transfer
matrix T({nA},{n′A},{nB},{n′B}) for the whole AB system.
Taking the Lt power, tracing over nB , and normalizing,
we obtain the reduced density matrix ρ̂A({nA}, {n′A}).
This is illustrated in Fig. 7.

In the following, we consider the case of `A = `B .
There is no numerical difficulty in considering the system
with unequal `A and `B since the space indices are not
renormalized in the transfer matrix approach.

As a first study, we have considered the cases β = 0.1,
Lx = 4 and Lt = 16, 32, 64 and 128 with µ between 2.8
and 3.2. Both the thermal entropy and entanglement
entropy develop a peak over the SF phase. We see
that for small Lt, the thermal entropy is larger than
the entanglement entropy, but as we increase Lt, the
entanglement entropy becomes larger than the thermal
entropy. The results are shown in Fig. 8. For both the
thermal entropy and the entanglement entropy, a fine
structure appears for large Lt. This is discussed in the
next section.

V. THE FINE STRUCTURE OF THE SF PHASE

In this section, we first give an idea of the large
structure of the phase diagram (where the different SF
and MI phases are located) and then explain in more
details the fine structure of a single SF phase, more
specifically along a line of constant β and where µ is
varied in order to interpolate between the the two MI
phases with successive values of ρ.

At small β, we have mostly MI phases with small SF
phases in between them. A good qualitative picture can
be obtained by temporarily considering the anisotropic
case βx̂ = 0 where the problem is exactly solvable and
then restoring βx̂ = βt̂ = β perturbatively. When βx̂ = 0,
we have only onsite interactions and in the large Lt limit,
the problem reduces to finding the value n? of n which
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FIG. 8. (Color online). Entanglement entropy (EE, dash line)
and thermal entropy (TE, solid line) for β = 0.1, Lx = 4 and
Lt = 16, 32, 64 and 128.

maximizes In(βt̂)e
µn for given µ and βt̂. The largest

eigenvalue of T is then (In?(βt̂)e
µn?

)Lx . The quantum
picture is that for large Lt, the relevant state has all Lx
sites in the n? state and we are in the MI phase with
ρ = n?. In summary, the approximate large structure at
small β is obtained by increasing µ from zero and going
through the MI phases with n?= 0, 1, 2, . . . .

The fine structure of the SF phase between the
MI phases can be approached by restoring βx̂ = βt̂
perturbatively. The SF phases are approximately located
near values of µ where n? changes. To be specific, we
will consider the example of β = 0.1 and Lx = 4,
where the transition occurs near µc = 2.997 · · ·when
βx̂ = 0. In this limit, we have 16 degenerate states
|0000〉 , |1000〉 , . . . , |1111〉 which can be organized in
“bands” with n = 0 (1 state), n = 1 (4 states), etc.
Below, we call the approximation where the indices inside
the kets are only 0 or 1 the “two-state approximation”.

The effect of βx̂ is to give these bands a width and lift
the degeneracy. The energy levels are defined in terms of
the eigenvalues of the transfer matrix as

Ei = − ln(λi). (19)

If we plot the energy levels versus µ, we see that we have
successive crossings corresponding to states of increasing
n. This is illustrated with the two lowest energy levels in
Fig. 9. Notice the piecewise linear behavior with slopes
corresponding to the particle number 0, -1, -2, -3 and -4.
As the levels cross the thermal entropy rises to ln 2.

We observe that near µ = 2.90, the lowest energy state
changes from |0000〉 to a state with n = 1

|Ω, n = 1〉 =
1

2
(|1000〉+ |0100〉+ |0010〉+ |0001〉) . (20)

It is easy to calculate the reduced density matrix for A
defined as first two sites and B as the last two sites in

2 . 8 0 2 . 8 5 2 . 9 0 2 . 9 5 3 . 0 0 3 . 0 5 3 . 1 0 3 . 1 5 3 . 2 0
- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0 . 0

0 . 2

 

 

-ln
(λ i)

µ

 1 s t  E L
 2 n d  E L
 T E  -  0 . 5

FIG. 9. (Color online). The two lowest energy levels (EL,
solid lines) as a function of µ for Lx = 4, Lt = 256, β =
0.1 and Ds = 101. As µ increases, lines of successive slopes 0,
-1, -2, -3, and -4 are at the lowest level. At each crossing,
the thermal entropy(dash dot line) jumps. The values of
thermal entropy are shifted vertically by -0.5 to make the
figure readable.

the limit where Lt becomes infinite and for values of µ
where |Ω, n = 1〉 is the unique ground state

ρ̂A = TrB |Ω, n = 1〉 〈Ω, n = 1| (21)

=
1

4
(|10〉+ |01〉)(〈10|+ 〈01|) +

1

2
|00〉 〈00| .

The eigenvalues of ρ̂A are 1/2, 1/2, 0 and 0 and the
entanglement entropy of this reduced density matrix is
ln 2.

A n = 2 state becomes the ground state near µ=2.95.
It is in good approximation a linear superposition of the
6 states with two 0’s and two 1’s. The two states |1010〉
and |0101〉 have a slightly larger coefficient suggesting
weak repulsive interactions. In the numerical expression
of this ground state, we also have contributions from
states such as |2000〉 but with a small coefficient. In
general, for small β, the two state approximation is good
(the corrections are small).

A n = 3 state becomes the ground state near µ=3.03.
The ground state can in good approximation be described
as

|Ω, n = 3〉 =
1

2
(|0111〉+ |1011〉+ |1101〉+ |1110〉) , (22)

which is |Ω, n = 1〉 with 0’s and 1’s interchanged and one
can interpret the 0 as “holes”. Finally, near µ=3.10,
|1111〉 becomes the ground states (with again many small
corrections). In general, there is approximate mirror
symmetry about the “half-filling” situation.

A similar approximate two state description is valid in
the next SF phase located between the MI phases with ρ
1 and 2. One just needs to replace 0 by 1 and 1 by 2.
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We now follow the same path in the phase diagram but
from the point of view of the world lines generated with
the worm algorithm with Lt=256. Typical world lines
are displayed in Fig. 2. Given that Lt=256 is relatively
large, by taking µ approximately in the middle of the
density plateaus (discussed below, see Fig. 11), we obtain
that most configurations have n corresponding to the
average value. Figure 10 shows typical results for µ =2.93
(n=1), 3.00 (n=2), 3.07 (n=3) and 3.14 (n=4) using a
graphical representation similar to Fig. 2. Their spatial
winding number are discussed in Appendix B. The most
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FIG. 10. Worm configurations for µ =2.93, n=1 (a); µ =3.00,
n=2 (b); µ =3.07, n=3 (c) and 3.14, n=4 (d). In all cases,
β = 0.1, Lx = 4 and Lt = 256.

important feature of these configurations is that almost
all the |n|’ s are 0 or 1. For a given particle number n,
between most time slices we have n time links carrying a
current 1 and Lx − n time links carrying no current. In
rare occasions, we observe that the lines merge or cross.
Overall, we can think of these configurations as a set of
weakly interacting loops carrying a current 1. This is
in line with the dominance of the states like |1010〉 over
states like |2000〉 discussed above.
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FIG. 11. (Color online). Fine structure of the entanglement
entropy (EE, blue circle), thermal entropy (TE, green square)
and particle density ρ (red triangle) spanning the MI(ρ = 0),
SF and MI(ρ = 1) phases successively with µ increasing at
fixed β = 0.1. There are three different system sizes: Lx =
4 with Lt = 256, Lx = 8 with Lt = 512, and Lx = 16
with Lt = 1024, respectively. The thermal entropy has Lx

peaks culminating near ln 2 ' 0.69; ρ goes from 0 to 1 in
Lx steps and the entanglement entropy has an approximate
mirror symmetry near half filling where it peaks.
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We now proceed to calculate the thermal entropy and
the entanglement entropy for Lx = 4 with Lt = 256 (as
discussed above), and also for larger lattices Lx = 8 with
Lt = 512, and Lx = 16 with Lt = 1024. Figure 11
shows the fine structure in the SF phase for increasing
sizes. In each case, we go through the MI(ρ = 0), SF,
and MI(ρ = 1) phases successively as we keep increasing
µ while keeping the other parameters fixed, as already
illustrated in Fig. 1. We kept the same truncation
dimension Ds = 101 for the three cases.

From Fig. 11, we observe an oscillating structure in
the entanglement entropy and the thermal entropy. The
number of sites in the spatial direction Lx dictates
the fine structure. There are Lx transition points in
the entanglement entropy and Lx peaks in the thermal
entropy. With Lx increasing, the transition points close
to the two boundaries become difficult to resolve as
shown in the case of Lx = 16, Lt = 1024 in Fig. 11(c).
Higher µ resolution and larger Ds are needed to obtain
a clearer picture of the oscillations. The approximate
mirror symmetry of the entanglement entropy with
respect to the half-filling point persists for larger lattices.
As far as the thermal entropy is concerned, the height of
the peaks are all close to ln 2, which corresponds to the
two-fold degeneracy in the ground state. The peaks are
located at the place where the energy levels from the
ground state and the first excited state cross as shown in
Fig. 9.

As Lx increases, the fine structure near the two
boundaries connected to the MI phases is not so
prominent as the middle regime and a better resolution is
needed to discern the fine structure. A similar discussion
applies to the situation when the system experience the
MI(ρ = i), SF, MI(ρ = i + 1) phases successively and
we have checked that the same type of fine structure
appears. Note also that for small Lx and large enough
Lt, ρ has significant plateaus that could be qualified
as incompressible regions. However, the width of these
regions shrinks like 1/Lx as Lx increases.

VI. CONCLUSIONS

In summary, we have used the TRG method with the
conservation law implemented explicitly to calculate the
particle number density, the thermal entropy and the
entanglement entropy for the O(2) model with a chemical
potential. The particle number distributions agree well
but not perfectly with the results obtained with the worm
algorithm. The discrepancies seem to increase with Lx.
This can probably be explained by the fact that at small

β, the spectrum has bands with Lx, Lx(Lx−1)
2 etc ...

states with increasing n. Some of these bands merge
when µ is increased enough to get in the SF phase.
As Lx increases, the bands become denser and we will
typically keep the lowest energy states irrespectively of
their particle number. Taking into account the particle
number in the truncation process may help getting more

accurate distributions. The energy bands are illustrated
in Fig. 12. More generally, the decomposition of states in
charge sectors could help understanding truncation errors
[40] more systematically. This question is under active
investigation.

2.8 2.9 3 3.1 3.2
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−0.5

0

0.5

1
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−
ln

(λ
i)

Lx=4, β=0.1, D
s
=101,

101 lowest ELs

FIG. 12. (Color online). Energy levels for β = 0.1, Lx = 4.

Besides the large structure associated with the
alternation between SF and MI phases with integer
particle number density, we found that in the SF regime,
there is an interesting fine structure controlled by the
spatial dimension Lx. The entanglement entropy, the
thermal entropy and the particle number density vary in
a way that is consistent with each other. The thermal
entropy shows Lx peaks located at where the energy
levels from the ground state and first excited state cross.
Degenerate perturbation theory explains why the energy
levels cross while varying the chemical potential. As
a result, the step-wise structure occurs in the particle
number density in the SF regime, as already observed
in Ref. 19. The particle number and the winding
number of the world lines increase by one unit at a
time. The entanglement entropy shows Lx steps and an
approximate mirror symmetry with respect to the half-
filling point. The details of the fine structure depend on
the ratio Lx/Lt and the infinite volume limit of the two-
dimensional classical model needs to be defined carefully.

It is clear that increasing Lt generally emphasizes the
sharp features. The dependence on the aspect ratio
Lx/Lt in the infinite volume limit has been studied for
a hard-core boson Hamiltonian at half filling, which is
equivalent to the quantum S = 1/2 XY model [41] and
for two solvable models at the conformal critical point
[42]. We are planning to carry on a similar study for the
model considered here.

In the approximation where the eigenstates of the
transfer matrix are made of states with only 0 and 1
for all sites, or correspondingly if the world lines have
mostly links carrying currents with |n| equal to 0 or
1, this symmetry corresponds to interchanging 0 and 1



11

and the particle number n with Lx − n which explains
the approximate mirror symmetry of the entanglement
entropy.

From Refs. 10 and 11, the restriction to states with
only 0 and 1 magnetic quantum number simplifies the
Hamiltonian (Sz and (Sz)2 have the same effect on the
restricted subspace) and suggests the correspondence
with the spin-1/2 quantum XY model on a line with Lx
sites and a magnetic field h ( in suitable units). One can
use the exact equivalence to a quadratic hamiltonian for
a spinless fermion and show that the fermion number is
n = Lx(1 − arccos(h)/π). By changing h → −h, one
changes n→ Lx − n. Here h corresponds to µ− µh.f. in
the O(2) problem, with µh.f. the chemical potential for
n = Lx/2.

As a general summary, in the SF phase, the chemical
potential determines the relevant particle number sector.
In each sector, the sum of the indices of the transfer
matrix adds up to a given number n, however there are
n + 1 ways to distribute the total particle number over
the two subsystems A and B. The entanglement entropy
defined by Eq. (18) characterizes this uncertainty. We
are in the process of developing new numerical methods
for a better general understanding of this question.

We believe that the fine structure of the entanglement
entropy described in our article can be observed in
quantum models such as the Bose-Hubbard, as studied
in Refs. 12 and 13. We also would like to mention some
analogies. As the chemical potential can be interpreted
as an imaginary gauge field in the time direction, it is not
surprising that studies of Polyakov’s loop [34, 35] (Wilson
loops closing in the periodic time direction) show similar
fine structure. Note also that the crossing pattern of
the energy levels as a function of µ found here resembles
the energy crossing found in a study of the spectrum of
rotating tubes as a function of the rotation rate for a
proposed cold atom experiments [36].

Appendix A: Remarks about Fig. 2

In this appendix, we discuss the sign convention and
the spatial winding number of Fig. 2. We also explain
why this configuration is typical.

The sign of the n’s associated with links with |n|=1 can
be figured out from the following information. All the
(vertical) temporal link indices are positive. The sign
of the (horizontal) spatial links can be obtained using
the conservation law. On time slices 5, 7 and 17, the
current moves to the right and the sign is (by convention)
positive. On time slices 21 and 22, the current moves to
the left and the sign is negative. In this configuration,
the winding number in the temporal direction is 2 and
the winding number in the spatial direction is 0 (there
are as many positive as negative spatial n’s).

The fact that the configuration of Fig. 2 is typical for
β=0.1 and µ=3 can be understood from the numerical
values of the weights. Because of the large value for µ, the

weight for the temporal links with n=0 (I0(0.1) ' 1.0025)
and n=1 (I1(0.1) exp(3) ' 1.00553) are almost the
same, while the weight for n=2 (I2(0.1) exp(6) ' 0.5047)
is smaller. The weight for n=-1 (I1(0.1) exp(−3) '
0.002492) is very small and there are no temporal links
with negative values of n in the configuration. For
the spatial links, the relative cost of a lateral move is
I1(0.1)/I0(0.1) ' 0.05 and there are only 6 lateral moves.
The fact that there are only 2 temporal links with n=2
can be understood from the fact that the merging of two
n=1 lines into one n=2 line requires one lateral move in
addition of a weight about twice smaller.

Appendix B: Spatial winding numbers in Fig. 10

In this appendix, we discuss the spatial winding
numbers of the configurations of Fig. 10. For µ=2.93,
all the time (vertical) links have n=1. For the spatial
links there are 20 right movers and 16 left movers (so the
spatial winding number is 1). For µ=3.00 (n=2), between
most time slices, there are two vertical links carrying a
n=1 current, and the two lines only merge 4 times into a
single n=2 line for a small number of time steps (the total
is 5 vertical links with n=2). There are 26 right movers
and 34 left movers (so the spatial winding number is -2).
For µ=3.07 (n=3), between most time slices, there are
three vertical links carrying a n=1 current, There are 5
occurrences where two n=1 merge into a single n=2 line
for a small number of time steps (the total is 10 vertical
links with n=2). There are also 3 crossing (points where
the four lines attached all have |n|=1). There are 19
right movers and 15 left movers (so the spatial winding
number is +1). For µ=3.14 (n=4), β = 0.1, Lx = 4
and Lt = 256, there are essentially four parallel vertical
lines each carrying a n=1 current except for 4 occurrences
where they briefly merge (11 n=2 vertical lines, 4 right
movers, 4 left movers, no spatial winding number).
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