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This paper presents a study of the non-equilibrium relaxation process of chemically reactive
systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the
chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction
is made using a thermodynamic-ensemble approach, which does not require detailed information
about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the
kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy-ascent
(SEA) or maximum-entropy-production (MEP), which suggests a constrained gradient dynamics in
state space. The SEAQT framework is based on general definitions for energy and entropy and
at least theoretically enables the prediction of the non-equilibrium relaxation of system state at
all temporal and spatial scales. However, to make this not just theoretically but computationally
possible, the concept of density of states is introduced to simplify the application of the relaxation
model, which in effect extends the application of the SEAQT framework even to infinite energy
eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an
extremely large number of such levels (on the order of 10130) and yields to the quasi-continuous
assumption. The principle of SEA results in a unique trajectory of system thermodynamic state
evolution in Hilbert space in the non-equilibrium realm, even far from equilibrium. To describe
this trajectory, the concepts of subsystem hypo-equilibrium state and temperature are introduced
and used to characterize each system-level, non-equilibrium state. This definition of temperature
is fundamental rather than phenomenological and is a generalization of the temperature defined at
stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation
of motion is formulated on the basis of the density of states and a set of associated degeneracies.
Their significance for the non-equilibrium evolution of system state is discussed. For the application
presented, the numerical method used is described and is based on the density of states, which
is specifically developed to solve the SEAQT equation of motion. Results for different kinds of
initial non-equilibrium conditions, i.e., those for gamma and Maxwellian distributions, are studied.
The advantage of the concept of hypo-equilibrium state in studying non-equilibrium trajectories is
discussed.

I. INTRODUCTION

There are many modeling approaches in non-
equilibrium thermodynamics. From a practical stand-
point, models developed from any one of these is typically
applicable to a given set of spatial and temporal scales
so that in the vein of Grmela and Öttinger [1, 2], each
model can be classified as being either more macroscopic
or less microscopic (or vice versa). Thus, when the non-
equilibrium phenomena studied cross different spatial
and temporal scales, some form of multi-scale model
must be employed. This is typically done via multi-
scale computational techniques, which are able to pass
system properties from one scale to another [3–5]. For
example, parameters or phenomenological coefficients
used in a more macroscopic model are calculated via
a more microscopic model, and feedback is used to
update them after a time (or distance) interval that is
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between the characteristic time (or distance) length of
the two different models. Such multi-scale approaches,
nonetheless, present a number of significant drawbacks,
not the least of which are computational.

Of course, a general rigorous theoretical framework
that permits the study of irreversible phenomena across
spatial and temporal scales is of great significance. Two
such frameworks exist. The first developed by Grmela
and Öttinger [1, 2] provides a general equation for non-
equilibrium reversible-irreversible coupling (GENERIC)
able to couple models from two different scales or levels,
i.e., one more microscopic (a level 1 model) and the
other more macroscopic (a level 2 model). In general,
level 2 models are simpler and rely more on observation
and phenomenological descriptions, while those at level 1
are more fundamental and require a significantly higher
level of complexity. Grmela and Öttinger suggest that
a specific GENERIC equation of motion, which is based
on models from two different levels of description, should
take the form that satisfies the compatibility of the two
models. The analysis of this compatibility, i.e., the
passing from a more to a less detailed level, involves
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a pattern recognition process [1, 2], which corresponds
to a kind of coarse graining [6, 7] that results in what
looks like dissipation even if the level 1 dynamics are
reversible as in fact they are in mechanics. In this way,
the two models and levels are linked via a single equation
of motion. Clearly, this approach is more rigorous
and fundamental than the multiscale computational
technique described earlier. It allows the study of
the far-from-equilibrium realm where near-equilibrium
parameters no longer hold and the link between two
different scale models ensures the compatibility of the two
levels in a way that simple parameter delivery cannot.

The second general, rigorous theoretical framework
is that developed by Beretta [6, 8–11], which provides
a general non-equilibrium dynamics for relaxation
crossing different scales. Unlike GENERIC, which
bases its approach on the linking of models across
scales into a single equation of motion, Beretta explains
irreversible phenomena at different scales using a single
thermodynamic model and a single equation of motion,
doing so on the basis of the general principle of steepest
entropy ascent (SEA) [8, 9, 12] or equivalently maximum
entropy production (e.g., [13]). In this framework,
the irreversible part of the equation of motion is
built on a geometrical explanation of relaxation, which
results in a gradient dynamics of entropy in state
space constrained by the energy, particle number, etc.
Since thermodynamic rules and the properties used
(specifically, extensive thermodynamic properties such
as the energy and the entropy) are applicable across
all spatial and temporal scales [14, 15], the equation
of motion of SEA is well defined and rigorous at all
scales. In addition, in [6], Beretta demonstrates that all
of the well-known classical and quantum non-equilibrium
frameworks can be formulated within his more general
non-equilibrium thermodynamic SEA framework, which
is applicable even far from equilibrium.

Although the GENERIC and SEA frameworks ap-
proach non-equilibrium thermodynamics from different
viewpoint, Montefusco, Consonni, and Beretta [16]
show that the dissipative components of the two
theories are closely related and in some cases essentially
mathematically equivalent, provided that the choice
of kinematics is the same, i.e., that both have a
common starting point. Furthermore, both provide
a geometrical foundation for their dynamics [6, 17].
However, differences exist since the SEA framework
is a local theory, which starts from local balance
equations and implements the principle of maximum
local entropy generation compatible with the local
conservation constraints, while the GENERIC framework
is global, implementing an entropy gradient dynamics
compatible with the global conservation constraints.

To date, the SEA framework, which extends a first
principle thermodynamic and ensemble representation
into the non-equilibrium realm, even that far from
equilibrium, has successfully been applied to very
microscopic systems such as the state evolution of

quantum systems (e.g., [18–23]) as well as to a single-
particle classical system [24] whose available microstates
are uniformly distributed in phase space. However, its
application to high-dimensional state spaces and, thus,
to infinite energy eigenlevel (i.e., more macroscopic)
systems has necessarily been limited.

To address this limitation, the GENERIC concept of
patterns is used here. To begin with, one may view the
irreversible term in the SEA framework as resulting from
a pattern in a more microscopic model. In a manner
similar to the way at stable equilibrium one can view the
”Maxwellian distribution” as an invariant pattern even
though the mechanical details of the individual particle
states constantly change, steepest entropy ascent can also
be viewed as a changing global pattern or effect of the
details of the mechanics in relaxation. Thus, without
including all of the details of the more microscopic model
(i.e., of the mechanics), the pattern of this model serves
as a modification of the more macroscopic model (i.e., of
the non-equilibrium thermodynamics). This, of course,
greatly simplifies the computational complexity, while
the clear physical meaning and geometrical description
of the SEA landscape facilitates the discovery of general
but unique patterns of relaxation in the non-equilibrium
realm at any scale.

In view of this, two non-equilibrium relaxation
patterns present themselves, which offer two methods for
practically (i.e., computationally) extending the appli-
cation of the SEAQT framework to infinite-dimensional
state spaces, even those in the macroscopic continuous
spectrum, and for extending an equilibrium-type descrip-
tion to non-equilibrium states. This extension focuses
on the irreversible process of thermodynamic mixture
states in which the Hamiltonian dynamics vanishes
and the state evolution is due only to thermodynamic
irreversibilities. Both methods originate from physical
concepts. The discussion begins in Section II with a
brief description of the SEAQT framework and focuses on
the trajectory of system thermodynamic state evolution
and not its time evolution, since it is the trajectory,
which reveals the geometric features of interest. The
concept of hypo-equilibrium state is then introduced,
which permits temperature to be defined for all non-
equilibrium states and implies that the energy eigenlevels
in mutual equilibrium evolve as a group. This is followed
in Section III by a description of our density of state
method, which allows the macroscopic-level SEAQT
equation of motion to be solved. It is based on the
idea that similar eigenlevels with similar initial conditions
evolve similarly. Finally, in Section IV, the novel
thermodynamic-ensemble based approach developed and
presented in the previous sections is applied within
the SEAQT framework to the study of an isolated,
chemically reactive, macroscopic system undergoing a
non-equilibrium evolution in state. This approach, in
fact, represents a computationally simpler, alternative
global method for predicting the chemical kinetics of
systems, even those far from equilibrium, and does so
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without the need for the detailed particle mechanics (e.g.,
that of particle collisions) of conventional approaches
or for such limiting assumptions as local or global
equilibrium. Topics illustrated and discussed include the
features of the non-equilibrium trajectories predicted, the
density of states of the chemical reaction process, and
the influence of the initial non-equilibrium states on the
trajectories. Two generalizations to the non-equilibrium
realm of stable equilibrium concepts are also physically
illustrated and discussed, i.e., that of hypo-equilibrium
state and that of non-equilibrium temperature. The
former leads to the definition of the latter and to the
possibility of representing a very large class of non-
equilibrium states and of approximating an even larger
class of other non-equilibrium states in the study of non-
equilibrium trajectories.

II. THEORY: STEEPEST-ENTROPY-ASCENT

EQUATION OF MOTION

A. Non-equilirbium evolution framework

Based on the discussion by Grmela [1, 2, 17] and
Beretta [6, 16] the general form of a non-equilibrium
framework is a combination of both irreversible relax-
ation and reversible symplectic dynamics. If written in
a generalized form of Ginzburg-Landau equation [1, 16],
the equation of motion takes the following form:

d

dt
α(t) = XH

α(t) + Y H
α(t) (1)

where α(t) represents the state evolution trajectory,
XH

α(t) and Y H
α(t) are functions of the system state α(t)

and represent the reversible symplectic dynamics and
irreversible relaxation process, respectively. In the
SEAQT framework, the system state is represented by
the density operator ρ̂, XH

α(t) follows the Schrödinger

equation, and Y H
α(t) is derived from the SEA principle.

Thus,

dρ̂

dt
=

1

i~
[ρ̂, Ĥ] +

1

τ(ρ̂)
D̂(ρ̂) (2)

D̂ is the dissipation operator determined via a con-
strained gradient in the Hilbert space. A metric tensor
must be specified in the derivation of this dissipation
term, since it describes the geometric features of the
Hilbert space [6]. τ is the relaxation time, which
represents the speed of system evolution in Hilbert
space. A general discussion of the SEA formulation of
dissipation, using other forms of metric and symplectic
terms, is given in [6] with examples of five non-
equilibrium thermodynamic frameworks. Furthermore,
a version of Eq. (2) for a general quantum system is
used in [21] to predict and compare with experimental
results the decorrelation and decoherence of a system in
which the Schrödinger dynamics and relaxation process

are coupled. In the present paper, the version of Eq.
(2) considered is for the case when the symplectic part
vanishes and only the relaxation part remains. For
this case, the SEA equation of motion exhibits useful
mathematical features (e.g., hypo-equilibrium states)
that enable a clear physical representation of non-
equilibrium state evolution and lead to a fast and
accurate computational solution.
An example of such an evolution, i.e., that of a pure

relaxation process, is the application here of the SEAQT
framework to the modeling of an isolated chemically
reactive system. The system is restricted to the class
of dilute-Boltzmann-gas states in which the particles
are independently distributed [10]. Such states can be
represented by a single-particle density operator that is
diagonal in the basis of the single-particle eigenstates. In
addition, the Hilbert space metric chosen is the Fisher-
Rao metric, which is uniform in different dimensions of
Hilbert space. Under these conditions, the symplectic
Schrödinger term in the equation of motion vanished, and
the study is able to focus on the irreversible relaxation
process only.

B. System and state

Sections II.B and II.C provide a brief introduction
to the SEA equation of motion for dilute-Boltzmann-
gases. More details can be found in [10, 25]. The system
studied has the Hamiltonian H , and the eigenvalues and
eigenvectors of the corresponding operator Ĥ take the
form

Ĥ |φk〉 = ǫk|φk〉 k = 1, 2, ... (3)

where k is the index for the energy eigenlevels.
Degeneracy in which an energy eigenlevel can have the
same eigenvalue with different eigenvectors is allowed.
Equivalently, the system can also be defined by a group
of energy eignlevels and eigenvectors such that

Ĥ =
∑

k

ǫk|φk〉〈φk| (4)

The thermodynamic state of the system can be defined
via a probability distribution {pk} among the energy
eigenlevels {ǫk}, which accounts for the diagonal term of
the density operator. An element of {ǫk} can share the
same value in case of degeneracy. As an example, the
stable equilibrium state of the system has the following
canonical distribution, which provides the maximum
entropy:

pk =
1

Z
e
−

ǫk
kbT (5)

where Z is the partition function Z =
∑

e
−

ǫk
kbT and

the equilibrium temperature is T . Any other state,
represented by a probability distribution other than the
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canonical distribution, is a non-equilibrium state, since
the entropy is not a maximum.
The probability space {pk} is the state space for the

system. The statistical distance dl between pk(θ) and
pk(θ+ dθ) can be defined by the Fisher-Rao metric such
that

dl =
1

2

√

∑

k

pk(
d ln pk
dθ

)2dθ (6)

More discussion on choosing a metric can be found in [6].
The parameter θ is continuous and can be chosen as the
time t. Now, in order to simplify the representation of the
development of the equation of motion in the next two
sections (Section II.B and II.C), the square root of the
probability xi =

√
pi is defined so that the probability

space can be represented by x = {xi}. The statistical
distance then takes the form

dl =
1

2

√

∑

k

1

pk
(
dpk
dθ

)2dθ =

√

∑

k

(dxk)2 (7)

where the distance between any two distributions xa and
x
b is the angle:

d(xa,xb) = cos−1(
∑

k

xa
kx

b
k) = cos−1(xa · xb) (8)

According to the discussion in [26], this statistical
distance is equivalent to an angle in Hilbert space and has
a precise physical meaning in quantum mechanics. Thus,
the state of the system as well as the distance in state
space can be represented by x and dl2 =

∑

k(dxk)
2 =

dx · dx.
Now, if time t is chosen as the parameter, from Eq. (7)

one can arrive at

dl

dt
=

√

∑

k

(
dxk

dt
)2 (9)

which is the speed of the motion in probability or state
space.

C. Property and the equation of motion

A property of the system can be defined as a function
of state {xk} such that:

I =
∑

k

x2
k (10)

E = 〈e〉 =
∑

k

ǫkx
2
k (11)

S = 〈s〉 =
∑

k

−x2
k ln(x

2
k) (12)

where 〈·〉 means the ensemble average. The von
Neumann formula for entropy is used, because as

shown in [14], it has all the characteristics required by
thermodynamics.
The gradient of a given property in state space is then

expressed by

gI =
∑

k

∂I

∂xk
êk =

∑

k

2xkêk (13)

gE =
∑

k

∂E

∂xk
êk =

∑

k

2ǫkxk êk (14)

gS =
∑

k

∂S

∂xk
êk =

∑

k

[−2xk − 2xk ln(x
2
k)]êk (15)

where êk is the unit vector for each dimension.
Furthermore, for an isolated system, the system satisfies
the conservation laws for probability and energy, i.e.,

I =
∑

k

x2
k = 1 (16)

E =
∑

k

ǫkx
2
k = constant (17)

and the principle of SEA upon which the equation of
motion is based is defined as the system state evolving
along the direction that at any instant of time has the
largest entropy gradient consistent with the conservation
constraints. Since the reversible term vanished for dilute-
Boltzmann-gases in an isolated system, the equation of
motion for the irreversible relaxation process is given by

dx

dt
=

1

τ(x)
gS⊥L(gI ,gE) (18)

where τ , which is a function of system state, is the
relaxation time that describes the speed at which the
state evolves in state space in the direction of steepest
entropy ascent. L(gI , gE) is the manifold spanned by gI

and gE , and gS⊥L(gI ,gE), which lies parallel to the hyper-
surface that conserves the probability and the energy,
is the perpendicular component of the gradient of the
entropy to the manifold L(gI , gE). It takes the form of
a ratio of Gram determinants such that

gS⊥L(gI ,gE) =

∣

∣

∣

∣

∣

∣

gS gI gE

(gS , gI) (gI , gI) (gE , gI)
(gS , gE) (gI , gE) (gE , gE)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(gI , gI) (gE , gI)
(gI , gE) (gE , gE)

∣

∣

∣

∣

(19)

where (, ) denotes the scalar product of two vectors in
state space. The explicit form of Eq. (18) for {xk} is,
thus,

dx2
k

dt
=

1

τ

∣

∣

∣

∣

∣

∣

−x2
k lnx

2
k x2

k ǫkx
2
k

〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

(20)
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and for {pk} [10]

dpk
dt

=
1

τ

∣

∣

∣

∣

∣

∣

−pk ln pk pk ǫjpk
〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

(21)

D. Equation of motion with degeneracy

The energy eigenlevels {ǫk, k = 1, 2, ...} and
{|φk〉, k = 1, 2, ...} can be reordered and grouped
into {ǫij, i = 1, 2, ..., j = 1, ..., ni} and {|φij〉, i =
1, 2, ..., j = 1, ..., ni}, where {ǫij = ǫi, j = 1, ..., ni} are
degenerate energy eigenlevels with degeneracy ni. For
the equation of motion (21), the degenerate eigenstates
for a given eigenvalue with the same initial probability are
equivalent, and have the same occupation probabilities
at all times, which means pij = pik for any j, k. For
example, the initial distribution among these eigenlevels
is proportional to the canonical distribution that gives
equal initial probabilities for each degenerate eigenstate.
This is the case when these eigenlevels come from the
same subsystem of a system in a hypo-equilibrium state
(see Section II.F). Thus, without loss of generality,
the degenerate energy eigenlevels with the same initial
probabilities can be combined, and the energy eigenlevels
represented by the monotonically non-decreasing energy
eigenvalue series {ǫ̃i} with degeneracy {ni}. The
probability {p̃i} at energy eigenlevel {ǫ̃i} is given by

p̃i = x̃2
i =

ni
∑

j=1

x2
ij (22)

x2
ij =

1

ni
p̃i =

1

ni
x̃2
i (23)

The system state can, therefore, be represented by a new
vector {x̃i} or {p̃i} in a new probability space formed by
the probability distribution among the energy eigenlevels
{ǫ̃i}. The equality of statistical distance in the original
probability space with that in the new probability space
is shown by the following development:

dl2 =
∑

i

ni
∑

j=1

(dxij)
2 =

∑

i

ni
∑

j=1

(
1√
ni

dx̃i)
2 =

∑

i

(dx̃i)
2

(24)

d(xa,xb) = cos−1(
∑

i

ni
∑

j=1

xa
ijx

b
ij)

= cos−1(
∑

i

ni
∑

j=1

1√
ni

x̃a
i

1√
ni

x̃b
i)

= cos−1(
∑

i

x̃a
i x̃

b
i) = d(x̃a, x̃b) (25)

In this new vector space, system properties such as I, E,
and S are expressed as

I=
∑

i

x̃2
i (26)

E= 〈e〉 =
∑

i

ǫ̃ix̃
2
i (27)

S= 〈s〉 =
∑

i

−x̃2
i ln(

x̃2
i

ni
) (28)

while the equation of motion changes to the following
forms for {x̃j} and {p̃j}:

dx̃2
j

dt
=

1

τ

∣

∣

∣

∣

∣

∣

∣

−x̃2
j ln

x̃2

j

nj
p̃j ǫjx̃

2
j

〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

(29)

dp̃j
dt

=
1

τ

∣

∣

∣

∣

∣

∣

−p̃j ln
p̃
nj

p̃j ǫj p̃j
〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

(30)

This new equation of motion for degenerate energy
eigenlevels is a simplification of the equation of motion
of Section II.C for the assumption that pij = pik for any
j, k. Equations (24) to (30) are acquired by substituting
Eq. (22) into Eqs. (7), (8), (10) to (12), (20), and (21).
Since the discussions in the next sections are based on
Eq. (30), the tilde used to designate the probabilities of
the new probability space are dropped for simplicity.

E. Non-equilibrium evolution trajectory: kinetics

vs dynamics

In this section, the kinetics and dynamics of non-
equilibrium state evolution are introduced. The result of
this section applies to a system with a relaxation process
only (i.e., without a symplectic term in the equation of
motion) but is not limited to a Fisher-Rao metric system.
The equation of motion for a degenerate system, Eq.
(30), is first simplified by defining A1, A2, and A3 such
that

A1 =

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

, A2 =

∣

∣

∣

∣

〈s〉 〈e〉
〈es〉 〈e2〉

∣

∣

∣

∣

, A3 =

∣

∣

∣

∣

〈s〉 1
〈es〉 〈e〉

∣

∣

∣

∣

(31)
The equation of motion then becomes

dpj
dt

=
1

τ
(−pj ln

pj
nj

− pj
A2

A1
+ ǫjpj

A3

A1
) (32)

The solution of this equation is

pj = pj(t) (33)
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where the time evolution of the probability can be
regarded as a parametric equation with parameter t. If
t is the real time, the solution of Eq. (32) provides both
the trajectory in state space and the system state at any
instant of time.
In general, the relaxation time τ can be a function of

system state such that

τ = τ(p(t)) (34)

since for a given initial state of the system, the non-
equilibrium path of state evolution is uniquely obtained
from the equation of motion, Eq. (32). This path can be
used to define a new parameter τ̃ given by

dτ̃ =
1

τ(p(t))
dt or τ̃ =

∫

path

1

τ(p(t′))
dt′ = τ̃(t) (35)

where τ̃ is called the dimensionless time. With this time,
the independent variable for the equation of motion can
be changed so that

dpj
dτ̃

= −pj ln
pj
nj

− pj
A2

A1
+ ǫjpj

A3

A1
(36)

The solution for this equation is written as

pj = pj(τ̃ ) (37)

No matter how the relaxation time τ depends on the
real time t and the state, the equation of motion can
always be transformed into Eq. (36) with the parameter
change defined by Eq. (35). Furthermore, the evolution
of system state follows the same function (Eq. (37)) in τ̃ .
Physically, this means that the system follows the same
trajectory in state space, while τ decides the speed with
which the system’s state moves along the trajectory. If
the relaxation time is chosen to be a constant, Eq. (33)
gives the same parametric equation, Eq. (37), with a
parametric scaling in the relaxation time τ . Thus, the
kinetics and dynamics of the system are separated. The
former are found via Eq. (35) and Eq. (36) and result in
the trajectory in state space based on the parameter τ̃
or a constant relaxation time τ . The dynamics are found
via Eq. (32) and the functional dependence τ = τ(p)
(Eq. (34)) and result in the trajectory in state space
based on the real time t. Recent numerical results show
that a uniform (Fisher-Rao) metric may for some systems
provide poor performance relative to the time evolution
[24] at least in the near-equilibrium limit. In such cases,
the time evolution needs more information on dynamics
or function τ . For that reason, the results presented
here are restricted to the kinetic evolution trajectory and
the intermediate states of the relaxation process, and,
thus, to the purely geometrical features of the relaxation
process.

F. Description of the trajectory: subsystem

hypo-equilibrium state and temperature

In this section, the concepts of subsystem hypo-
equilibrium state and temperature for a system in a

non-equilibrium state are defined. These two concepts
support the physical description of the evolution tra-
jectory in state space rather than just its mathematical
description. However, this description is restricted to
the systems with irreversible relaxations only. These
concepts originate from a generalization of the canonical
distribution to a non-equilibrium distribution in Hilbert
space with a uniform metric (Fisher-Rao metric).
However, such a generalization under any metric is an
open question. To be general, the relaxation time in
this section can be constant or a function of system state,
which means that the conclusions drawn apply to both
the kinetic and dynamic characteristics of the state space
trajectory.
For a given system represented by an energy eigenlevel

set Ω = {ǫk}, the system can be divided into M
subsystems Ωi = {ǫik}, Ω =

⋃

Ωi and Ωi ∩ Ωj = ∅ for
any i, j = 1, · · · ,M . If the probability distribution in
each subsystem yields to a canonical distribution, the
system is designated as being in an M th-order hypo-
equilibrium state. Based on this definition, any state
of the system (strictly speaking, a diagonal density
operator in an eigenstate basis) is a hypo-equilibrium
state with order M , where M is less than or equal to the
number of system eigenlevels. A hypo-equilibrium state
of order 1 corresponds to a state in stable equilibrium.
The probability distribution of the M th-order hypo-
equilibrium state takes the form

∀i = 1, 2, ...,M, pik = αinike
−βiǫik , k = 1, 2, ..., wi (38)

where αi and βi are parameters, and nik is the degeneracy
of ǫik. To be complete, βi = 0 if wi = 1, and wi can be
infinite.
αiZi(βi) has the physical meaning of particle number

where Zi is the partition function of the subsystem. The
inverse of the temperature of each subsystem Ωi is βi with
a scale of the Boltzmann constant. This temperature
is defined for each subsystem when the system is in a
state of non-equilibrium. It is proven below that if a
system begins in an M th-order hypo-equilibrium state,
it will remain in an M th-order hypo-equilibrium state
throughout the time evolution as will the subsystem
division. To show this, Eq. (32) is reformulated such
that

d

dt
ln

pj
nj

=
1

τ
(− ln

pj
nj

− A2

A1
+ ǫj

A3

A1
) (39)

where it is noted that d(lnnj)/dt is zero and that A1, A2,
and A3 are the same for all chosen energy eigenlevels pj
and only a function of the entire probability distribution
at a given instant of time. Subtracting the equations of
motion for the ith and kth energy eigenlevels results in

d

dt
(ln

pj
nj

− ln
pk
nk

) = − 1

τ
(ln

pj
nj

− ln
pk
nk

) +
1

τ

A3

A1
(ǫj − ǫk)

(40)
Defining a new variable

Wjk =
1

ǫj − ǫk
(ln

pj
nj

− ln
pk
nk

) (41)
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the time evolution of Wjk yields to the ordinary
differential equation

dx

dt
= − 1

τ
x+

1

τ

A3

A1
(42)

If pj and pk are in the same subsystem for which the
initial probability distribution is a canonical one, i.e., if

pj(t = 0) = αpnje
−ǫjβp , pk(t = 0) = αpnke

−ǫkβp (43)

then

Wjk(t = 0) =
1

ǫj − ǫk
(ln

pj
nj

− ln
pk
nk

) = −βp (44)

For ∀pj , pk in the same subsystem Ωp, the time evolution
of Wjk yields to the same ordinary differential equation
(ODE) with the same initial value, namely,

dx

dt
= − 1

τ
x+

1

τ

A3

A1
, x = Wjk(t = 0) = −βp (45)

so that the solution of Wjk is the same Wjk(t) = βp(t).
Therefore, the probability distribution in this subsystem
maintains the canonical distribution with the parameter
βp(t) given by

pj(t) = αp(t)nje
−ǫjβp(t) (46)

In addition, the temperature of the subsystem at time t
is defined by

Tp(t) =
1

kbβp(t)
(47)

Thus, for a system in a non-equilibrium state, the
hypo-equilibrium temperature for each subsystem is
defined. This temperature can be the same or different
from that of any other subsystem. If a system is in
an M th-order hypo-equilibrium state, it remains at least
of order M throughout as well as after the evolution,
and the probability distribution of each subsystem
remains canonical. More discussion on the evolution of
temperature is given in Section V. In addition, the ODE
for βp (Eq. (45)) is independent of αp so that different
subsystems with the same initial βp also keep the same
βp(t) in the evolution. This phenomenon is consistent
with the idea that energy via a heat interaction cannot
transfer between systems with the same temperature to
produce a temperature difference. Equal temperature
subsystems maintain equal temperatures.
Moreover, if two subsystems A and B are in

mutual equilibrium at time tme (αp(tme)
A = αp(tme)

B,
βp(tme)

A = βp(tme)
B), the combination of these

two subsystems yields a subsystem with a canonical
distribution. This new subsystem maintains a canonical
distribution throughout its state evolution, which means
that the two original subsystems maintain their hypo-
equilibrium states as well as a state of mutual equilibrium
with each other.

The results just demonstrated are summarized as
follows: i) the manner of subdividing the system is
invariant with respect to the irreversible relaxation
trajectory; ii) the probability distribution in each
subsystem remains canonical along the trajectory so that
temperature can be defined based on a parameter of the
canonical distribution; and iii) equal temperature sub-
systems maintain equal temperatures, and subsystems
in mutual equilibrium remain in mutual equilibrium.
With the concept of subsystem hypo-equilibrium state,
the trajectory for system state evolution in state
space is described by two functions αp(t) and βp(t).
Physically each instantaneous value of αp(t)Zp(βp(t))
is the total probability (particle number) of a given
subsystem, while each instantaneous value of βp(t) is
the parameter of the canonical distribution and the
inverse of the subsystem temperature. Zp(β(t)) is the
partition function, which is a function of β. Thus, αp(t)
describes the probability transfer between subsystems,
while βp(t) describes the temperature evolution and
heat transfer between subsystems. No longer is the
canonical distribution simply a characteristic of stable
equilibrium but instead a characteristic of subsystem
hypo-equilibrium and maximum entropy generation as
well. This feature provides a convenient pattern for
studying the evolution of a system’s state distribution
during an irreversible relaxation process.
For a complete discussion on subspace temperature

and a set of general non-equilibrium intensive properties,
the reader is referred to [27–29]. Some conclusions from
these references are given in Appendix B, including a
clear physical picture, based on the concepts of hypo-
equilibrium state and non-equilibrium intensive property,
of the generalization of the Onsager relations and the
dissipation potential to the non-equilibrium realm. In
addition, for a discussion of the relationship of the general
Onsager framework of non-equilibrium thermodynamics
[30] to SEAQT and GENERIC, the reader is referred
to [6, 25] for the SEAQT framework and to [31] for the
GENERIC.

III. MODEL: DENSITY OF STATE METHOD

In this section, the numerical method for solving
the SEAQT equation of motion is introduced. Called
the density of state method, its purpose is to solve
this equation for an extremely large number of energy
eigenlevels, a number, in fact, so large that even the state
evolution of macroscopic systems can be determined.
This numerical method follows the same idea as the
derivation of the equation of motion for a degenerate
system, namely, that similar eigenlevels with similar
initial states evolve similarly. An example of a system
with a very large number of levels is that of an ideal gas at
a temperature higher than the characteristic temperature
for translation. A practical illustration is given in Section
IV.
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A. Probability cut

For an isolated system with unbounded energy, the
probability distribution is assumed to be limited to a
bounded range of energy eigenlevels. This means that in
the limK→∞ p(ǫ > ǫK) = 0, and the energy eigenlevels
in the bounded range can be used to approximate the
unbounded range of the system. For a given system
{ǫi, i = 1, 2, ...} and initial state {pi, i = 1, 2, ...}, K is
chosen such that

∑

i>K pK < δ resulting in ǫcut = ǫK and
the set of system bounded energy eigenvalues ǫi < ǫcut.

B. Evolution of probability in energy intervals

For a system with bounded energy eigenvalues, a
subset of the energy eigenlevels can be chosen to be a
subsystem or an entire system. The range of energy
eigenlevels of this subset are then separated into finite
intervals such that

ei = ǫground +
i

R
(ǫcut − ǫground) (48)

Interval: [ei−1, ei], i = 1, ..., R

Interval length: ∆E = ei − ei−1, i = 1, ..., R

where R is the number of intervals. Integrating the
equation of motion, Eq. (36), over the ith interval
[ei−1, ei] yields the equation of motion for the probability
in the ith interval, namely,

dPi

dt
=

1

τ
(〈s〉i − Pi

A2

A1
+ 〈e〉i

A3

A1
) (49)

where Pi =
∑

ǫk∈[ei−1,ei]
pk is the probability distributed

over the energy levels in the interval [ei, ei−1], 〈s〉i =
−∑ǫk∈[ei−1,ei]

pk ln(pk/nk) is the contribution of this

energy interval to the total entropy, and 〈e〉i =
∑

ǫk∈[ei−1,ei]
ǫkpk is the contribution of this energy

interval to the total energy. By summing the property
of every energy interval, the property of the whole
system (e.g., the total entropy and total energy) can be
determined.

C. Energy spectrum agglomeration

For a given initial state, the energy eigenlevels of the
system can be separated into M groups. Each group
forms a subsystem, and the probability distribution of
each subsystem is assumed to be a gamma distribution
or its linear combination, which can cover quite a large
range of initial conditions. A subsystem K is chosen, and
its range of energy eigenvalues divided into R intervals.
It is assumed that there are mi energy eigenvalues

{ǫij, j = 1, ....mi} with degeneracies {ni
j, j = 1, ....mi}

in the interval [ei−1, ei] of subsystem K where mi can be
infinity.
A pseudo subsystem with energy eigenvalues {Ei, i =

1, ..., R} and degeneracies {Ni, i = 1, ..., R} is then
constructed such that

Ni =

mi
∑

j=1

ni
j (50)

Ei =
1

Ni

mi
∑

j=1

ni
jǫ

i
j (51)

For any distribution, Pi is the distribution of the ith

interval of the Kth subsystem expressed by

Pi =

mi
∑

j=1

pij (52)

If the subsystem is has a distribution given by

pij = Cni
j(ǫ

i
j)

θe−ǫijβ (53)

where C is a constant, ni
j is the degeneracy of energy

eigenlevel ǫij . The pseudo subsystem distribution at the
same temperature is expressed as

P̂i = CNi(Ei)
θe−Eiβ (54)

where C is the same as in Eq. (53). In Appendix A, P̂i is
proven to be equal to Pi for most energy intervals under
the quasi-continuous condition expressed as

1

β
≫ |Ei+1 − Ei| > |ǫij − Ei| (55)

Note that P̂i becomes a probability distribution with
normalization condition when the system as a whole
is considered. It is assumed that the quasi-continuous
condition holds both for the pseudo as well as the original
subsystem. Now, for the original subsystem,

〈e〉i =
∑

j

pijǫ
i
j (56)

〈s〉i = −
∑

j

pij ln
pij
ni
j

(57)

〈e〉K =
∑

i

∑

j

pijǫ
i
j (58)

〈s〉K = −
∑

i

∑

j

pij ln
pij
ni
j

(59)

〈es〉K = −
∑

i

∑

j

pijǫ
i
j ln

pij
ni
j

(60)

〈e2〉K =
∑

i

∑

j

pij(ǫ
i
j)

2 (61)
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while for the pseudo subsystem,

〈ê〉i = EiP̂i (62)

〈ŝ〉i = −P̂i ln
P̂i

Ni
(63)

〈ê〉K =
∑

i

P̂iEi (64)

〈ŝ〉K = −
∑

i

P̂i ln
P̂i

Ni
(65)

〈ês〉K = −
∑

i

P̂iEi ln
P̂i

Ni
(66)

〈ê2〉K =
∑

i

P̂iE
2
i (67)

Here 〈·〉i stands for the contribution of the ith interval of
the pseudo or original subsystem to the system property,
while 〈·〉K stands for the contribution of the entire Kth

subsystem to the system property. The system properties
are then found as is done in Appendix A by summing the
subsystem properties over the index K. In Appendix A,
it is proven that under the quasi-continuous condition, a
pseudo subsystem property in a given energy interval is
in most cases equal to that of the original subsystem, and
the associated subsystem and system property as well as
A1, A2, A3, Â1, Â2, and Â3 are equal to those of the
original subsystem. The latter are written as

A1 =

∣

∣

∣

∣

1 〈e〉
〈e〉 〈e2〉

∣

∣

∣

∣

, A2 =

∣

∣

∣

∣

〈s〉 〈e〉
〈es〉 〈e2〉

∣

∣

∣

∣

, A3 =

∣

∣

∣

∣

〈s〉 1
〈es〉 〈e〉

∣

∣

∣

∣

(68)

Â1 =

∣

∣

∣

∣

1 〈ê〉
〈ê〉 〈ê2〉

∣

∣

∣

∣

, Â2 =

∣

∣

∣

∣

〈ŝ〉 〈ê〉
〈ês〉 〈ê2〉

∣

∣

∣

∣

, Â3 =

∣

∣

∣

∣

〈ŝ〉 1
〈ês〉 〈ê〉

∣

∣

∣

∣

(69)

The combination of M pseudo subsystems can then be
used as a numerical approximation of the original system
for each energy interval (Eq. (49)), i.e.,

Original system:
dPi

dt
=

1

τ
(〈s〉i − Pi

A2

A1
+ 〈e〉i

A3

A1
)

Pi(t = 0) = C
∑

j

ni
je

−ǫijβ (70)

Pseudo system:
dP̂i

dt
=

1

τ
(〈ŝ〉i − P̂i

Â2

Â1

+ 〈ê〉i
Â3

Â1

)

P̂i(t = 0) = CNie
−Eiβ (71)

Using the time evolution of the pseudo system, the
property evolution of the system, such as that for
temperature and entropy, can be determined.

IV. APPLICATION TO AN ISOLATED

CHEMICALLY REACTIVE IDEAL GAS

MIXTURE

A. System definition and state representation

1. Microstate

The state space of a chemically reactive system is
composed of two subspaces, reactant and product. The
energy eigenlevels of the reactants and those of the
products together form the energy eigenlevels for the
system as a whole. Denoting the state space of the
reactants by Hreactant and that of the products by
Hproduct, the system state space H takes the form

H = Hreactant ⊕Hproduct (72)

The simple yet well-studied chemical reaction mechanism
considered here is

F +H2 ⇔ FH +H (73)

since it is well-adapted to illustrating our general
approach. Reaction mechanisms in the vein of the
general Guldberg-Waage chemical relaxation equation
are considered in [32] where the SEAQT framework is
used to model coupled reaction mechanisms while in
[33, 34] complex, coupled reaction-diffusion pathways are
used to predict the effects of micro-structural degradation
and chromium oxide poisoning on the performance of
a solid oxide fuel cell cathode. Predictions made are
compared with experimental data. A study of chemical
reaction rate is also given in [18]. In addition, Grmela
provides a study using GENERIC [35] of the entropy
production that occurs in chemically reactive systems
represented by the general Guldberg-Waage chemical
relaxation equation.
Now, the available energy eigenvalues for one subspace

(reactant or product) are constructed from the energy
eigenvalues of each degree of freedom, i.e.,

ǫreactant = ǫt,H2
+ ǫr,H2

+ ǫv,H2
+ ǫt,F (74)

ǫproduct = ǫt,FH + ǫr,FH + ǫv,FH + ǫt,H (75)

The translational energy eigenvalue ǫt uses the form
of the infinite potential well, the rotational energy
eigenvalue ǫr the form of the rigid motor, and the
vibrational energy eigenvalue ǫv the form of the harmonic
oscillator, i.e.,

ǫt(nx, ny, nz) =
~
2

8m

(

(

nx

Lx

)2

+

(

ny

Ly

)2

+

(

nz

Lz

)2
)

(76)

ǫr(j,m) =
j(j + 1)~2

2I
=

j(j + 1)~2

2µr2
(77)

ǫv(ν) =

(

ν +
1

2

)

~ω + Ed (78)
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where nx, ny, and nz are the quantum numbers for
the translational degrees of freedom; j and m are the
quantum numbers for the rotational degrees of freedom;
and ν is the quantum number for the vibrational degrees
of freedom. ǫd is the disassociation energy of a given
molecule (e.g. H2 and FH). Each combination of
quantum numbers corresponds to one energy eigenlevel
of reactant or product without degeneracy (provided
the rotational state is distinguished by the magnetic
quantum number m). The system energy eigenlevels are
formed by all the available energy eigenlevels of reactants
and products. The separation of the two subspaces
{ǫreactant} and {ǫproduct} is kept to maintain their clear
physical meaning. In the modeling, these two subspaces
serve as two subsystems in the discussion of system non-
equilibrium state.

2. Density of state

For temperatures higher than the characteristic
temperatures of translation and rotation, the energy
eigenlevels distribute from the ground state to infinity
with high density. These spectrums can be approximated
to be continuous. The densities of states of translational
and rotational energy for specie A are given by

Dt,A(ǫ)dǫ =
2πV

h3
(2mA)

3

2 ǫ
1

2 dǫ (79)

Dr,A(ǫ)dǫ =
2IA
~3

dǫ (80)

In contrast, that for vibration is assumed to be
discrete. To describe the available energy eigenlevels,
density of states instead of individual energy eigenlevels
are used because of the extremely large number of the
latter. Similar to the way of dealing with individual
energy eigenlevels, the density of states is calculated
separately for reactants and products. The joint density
of states from the densities of states of M independent
energy forms can be calculated from

D(E)dE =

∫

∑
M
i=1

ei=E

D1(e1)D2(e2) · · ·DM (eM )

×de1de2 · · · deM

= dE

∫ E

Eg
1

de1

∫ E−e1

Eg
2

de2 · · ·
∫ E−

∑M−2

i=1

Eg

M

deM−1

×D1(e1)D2(e2) · · ·DM−1(eM−1)

×DM (E −
M−1
∑

i=1

ei) (81)

where Eg
i is the ground state for the ith density of states.

Specifically, the density of states for one subsystem of

the system studied can be calculated by

Dreac(E)dE =

∫

ǫt,H2
+ǫr,H2

+ǫv,H2
+ǫt,F=E

×Dt,H2
(ǫt,H2

)Dr,H2
(ǫr,H2

)Dv,H2
(ǫv,H2

)Dt,F (ǫt,F )

×dǫt,H2
dǫr,H2

dǫv,H2
dǫt,F (82)

Dprod(E)dE =

∫

ǫt,FH+ǫr,FH+ǫv,FH+ǫt,H=E

×Dt,FH(ǫt,FH)Dr,FH(ǫr,FH)Dv,FH(ǫv,FH)Dt,H(ǫt,H)

×dǫt,FHdǫr,FHdǫv,FHdǫt,H (83)

The joint distribution of the density of states of
translational and rotational energy eigenlevels takes the
form

Dreac
t,r (E)dE =

∫

ǫt,H2
+ǫr,H2

+ǫt,F=E

Dt,H2
(ǫt,H2

)

×Dr,H2
(ǫr,H2

)Dt,F (ǫt,F )dǫt,H2
dǫr,H2

dǫt,F

=
2πV

h3
(2mH2

)
3

2

2πV

h3
(2mF )

3

2

2IH2

~3

1

3
B(

3

2
,
3

2
)E3dE(84)

Dprod
t,r (E)dE =

∫

ǫt,FH+ǫr,FH+ǫt,H=E

Dt,FH(ǫt,FH)

×Dr,FH(ǫr,FH)Dt,H(ǫt,H)dǫt,FHdǫr,FHdǫt,H

=
2πV

h3
(2mFH)

3

2

2πV

h3
(2mH)

3

2

2IFH

~3

1

3
B(

3

2
,
3

2
)E3dE

(85)

Generally, the energy eigenlevels for a subspace are
constructed from t translational and r rotational degrees
of freedom, and the density of states for the subsystem
built from these eigenlevels takes the form

Dt,r(E)dE ∝ E
1

2
t+r−1dE (86)

For temperatures not much greater than the character-
istic temperature of the vibrational degrees of freedom,
the form of the density of state for each subsystem is,
respectively,

Dreac(E − ǫd,H2
)dE = Dreac

t,r (E)dE (87)

Dprod(E − ǫd,FH)dE = Dreac
t,r (E)dE (88)

where ǫd,H2
and ǫd,FH are the ground energy of

vibrational degrees of freedom of H2 and FH , which are
approximated by the disassociation energies of H2 and
FH .
For temperatures much greater than the characteristic

temperature of the vibrational degrees of freedom, the
form of the density of state for each subsystem is,
respectively,

Dreac(E)dE = dE
∑

ν,ǫν,H2
<E

Dreac
t,r (E − ǫν,H2

) (89)

Dprod(E)dE = dE
∑

ν,ǫν,FH<E

Dprod
t,r (E − ǫν,FH) (90)

Finally, the energy eigenlevel information for reactant

({ǫreactanti } and {nreactant
i }) and product ({ǫproductj }
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and {nproduct
j }) is obtained. The system has energy

eigenlevels, {ǫreactanti , ǫproductj } and density of states

{nreactant
i , nproduct

j }.

B. Numerical Process

1. Cut-off energy

With the density of states for each subspace, the cut-off
energy for the system at a fixed energy corresponding to
an initial state or that of stable equilibrium can easily
be calculated. Given the density of states n(E) of a
subsystem and a type of probability distribution with
parameter θ which takes the form that reduces to the
canonical distribution when θ = 0, i.e.,

p(E) ∝ D(E)Eθe−βE (91)

the cumulative distribution function becomes

F (E) ∝
∫ E

Eground

D(E′)Eθe−βE′

dE′ (92)

The cut-off energy is then the inverse of the cumulative
distribution function F where δ is a very small number,
namely,

Ecut = F−1(1 − δ) (93)

As an example, take a system consisting of an ideal
gas mixture that has a temperature lower than the
characteristic temperature of vibration but higher than
that of translation and rotation. This is indicative of
the conditions for a very large number of ideal gas
applications (102K ∼ 103K). The energy eigenlevels for
a subspace are constructed from t translational and r
rotational degrees of freedom, and the density of states
for the subsystem built from these eigenlevels takes the
form

Dt,r(E) = C0E
1

2
t+r−1 (94)

where the procedure for determining C0 is given in
previous section. If the probability distribution in the
subsystem is a gamma function with parameter β and θ
then

p(E) ∝ Dt,r(E)Eθe−βE ∝ Eα+θ−1e−βE ∝ Γ(α+ θ, β)
(95)

The distribution among the subsystem energy eigenlevels
yields to the gamma distribution Γ(α + θ, β) with the
following parameter definitions:

α =
1

2
t+ r, β =

1

kbT
(96)

The distribution and cumulative distribution functions
then take the form

p(E) =
Eα+θ−1e−βE

∫∞

0
E′α+θ−1e−βE′dE′

=
βα+θ

Γ(α+ θ)
Eα+θ−1e−βE

(97)

F (E) =

∫ E

≈0
E′α+θ−1e−βE′

dE′

∫∞

0
E′α+θ−1e−βE′dE′

=
γ(α+ θ, βE)

Γ(α+ θ)
(98)

where Γ(α+θ) is the gamma function evaluated at α+θ,
and γ(α+θ, βE) is the lower incomplete gamma function.
The energy of the ground state is approximately zero.
The cut-off energy is found from the inverse of the
cumulative distribution function such that

Ecut = F−1(1− δ;α+ θ, β) (99)

2. Pseudo-system

Since there are two subspaces for the chemically
reactive system considered here, i.e., one for reactants
and the other for products, two cut-off energies are
calculated; and the larger one is used to truncate the open
interval of infinite energy eigenlevels into a closed one. To
establish the pseudo-system, an energy interval ∆E is
chosen according to the quasi-continuous condition, Eq.
(55). Two pseudo-subsystems are then set up, one for the
reactants and the other for the products. The pseudo-
system for the composite system is the combination of
the two pseudo subsystems. The energy eigenvalue and
degeneracy for one pseudo-subsystem corresponding to
the ith interval are then determined by integrating Eqs.
(50) and (51) over that interval where the summations
are replaced by integrals using the density of the states
D(E) so that

Ni =

∫ ei+∆E

ei

D(E)dE (100)

Ei =
1

Ni

∫ ei+∆E

ei

D(E)EdE (101)

Using Eq. (86) and considering only translational and
rotational degrees of freedom, the energy eigenvalue and
degeneracy for the ith energy interval is

Ni = C0

∫ ei+∆E

ei

Eα−1dE =
C0

α
[(ei +∆E)α − eαi ] (102)

Ei =
C0

Ni

∫ ei+∆E

ei

EαdE =
α

α+ 1

(ei +∆E)α+1 − eα+1
i

(ei +∆E)α − eαi
(103)

where C0 and α are defined by Eqs. (94) and (96),
respectively, and calculated via Eqs. (82) and (83).
Once the pseudo-system has been defined in this way,
the evolution of the isolated chemically reactive system
can be determined.
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C. Initial condition

We provide the analytical solution for an initial
condition when the vibrational energy is frozen.

1. Initial condition 1: 2nd-order hypo-equilibrium

For a 2nd-order hypo-equilibrium state, it is assumed
that the reactant energy eigenlevels and product energy
eigenlevels form subspaces, respectively. In either
subspace, the distribution is proportion to the canonical
distribution. Using Eqs. (84) to (85) and (87) to (88),

preac(E − ǫd,H2
)dE = preact,r (E)dE ∝ Dreac

t,r (E)e−βEdE

∝ E3e−βEdE (104)

pprod(E − ǫd,FH)dE = pprodt,r (E)dE ∝ Dprod
t,r (E)e−βEdE

∝ E3e−βEdE (105)

Both distributions are Γ(4, β) gamma distributions and
both normalization constants are β4/Γ(4), where Γ(4) is
calculated from the gamma function.

2. Initial condition 2: the gamma distribution

If the initial condition for one subspace (reactant or
product) takes the general form of a gamma distribution,
then, for example, the reactant subspace distribution is
given by

preac(E − ǫd,H2
)dE ∝ E3+θe−βEdE (106)

since the product has little probability initially. Eq.
(106) is gamma distribution Γ(4 + θ, 1/β). The mean
and variance of E takes the form

Mean =
4 + θ

β
(107)

V ar =
4 + θ

β2
(108)

By varying θ, the influence of the initial condition can be
studied. For instance, the effusion process can result in a
gamma distribution if the probability distribution of one
of the reactant’s (e.g., F ) energy eigenlevels is

pF (E)dE = pFt (E)dE = β2Ee−βEdE (109)

This is the energy distribution of an effusion particle,
which can be acquired from the velocity distribution

F (v)dv ∝ vfM (v)dv ∝ v × v2e
− mv2

2kbT dv (110)

where fM is the Maxwellian velocity distribution. The
other reactant H2 has the Maxwellian probability
distribution of its energy eigenlevels as well given by

pH2

t,r (E)dE =
DH2

t,r (E)e−βE

ZH2

t,r (β)
dE =

β5/2

Γ(5/2)
E3/2e−βEdE

(111)

where DH2

t,r is the density of state for H2 with vibrational

degree of freedom frozen, and ZH2

t,r is the partition
function. This results in a gamma distribution for θ = 0.5
in Eq. (106). The initial reactant state is then

preac(E − ǫd,H2
)dE = preact,r (E) =

∫ E

0

pF (E − e1)p
H2(e1)

×de1 =
β9/2

Γ(9/2)
E7/2e−βEdE (112)

V. RESULTS AND DISCUSSION

A. 2nd-order hypo-equilibrium initial condition

The fundamental theoretical result for the SEA
equation of motion is composed of two parts: the
non-equilibrium kinetic trajectory in state space and
the subsystem temperatures. SEA predicts a unique
trajectory for non-equilibrium state evolution (Section
II.E), while the definition of subsystem and subsystem
temperature (Section II.F) provide a good framework for
studying the trajectory. Unlike phenomenological def-
initions of non-equilibrium temperature, the subsystem
temperature defined here is fundamental and has a
clear physical picture: the temperature is defined via
the canonical distribution. Furthermore, the principle
of SEA leads to a set of very well-defined physical
and mathematical features for subsystem temperature,
which allow subsystem hypo-equilibrium state and
temperature to be reasonable generalizations of the
existing concepts of state and temperature at stable
equilibrium. In order to illustrate the above ideas,
the non-equilibrium behavior of the isolated chemically
reactive system introduced earlier is modeled using the
SEAQT framework. A discussion of results for the
state evolution trajectory in state space and on an
energy-entropy (E-S) diagram is given first followed by
a discussion of results for the total probability and
temperature of the subsystems.
The initial state of the system is chosen to be a 2nd-

order hypo-equilibrium state, and the two subsystems are
the reactant and product subspaces. The temperatures
of the two subsystems for the initial non-equilibrium
state are selected to be 300K and 400K, respectively.
Although it would be more reasonable to choose the same
temperature, the temperatures chosen here are to better
illustrate subsystem temperature evolution. The total
probability in the reactant subsystem is 0.9999, and that
in the product subsystem 0.0001. The cut-off energy is
5.76× 10−19J , and the energy interval is 8.84× 10−23J .
As a comparison, the real energy eigenlevel interval
is 2.62 × 10−43J , and the interval calculated with the
initial temperature is 1/β(t = 0) = 6.9 × 10−21J .
Thus, the quasi-continuous condition holds. There are
14, 127 energy eigenlevels in the reactant subspace (or
subsystem) and 16, 666 energy eigenlevels in the product
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FIG. 1. (Color online) (a:top) System state evolution
trajectory on an energy-entropy diagram; (b:bottom) entropy
(black line) and entropy generation rate (green (light grey)
line) evolutions as a function of dimensionless time.

subspace (or subsystem). At the initial state, the system
has more than a 0.999999 probability of being distributed
in the 3500 energy eigenlevels below the cut-off energy of
5.76× 10−19J . Thus, a total of 30, 793 levels are used to
represent with great accuracy (as demonstrated below)
the estimated 10130 levels of the actual system. The
relaxation time is chosen to be 1 so that the kinetics
of state evolution are studied using dimensionless time.

Fig. 1a shows the system state evolution trajectory
on an energy-entropy diagram [36]. For any state of
the system (non-equilibrium or equilibrium), the system
state can be mapped to one point on the energy-
entropy diagram. The bold solid concave curve is the
stable equilibrium curve, and any point on the curve
represents a stable equilibrium state. Because the stable
equilibrium state has the maximum entropy at a given
energy, composition, and volume, there is no system state
available to the right of the stable equilibrium curve.
Point A0 is the initial state in the chemically reactive
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FIG. 2. (Color online) System trajectory in state space
represented by (a:top) the evolution of the probability
distribution among the energy eigenlevels and by (b:bottom)
the evolution of the normalized distributions. The four
dashed lines correspond to four of the non-equilibrium states
along the trajectory (states A1 to A4 in Fig. 1), while the
single narrow solid line is the distribution for the initial state
(A0) and the single bold solid line is that for the equilibrium
state (B).

model. If the system state evolution trajectory is mapped
from state space to the energy-entropy diagram, the
trajectory is a horizontal line (red line) at a given energy.
Points A1 to A4 are four intermediate non-equilibrium
states on the evolution trajectory, and Point B on the
concave curve is the stable equilibrium state.
Fig. 1b shows the changes in the entropy and entropy

generation rate values as the system state evolves along
the trajectory. The entropy generation rate is not
constant along the dimensionless time axis. According
to SEA, the entropy generation rate is proportional
to gS⊥L(gI ,gE), which lies parallel to the constant
probability and constant energy hyper-surface and is the
perpendicular component of the entropy gradient to the
manifold L(gI , gE). Thus, the entropy generation rate
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FIG. 3. (Color online) (a:top) Evolutions of particle
number and reaction rate and (b:bottom) the evolution of
temperature. For the line colors in (a), the black line and
the green (light grey) line represent the FH,H and H2, F ,
respectively, and the red (dark grey) line represents reaction
rate.

reveals the entropy gradient changes along the trajectory
in state space.
Fig. 2a shows the probability distribution among the

energy eigenlevels when the system is at states A0 to
A4 and B in Fig. 1a. In order to better show the
distribution’s evolution, each curve is normalized by its
peak and the result shown in Fig. 2b. In Fig. 2a,
one can observe that the system probability transfers
from the reactant subsystem to the product subsystem.
At the same time, the distribution of both subsystems
evolve from narrow to wider distributions, indicating that
the temperature is increasing. The distributions remain
canonical at all times. The distribution evolution for each
subsystem is more clearly seen in Fig. 2b.
As discussed in Section II.F, the non-equilibrium

evolution of state can be described via the evolutions
of αp(t)Zp(βp(t)) and βp(t), which correspond to
the particle number Np(t) and temperature Tp(t) =
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FIG. 4. (Color online) Comparison of (a:top) the energy-
entropy diagrams and (b:bottom) the entropy (black line) and
entropy generation rate (green (light grey) line) evolutions for
a system with and without vibrational degrees of freedom.
The solid lines are for the system with vibrational energy
eigenlevels, while the dash lines are for the system without
vibrational levels.

1/kbβp(t). Zp is the partition function of the subsystem.
Given the evolution of the particle number and
temperature, one can rebuild the probability distribution
via Eq. (38). Fig. 3a shows the particle number
evolution for the process in which reactant changes to
product. Fig. 3b shows the temperature evolution. The
energy released by the chemical reaction heats up both
the reactant and product, and the manner in which the
temperature increases follows the SEA trajectory. At
the end, when the system reaches stable equilibrium,
the temperatures of the subsystems are equal, and the
non-equilibrium temperatures converge to that for stable
equilibrium. As already indicated in the discussion
above surrounding Fig. 2b, the physical meaning of this
temperature increase is a broadening in the probability
distribution among the energy eigenlevels.
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FIG. 5. (Color online) Comparison of (a:top) the stable
equilibrium distributions and (b:bottom) the density of states
for the systems with (solid line) and without (dashed line)
vibrational energy eigenlevels.

B. Influence of the density of states

Using a comparison of system state evolution with
and without vibrational energy eigenlevels included in
the system description, one can study how the density
of states influences system behavior. Fig. 4a shows
the comparison of the corresponding stable equilibrium
curves and the evolution trajectory using the same initial
subsystem temperatures. Because the stable equilibrium
temperature is less than 4000K (Fig. 3b) and the
characteristic temperature of vibration is about 6000K,
the stable equilibrium curves show some difference, which
is consistent with the result found from equilibrium
thermodynamics. Fig. 4b in contrast shows the
difference of the two systems in the non-equilibrium
region. At the beginning, the two systems perform
the same. As the entropy generation rate approaches
the maximum, the two systems perform differently
and the system with vibrational energy eigenlevels
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FIG. 6. (Color online) Initial distribution in reactant
subspace for θ = 0 (solid line), θ = −2 (dashed line) and
θ = 2 (dashed-dot line).

exhibits a larger entropy and entropy generation rate.
This phenomenon can be explained using subsystem
temperature. The initial temperature is about one order
of magnitude less than the characteristic temperature
of vibration, which leads to the vibrational energy
eigenlevels being frozen. Thus, the two systems perform
similarly. However, as each subsystem temperature
increases (Fig. 3b), the vibrational energy eigenlevels
are activated, resulting in a difference in performance
between the two systems.
Fig. 5a shows the difference in the system stable

equilibrium distributions with and without vibrational
energies. Fig. 5b shows the density of states difference.
One can observe that although total properties such as
the entropy change little, the probability distribution
and even the equilibrium particle number changes are
somewhat more significant. All the differences result
from the density of states changing.

C. Influence of the initial condition on the

trajectory

Another important study is for the case when the
initial condition is a very high order hypo-equilibrium
state. In that case, although the theoretical discussion
in Section II.F is still valid, the number of subsystem
divisions of the systemmay be so high characterizing each
non-equilibrium state as an M th-order hypo-equilibrium
state may no longer be practical. However, the density of
states method still permits the solution of the equation
of motion to very high accuracy. This section uses the
general gamma distribution to study the influence of
initial condition on the non-equilibrium trajectory by
varying θ in Eq. (106). The mean value of the energy
for three cases with different θs is chosen to be the
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FIG. 7. (Color online) (a:top) Evolutions of particle number
and reaction rate. For the line colors in (a), the black line
and green (light grey) line represent the FH,H and H2, F ,
respectively, and the red (dark grey) line represents reaction
rate. (b:bottom) Evolutions of entropy (black line) and
entropy generation rate (green (light grey) line). For the line
styles in both figures, θ = 0 (solid line), θ = −2 (dashed line)
and θ = 2 (dashed-dot line). The dimensionless time when
the maximum reaction rate is reached is set to be 0.

same in order to ensure the same system total energy
and the same final stable equilibrium state. From Eqs.
(111) and (112), the ratio of β in the three cases is
β−2 : β0 : β2 = 1 : 2 : 3 and the ratio of the variance
of energy is V ar−2 : V ar0 : V ar2 = 1 : 1/2 : 1/3. The
initial distribution for the reactant subspace is shown in
Fig. 6, which takes 0.9999 of the total probability. It can
be observed that for lower θ, there is more probability
distributed in the higher energy eigenlevels (energies
greater than −6.4 × 10−19J) and the energy variance is
larger.

The evolution in dimensionless time is studied in Fig
7. In order to facilitate the comparison, all the curves are
shifted such that time 0 is the dimensionless time when
the maximum reaction rate is reached, and both Figs. 7a

and 7b use the same 0 time. In Fig. 7a, it is observed
that the beginning of the three cases are quite different,
while the reaction processes after time 0 are similar.
Furthermore, the negative θ case takes less time to arrive
at stable equilibrium than the zero θ case (Maxwellian
distribution), and the positive θ case takes even more. In
Fig. 7b, the entropy evolution is also similar after time
0. However, the beginning parts of the evolution exhibit
three features. The first is that the initial entropy of the
negative and positive θ cases are both smaller than that
for θ = 0, since the Maxwellian distribution provides the
largest entropy for given energy. That also means that
the initial entropy cannot decide how fast the reaction
process is, which instead is decided by the value and the
sign of θ. The second feature is that for negative θ, the
entropy evolution is faster than that for the zero θ case,
and the maximum of the entropy generation rate is larger
than that for the zero θ case. The opposite is the case
for the positive θ case. Both Figs. 7a and 7b show that
the negative θ provides the faster reaction process. One
possible explanation is that for lower θ, more probability
is distributed in the higher energy eigenlevels, which
accelerates the reaction process. Another view is that
the lower θ case has lower β, which phenomenologically
can be explained as higher temperature. The final or
third feature is that in the evolution after time 0, the
probability distributions for the positive and negative
cases are not Maxwellian distributions in the strict sense
used in the next section even though the particle number
and entropy evolution are almost the same. However,
as shown in Figs. 7 and 8, a Maxwellian distribution in
each subspace, for a 2nd-order hypo-equilibrium state can
be a very good approximation for studying a reaction’s
intermediate non-equilibrium states.

In Fig. 8, the trajectory of the chemical reaction
is illustrated using the product particle number and
system entropy. The particle number of the product
can be regarded as an equivalent variable to the reaction
coordinate here. By using product particle number
instead of dimensionless time, only the information of
the intermediate states is kept. It must be pointed
out here that in Fig. 8, any trajectory with a positive
dS/dN , i.e., a monotonically increasing function linking
the initial state and stable equilibrium, does not violate
the second law of thermodynamics. However, the
trajectories plotted are not just any trajectories but
those uniquely predicted by SEA, the maximum-entropy-
production (MEP) trajectories. It can be observed that
the trajectories for the three θ chosen are very similar
in Fig. 8a except at the very beginning (shown in Fig.
8b). As mentioned before, even though the probability
distributions do not become 2nd-order hypo-equilibrium
distributions until very late (after the product particle
number reaches 0.5), the 2nd-order hypo-equilibrium
state can provide a very good approximation of the
intermediate non-equilibrium states. In addition, in Fig.
8b, one can observe that the zero θ case has the largest
initial entropy and lowest dS/dN . The trajectories at
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FIG. 8. (Color online) Trajectory representation using
product particle number and entropy. Range of product
particle number (a:top) from 0 to 0.9 and (b:bottom) from
0 to 0.004. The black line and the green (light grey) line
represent entropy (S) and dS/dN , respectively. For the line
styles, θ = 0 (solid line), θ = −2 (dashed line) and θ = 2
(dashed-dot line).

the beginning can be separated into two parts by the
state which the particle number reaches at 0.002. From
0 to 0.002, dS/dN for the non-zero θ case has a huge
difference with that for the zero θ case. If the entropy is
used as the measure of the difference of the distributions,
the larger difference results in a greater speed of the non-
Maxwellian distribution approaching Maxwellian one. In
this process, the degree of reaction only changes a little
when compared with the change in the total particle
number of the product. After the particle number reaches
0.002, there is little difference in dS/dN between the
three cases, even though the difference in entropy lasts
until the system distribution reaches that for a 2nd-order
hypo-equilibrium state. However, this difference is small
when compared with the total system entropy. Recall
from Fig. 7 that there is quite a big difference in the state
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FIG. 9. (Color online) Relative error for the probability
distribution

evolutions for three cases until time 0, when the product
particle number reaches about 0.5. For the range of
product particle number from 0.002 to 0.5, the difference
in entropy is negligible for the intermediate states of the
trajectory but nonetheless has a large influence on the
evolution in dimensionless time.

D. Numerical error

In Fig. 9, the state of the system without vibrational
energy eigenlevels is compared with the analytical
solution of the state, the gamma function, since the
analytical solution for a system with vibrational levels is
difficult to acquire. Fig. 9 shows the relative difference
of the numerical solution with the analytical solution at
states A0 to A4 and B. The relative errors of almost
all the energy eigenlevels are less than 10−2. There
are 14 out of the 30, 793 eigenlevels where the relative
error is larger than 10−2. However, the total probability
for these levels is less than 6.5 × 10−8. The error is
larger for these energy eigenlevels, since they coincide
with the region where the density of states is lower and
increasingly steep. Thus, this error can be explained by
truncation error. It is also observed that the error is
larger at the initial state than that at stable equilibrium.
In addition, the states at lower subsystem temperatures
have narrower distributions, whose accuracy is limited
by the quasi-continuous condition. The energy interval
chosen is about 10−2 times lower than 1/β = kbT , and
that accuracy sets an upper limit on the relative error
at the initial state. In conclusion, the density of states
method developed and used here provides a very accurate
numerical solution to the SEAQT equation of motion for
a system with a very large number of energy eigenlevels.
Furthermore, the criterion used in previous section to
check whether a distribution is Maxwellian or not is
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FIG. 10. (Color online) Time evolution of Λ.

determined from the study here, i.e., if a distribution
of energy has its distribution across most of the energy
eigenlevels (for example, 99% of them) very close to
Maxwellian distribution (relative difference less than 1%)
with the same mean value of energy, the distribution is
regarded as Maxwellian distribution.
Finally, validation of the numerical accuracy of the

time evolution can be acquired through a value defined
by

Λ = kn(β
product − βreactant) = 1/T product − 1/T reactant

(113)
According to Section II.F, βproduct and βproduct yield to
the ODE Eq. (42) with different initial temperatures.
Subtracting the ODE equations for βproduct and βproduct

results in

dΛ

dt
= − 1

τ
Λ, Λ(0) = 1/300− 1/500 (114)

Using the dimensionless time scale for τ = 1, the
analytical solution of lnΛ yields

lnΛ(t) = ln(1/300− 1/500)− t = −6.6201− t (115)

Plotting lnΛ as a function of time as is done in Fig. 10
shows the accuracy of the numerical solution for different
times. The deviation starts from time 12 onward. At
dimensionless time 12, Λ, which is the difference in the
inverse of the reactant and product temperatures, has
a value smaller than 10−8. Thus, this validation proves
that the density of states method can provide a accurate
numerical solution for the equation of motion.

VI. CONCLUSIONS

In the proceeding study, the non-equilibrium state
evolution trajectory for a chemical reaction process is
predicted using a novel thermodynamic-ensemble based

approach, which provides a computationally simpler,
alternative global method for predicting the chemical
kinetics of systems. This is well illustrated via the
definition of hypo-equilibrium state and the existence
of canonical distributions outside the realm of stable
equilibrium. The nature of the SEA equation of
motion directly leads to the existence of a unique non-
equilibrium evolution trajectory in state space, which
represents the kinetics. With the categorization of non-
equilibrium states by different ordered hypo-equilibrium
states, subsystem and subsystem temperatures serve as
a good description of the trajectory in high-dimensional
state space, whose properties are ensured by the equation
of motion or the principle of SEA. In addition, with the
goal of being able to model systems with a very large
number of energy eigenlevels (for the system considered
here, on the order of 10130), the concepts of degeneracy
and density of states are utilized, and the equation of
motion for the degenerate system is developed. The
equation of motion for an energy interval is presented
and the numerical process to solve it introduced.

The clear physical meaning of the evolution trajectory,
subsystem, and subsystem temperature are shown in
the results as are the chemical reaction process via
particle number evolution and subsystem heating via
temperature evolutions. This work provides a reasonable
generalization of the concept of temperature at stable
equilibrium and offers a framework to describe and study
non-equilibrium states and their relaxation process. In
addition, even if the order of the hypo-equilibrium state
is very high so that using this concept in such a case
may not be practical, the density of state method still
permits solution of the equation of motion so that the
non-equilibrium thermodynamic trajectory, especially
that for the intermediate states of the system, can be
determined with th SEAQT equation of motion. As to
the influence of the initial state, it is shown that 2nd

order hypo-equilibrium state is a good approximation
for determining the non-equilibrium thermodynamic
trajectory when the initial condition or state is that of
gamma distribution for the two subsystems. It is worthy
noting that although the results given in this paper are
based on a two-subsystem division and 2nd order hypo-
equilibrium state, the approach presented here can be
easily applied to a system with a much higher number
of subsystems. What order of hypo-equilibrium state is
sufficient for arriving at an approximation is left as an
open question for future work.

Finally, different from other methods for studying
non-equilibrium systems, which are phenomenological
or based on mechanics, this paper introduces a
practical alternative approach based on a first-principle
thermodynamic framework for studying the relaxation of
non-equilibrium states.
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Appendix A: Pseudo system

In this appendix, a system property calculated by the
density of states method developed here is proven to be
a good approximation of the property’s true value. For
the moment of energy in each interval of a given subspace
(subsystem),

∑

j

ni
j(ǫ

i
j)

θ = Eθ
i

∑

j

ni
j

(ǫij)
θ

Eθ
i

= Eθ
i

∑

j

ni
j(1−

ǫij − Ei

Ei
)θ

= Eθ
i

∑

j

ni
j(1− θ

ǫij − Ei

Ei
) = NiE

θ
i (A1)

∑

j

ni
j(ǫ

i
j)

θ ln(ǫij) = ln(Ei)
∑

j

ni
j(ǫ

i
j)

θ + ni
j(ǫ

i
j)

θ ln(
ǫij
Ei

)

= ln(Ei)
∑

j

ni
j(ǫ

i
j)

θ(−
ǫij − Ei

Ei
) = NiE

θ
i ln(Ei) (A2)

The second equal sign of Eqs. (A1) and (A2) holds when

ǫij − Ei

Ei
≪ 1 (A3)

which is the case for the intervals other the the lowest
ones. In Fig. 9, it is shown that those intervals account
for only a very small probability, if the probabilities of
the original system and pseudo system have the forms

pij = Cni
j(ǫ

i
j)

θe−ǫijβ (A4)

P̂i = CNi(Ei)
θe−Eiβ (A5)

For the properties of each interval of a given subspace
(subsystem),

Pi =
∑

j

pij = C
∑

j

ni
j(ǫ

i
j)

θe−ǫijβ

= C
∑

j

ni
j(ǫ

i
j)

θe−Eiβe−(ǫij−Ei)β = C
∑

j

ni
j(ǫ

i
j)

θe−Eiβ

= Ce−Eiβ
∑

j

ni
j(ǫ

i
j)

θ = CNiE
θ
i e

−Eiβ = P̂i (A6)

〈e〉i =
∑

j

pijǫ
i
j = C

∑

j

ni
j(ǫ

i
j)

θ+1e−ǫijβ

= C
∑

j

ni
j(ǫ

i
j)

θ+1e−Eiβe−(ǫij−Ei)β

= C
∑

j

ni
j(ǫ

i
j)

θ+1e−Eiβ = Ce−Eiβ
∑

j

ni
j(ǫ

i
j)

θ+1

= CNiE
θ+1
i e−Eiβ = 〈ê〉i (A7)

〈s〉i = −
∑

j

pij ln
pij
ni
j

= −β〈e〉i + Pi lnC −
∑

j

pijθ ln(ǫ
i
j)

= −β〈e〉i + Pi lnC − Piθ ln(Ei) = 〈ŝ〉i (A8)

The fourth equal sign in Eqs. (A6) and (A7) results from
the quasi-continuous condition given by

1
β ≫ |Ei+1 − Ei| > |ǫij − Ei| (A9)

e−(ǫij−Ei)β .
= 1 (A10)

In addition, under the quasi-continuous condition and
the assumption that the probability distribution pij or the

distribution Pi or P̂i have the property of higher order
moment convergence at least to the 2nd order in energy
(e.g., as for the case of an ideal gas), the summation of
discrete energy eigenlevels can be approximated by an
integral over a continuous spectrum. Thus, properties
for a given subsystem are found from

〈es〉K =
∑

i

∑

j

pijǫ
i
j ln

pij
ni
j

=
∑

i

∑

j

ni
jǫ

i
je

−βǫij(−βǫij + lnC − θ ln(ǫij))

= C

∫

n(E)E(−βE + lnC − θ ln(E))e−βEdE

(A11)

〈ês〉K =
∑

i

P̂iEi ln
P̂i

Ni

=
∑

i

NiEie
−βEi(−βEi + lnC − θ ln(Ei))

= C

∫

n(E)E(−βE + lnC − θ ln(E))e−βEdE

= 〈es〉K (A12)
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〈e2〉K =
∑

i

∑

j

pij(ǫ
i
j)

2 =

∫

E2p(E)dE

= C

∫

n(E)Eθ+2e−βEdE (A13)

〈ê2〉K =
∑

i

∑

j

P̂i(Ei)
2 =

∫

E2p(E)dE

= C

∫

n(E)Eθ+2e−βEdE = 〈e2〉K (A14)

Note that both discrete summations of original and
pseudo systems can be regarded as the Riemann
summation of the integral, and the difference of the
Riemann summation and the integral is of 2nd order or
greater for the energy interval. This means that the
difference between both Riemann summations (original
and pseudo system) is of 2nd order or greater when quasi-
continuous condition hold. The properties for the system
as a whole are then given by

〈e〉 =
M
∑

K

(
∑

i

〈e〉i)K , 〈ê〉 =
M
∑

K

(
∑

i

〈ê〉i)K (A15)

〈s〉 =
M
∑

K

(
∑

i

〈s〉i)K , 〈ŝ〉 =
M
∑

K

(
∑

i

〈ŝ〉i)K (A16)

〈es〉 =
M
∑

K

〈es〉K , 〈ês〉 =
M
∑

K

〈ês〉K (A17)

〈e2〉 =
M
∑

K

〈e2〉K , 〈ê2〉 =
M
∑

K

〈ê2〉K (A18)

where the summation is over all subsystems. With these
expressions and the proof above linking the original and
pseudo-subsystem properties, it is also clear that 〈Â1〉,
〈Â2〉 and 〈Â3〉 are equal to 〈A1〉, 〈A2〉 and 〈A3〉 under
the quasi-continuous condition. Thus, the solution of the
equation of motion for the pseudo-system, Eq. (71), can
be used as a numerical approximation of that for the
original system Eq. (70).

Appendix B: Onsager investigation

Some results of Onsager investigation using the
concepts of hypo-equilibrium state and non-equilibrium
intensive properties found in [27, 28] are given below. For
a general discussion of the Onsager relation in SEAQT
using the language of quantum mechanics, the reader is
referred to [25]. If the system is in an M th-order hypo-
equilibrium state, the probability evolution yields Eq.
(32). For simplicity, the following definition is made:

αK = lnZK − ln pK (B1)

Thus, the probability evolution of one energy eigenlevel
is given by

pKi (t) =
pK(t)

ZK(βK(t))
nK
i e−βK(t)ǫKi

= nK
i e−αK(t)−βK(t)ǫKi (B2)

αK and βK are non-equilibrium intensive properties
in the Kth subspace, corresponding to the extensive
properties of pK and EK . Furthermore, by defining

α =
A2

A1
, β = −A3

A1
(B3)

the particle number and energy evolution of the Kth

subspace can be acquired from Eq. (36) by summation
over one subspace, i.e.,

dpK

dt
=

1

τ
pK(αK − α) +

1

τ
EK(βK − β) (B4)

dEK

dt
=

1

τ
EK(αK − α) +

1

τ
〈e2〉K(βK − β) (B5)

where 〈e2〉K is defined by Eq. (61) and pK and EK are
the probability and energy in the Kth subspace. When
a system is in a M th-order hypo-equilibrium state and
goes through a pure relaxation process, a relation for
the evolution of extensive properties evolution in one
subspace exists and is expressed as

dSK

dt
= βK dEK

dt
+ (αK − 1)

dpK

dt
(B6)

where SK is the entropy in the Kth subspace. This is the
Gibbs relation for the subspace. The physical meaning
of βK and αK is then given by

βK =

(

∂SK

∂EK

)

pK

=
1

T k
(B7)

αK − 1 =

(

∂SK

∂pK

)

EK

= −µK

T k
, µK =

(

∂EK

∂pK

)

SK

(B8)

where TK is the subspace temperature and µK is
its chemical potential with respect to the subspace
probability pK . The differential change in the total
entropy, which for a pure relaxation process is equivalent
to the entropy generation, is then written as

dS =
∑

K

dSK =
∑

K

βKdEK +
∑

K

(αK − 1)dpK

=
∑

K

(βK − β)dEK +
∑

K

(αK − α)dpK (B9)

where both energy (
∑

dEK = 0) and probability
(
∑

dpK = 0) conservation have been applied. The
Casimer condition holds and JK

E = dEK/dt and JK
p =

dpK/dt are defined to be the internal fluxes of energy and
probability inside the system, while XK

p = βK − β and

XK
E = αK − α are the conjugate forces. Thus,

dS

dt
=
∑

K

XK
E JK

E +
∑

K

XK
p JK

p (B10)
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The Onsager relations are acquired from Eq. (B4) and
(B5) in the form of J = ΛX, where Λ is symmetric and
positive definite, so that

JK
p =

1

τ
pKXK

p +
1

τ
EKXK

E (B11)

JK
E =

1

τ
EKXK

p +
1

τ
〈e2〉KXK

E (B12)

while the quadratic dissipation potential in force
representation [30, 31] is given by

Ξ(X,X) =
1

2
〈X,ΛX〉 = 1

2τ

∑

K

[pK(αK − α)2

+2EK(αK − α)(βK − β) + 〈e2〉K(βK − β)2] (B13)

Furthermore, even though the following constraints apply
to the fluxes:

∑

K

JK
p = 0,

∑

K

JK
E = 0 (B14)

the reciprocity seen in Eqs. (B11) to (B13) is fully
consistent with the Onsager theory since according
to Gyarmati [30] the validity of Onsager’s reciprocal
relations is not influenced by a linear homogeneous

dependence valid amongst the fluxes. Thus, the physical
interpretation of Eqs. (B11) to (B13) in terms of
hypo-equilibrium state and non-equilibrium intensive
properties does not require a reformulation in terms of
independent fluxes even though this could be done.
Thus, from the entropy generation of a non-equilibrium

isolated system derived from the relaxation gradient
dynamics, which are based on the geometry of system
state space, one is able to arrive at the Onsager relations
and the quadratic dissipation potential using the
concepts of hypo-equilibrium state and non-equilibrium
intensive properties. Alternatively, one can arrive as
these relations and this potential using a variational
principle in system state space as done in [25]. Of
course, the Onsager relations and quadratic dissipation
potential also correspond to a variational principle in
the space spanned by conjugate forces and fluxes [30].
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