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Ionic and electronic transport properties in dense plasmas

by orbital-free density functional theory

Travis Sjostrom and Jérôme Daligault
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

We validate the application of our recent orbital-free density functional theory (DFT) approach,
[Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties
of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient,
the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum
plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower
temperatures. Because the computational costs of the method do not increase with temperature,
we can produce results at much higher temperatures than is accessible by the Kohn-Sham method.
Our results for warm dense aluminum at solid density are inconsistent with the recent experimental
results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].

PACS numbers: 52.65.-y,52.25.Fi,71.15.Mb

I. INTRODUCTION

Recently we presented an approach for “Fast and ac-
curate quantum molecular dynamics of dense plasmas
across temperature regimes” based on a carefully de-
signed orbital-free implementation of density functional
theory (DFT) [1]. Our orbital-free approximation retains
the accuracy of the orbital-based Kohn-Sham method (it
reproduces the electron density to high accuracy), while
being computationally less expensive and reaching much
higher temperatures than are accessible with the Kohn-
Sham method. This was shown in [1] for static properties,
including the equation of state of hydrogen from 1 to 100
eV, as well as for the pair distribution functions of alu-
minum near melt and in warm dense matter conditions.

In this paper, we extend our study to the calculation
of dynamical properties. To this end we calculate both
ionic and electronic transport coefficients, including the
ion self-diffusion coefficient, the ion shear viscosity co-
efficient, the electrical and thermal conductivities and
the reflectivity coefficient. As with the static properties,
we find very good agreement with Kohn-Sham DFT cal-
culations. Moreover, the orbital-free approach provides
significant relief from the computational cost tempera-
ture bottleneck of the Kohn-Sham method, allowing us
to calculate accurately more extreme conditions. This
is particularly useful for the calculation of ionic trans-
port properties, which necessitate much longer simula-
tions than necessary for equation of state calculations.

The paper is organized as follows. In section II, we fo-
cus on ionic transport properties and validate our method
for the calculation of the self-diffusion and viscosity coef-
ficients in hydrogen and aluminum plasmas by compar-
ison with Kohn-Sham method at low temperature, and
then extend those calculations to higher temperatures.
In section III, we focus on electronic transport proper-
ties and consider the electrical and thermal conductivi-
ties of hydrogen and aluminum plasmas; here, we make
use of both the ionic positions and associated electron
density from the orbital-free calculations as a shortcut to

the orbitals required in the Kubo-Greenwood formalism.
In both sections, we systematically compare the compu-
tational cost of our orbital-free approach with the Kohn-
Sham method. Finally, special attention is given to the
electrical conductivity of warm dense aluminum at 2.7
g/cm3 in view of the recent experimental determination
at the Linac Coherent Light Source facility reported in
[2]. We find the latter experimental conductivity results
to be inconsistent with our orbital-free DFT results, for
which we provide further discussion.

II. IONIC TRANSPORT

The full details of the orbital-free formulation and im-
plementation may be found in Ref. [1] and its Supple-
mental Material. We simply recall here, that the main
difference between the orbital-based Kohn-Sham method
and our orbital-free approach is in the non-interacting
free energy contribution of the total Kohn-Sham free
energy decomposition. As opposed to the Kohn-Sham
method which evaluates this term through the single par-
ticle orbitals, our approach uses an approximation in
terms of electron density only that enforces the exact
linear response in the uniform limit.

Applying that approach, here we calculate the ion self-
diffusion and shear viscosity coefficients of hydrogen and
aluminum plasmas using the standard Green-Kubo rela-
tions [3]. Hence the self-diffusion coefficient is obtained
from the time integration of the velocity autocorrelation
function,

D =
1

3N

N
∑

i=1

∫ ∞

0

〈Vi(t) ·Vi(0)〉 dt , (1)

where N is the total number of ions in the simulation
cell, Vi(t) is the velocity of the ith ion at time t, and the
brackets indicate the equilibrium thermal average. The
ionic shear viscosity coefficient is obtained by integrating
the autocorrelation function of the off-diagonal compo-
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nents of the stress tensor,

η =
1

6ΩkBT

3
∑

α6=β

∫ ∞

0

〈σα,β(t)σα,β(0)〉 dt , (2)

where Ω and T are the system volume and temperature,
kB the Boltzmann constant, and σ is the ionic stress
tensor, given by

σ =

N
∑

i=1

mViVi + σII + σIE . (3)

The first term on the right hand side is the kinetic con-
tribution, while the ion-ion, σII ,and ion-electron, σIE ,
potential contributions are as given in Ref. [4], and de-
pend only on the electron density and ion positions.

A. Hydrogen

The Kohn-Sham calculations were performed using
the Quantum-Espresso code[5] at the Γ-point only and
used a projector augmented-wave (PAW) pseudopoten-
tial, while the orbital-free calculations employed a local
pseudopotential as described in Ref. [1]. For comparison,
we also show results obtained using the cruder Thomas-
Fermi approximation. In all cases, the simulations in-
cluded 128 atoms in the unit cell, with time steps from
0.002-0.2 fs depending on temperature, and they were
performed in the isokinetic ensemble[6]. In most calcula-
tions, the local density approximation (LDA) [7] for the
exchange-correlation energy was used; other calculations
were done using the Perdew-Burke-Ernzerhof (PBE) gen-
eralized gradient approximation [8]. While inclusion of
finite-temperature effects in the exchange-correlation en-
ergy [9, 10] may have some effect, here we focus on zero-
temperature functionals to make connection with previ-
ous Kohn-Sham based results. The orbital-free calcula-
tions were equilibrated for 10,000 steps and the statistics
gathered for 120,000 steps, while for the Kohn-Sham cal-
culation 40,000 steps were completed after equilibration.

Figure 1 shows results at density 2 g/cm3 and lower
temperatures for which comparative Kohn-Sham results
can be obtained. In (a) the results are shown to agree
very well with the Kohn-Sham results [11]. As for the
Thomas-Fermi approximation, it underestimates the self-
diffusion by 20-30% at these conditions.

We note that the calculations were run on the same
48-core single node hardware, and the time to com-
plete 40,000 molecular dynamics steps at T = 2 eV
for the Kohn-Sham and our orbital-free methods were
87.25 and 7.35 hours respectively, giving a nearly twelve
times speed up for the orbital-free case. For still increas-
ing temperature, the Kohn-Sham approach costs more
in machine memory and cpu time, while the orbital-free
method has no increased cost with increasing tempera-
ture.
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FIG. 1: (Color online) Self-diffusion coefficient of hydrogen
plasmas at 2 g/cm3 and lower temperatures, where compari-
son with Kohn-Sham is possible. In (a) our results show ex-
cellent agreement with Kohn-Sham while Thomas-Fermi ap-
proach exhibits ∼20-30% difference. In (b) we see that for hy-
drogen at these temperatures and densities, there is minimal
difference in using LDA or PBE exchange-correlation func-
tionals. Also using a Nose-Hoover chain (NHC) thermostat
[12], we find negligible difference with the isokinetic thermo-
stat used in all other calculations discussed in this paper.

This freedom from the scale-up of computational cost
with temperature allows us to extend our hydrogen re-
sults to much higher temperatures. In Fig. 2, we show
the self-diffusion (a) and shear viscosity (b) coefficients
for hydrogen at 2 and 8 g/cm3 in the range of tempera-
tures from 1 eV to 100 eV. At the lowest temperatures
of 1 and 2 eV ( and 5 eV for 8 g/cm3) Kohn-Sham calcu-
lations are also shown for comparison. We see an agree-
ment to within 4% of our method.

The self-diffusion results in general have an uncertainty
of 5%, which is determined by inspection of the conver-
gence of the Kubo relation (1). The Thomas-Fermi ap-
proach (which is not shown in Fig. 2), however, differs
from our results by 15-20% up to 10 eV, and then grad-
ually comes in to agreement with our results, showing a
difference within 1% at 80 eV. For the viscosity coeffi-
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FIG. 2: (Color online) Self-diffusion coefficient (a) and shear
viscosity coefficient (b) for hydrogen plasmas at 2 and 8
g/cm3in the range of temperatures from 1 eV to 100 eV. Very
good agreement is shown with Kohn-Sham at lower tempera-
tures. As expected the shorter mean-free-path associated with
higher density leads to lower diffusion and higher viscosity.

cient, the orbital-free results agree with the Kohn-Sham
results to a maximum error of 10%, which is within the
uncertainties of the calculations which are 10-12%. While
the viscosity coefficients at 2 g/cm3 increase monotoni-
cally in this temperature region, the 8 g/cm3 case ex-
hibits a minimum around 2 eV. This is indicative of the
transition from a weakly coupled to a strongly coupled
plasma regime as the temperature decreases, similar to
that found in the simpler one-component plasma model
[13].

B. Aluminum

The Kohn-Sham calculations were performed at the Γ-
point using 64 atoms in the unit cell, and used a 680 eV
plane wave cutoff. A total of 180 bands were calculated
to achieve a 10−3 threshold in the occupation number
at 2.7 g/cm3 and 1 eV, and 160 bands were needed for
a maximum occupation of 2 × 10−4 at 8.1 g/cm3 and 1
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FIG. 3: (Color online) Self-diffusion coefficient for aluminum
plasmas at 2.7 and 8.1 g/cm3 and from 0.5 to 10 eV. Again
good agreement is shown with Kohn-Sham calculations at
0.5 and 1 eV. A smooth fit to the orbital-free calculations
is shown.

eV. The orbital-free calculations were performed for 108
atoms on a 643 grid. Finally, the local pseudopotential
for the orbital-free calculations [1] and the PAW for the
Kohn-Sham calculations include 3 valence electrons only;
this limits the the maximum temperature permissible to
about 10 eV.

Figure 3 shows the self-diffusion results for warm dense
aluminum at ambient solid density, 2.7 g/cm3, and three
times compression, 8.1 g/cm3, in the range of tempera-
ture from 0.5 to 10 eV. As with hydrogen we see very
good agreement in the self-diffusion coefficient at lower
temperature where the calculations overlap. However,
the time for the completion of 45,000 molecular dynam-
ics timesteps for the Kohn-Sham calculation at 2.7 g/cm3

and 1 eV was 225 hours on a 48 core node, while the time
to complete the same number of steps on just 16 cores of
the same machine in the orbital-free case was 13.1 hours.

Finally we consider the case of liquid aluminum near
melt. In our previous work [1] we showed excellent agree-
ment for the ion-ion pair distribution function as com-
pared with both Kohn-Sham method and experimental
results. Following that, we examine here the self-diffusion
as calculated at the experimental densities and temper-
atures [14]. In Fig. 4 our orbital-free results are plot-
ted using both LDA and PBE exchange-correlation func-
tionals, and are compared with the the previous Kohn-
Sham results of [15, 16]. In each case, the orbital-free
and Kohn-Sham results agree closely, although the LDA
agreement is somewhat better than the PBE agreement.
We believe that this is due to lower accuracy in the PBE
local pseudopotential.

Here, as opposed to the hydrogen case of Fig. 1, there
is significant difference between the exchange-correlation
functionals, and further neither LDA nor PBE agree with
the recent experimental self-diffusion results [17, 18] also
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FIG. 4: (Color online) Self-diffusion coefficient for liquid alu-
minum near melt compared with experimental results. Our
results are close to those for Kohn-Sham for both PBE and
LDA. None of the simulations are in agreement with Experi-
ment #1 [17] and Experiment #2 [18] suggesting inaccuracy
due to the exchange-correlation functional (for more discus-
sion, see [15])

shown in Fig. 4 (for more discussion, see [15]). It is
of note our orbital-free approach captures these differ-
ences between exchange-correlation functionals, which
does highlight the accuracy of our kinetic functional, as
the kinetic energy contribution is typically an order of
magnitude larger than the exchange-correlation contri-
bution [19].

III. ELECTRONIC TRANSPORT

So far we have been able to express the ionic transport
properties completely within the framework of orbital-
free DFT, which involves the electron density only. How-
ever when considering electronic transport coefficients,
transitions between quantum states of the system must
be considered and it is necessary to return to a descrip-
tion in terms of Kohn-Sham orbitals. To this end, our
approach is to first perform an orbital-free calculation
from which ionic configurations and corresponding elec-
tron densities are selected at a subset of time steps along
the simulation. (Recall that in [1] we showed that the
densities obtained using our orbital-free approach are in
very good agreement with those obtained with a self-
consistent Kohn-Sham calculation.) Then, for each ionic
configuration and electron density, the Kohn-Sham po-
tential is readily calculated and the single-particle Kohn-
Sham spectrum of eigenstates is calculated by diagonal-
ization of the single-particle Kohn-Sham equation.[20, 21]

The spectrum is then used to calculate the electrical
σ and thermal κ conductivities by evaluating the Kubo-

Greenwood formula (see [22] and references therein),

σ = L11 , κ =
1

T

(

 L22 −
L2
12

L11

)

, (4)

where the frequency-dependent Onsager coefficients are
given by

Lmn(ω) =
2πe4−m−n

3V m2
eω

∑

kνµ

|〈kν|p̂|kµ〉|
2

(fkν − fkµ)

(

εkν + εkµ
2

− he

)m+n−2

δ(εkµ − εkν − ~ω) .

(5)

Here p̂ is the momentum operator, k is the specific k-
point in the Brillouin zone, µ and ν label the band index,
ε are the single-particle energies, and f are the single-
particle occupations determined through the Fermi-Dirac
distribution. Additionally e and me are the electron
charge and mass and he is the average electron enthalpy
per electron. Lastly is the δ function, which is approxi-
mated by a Lorentzian function (see details in Appendix
A) due to the discreteness of the energy levels.

Finally, for each ionic configuration, σ and κ are calcu-
lated and then averaged over all sampled configurations
to obtain a converged result. The reflectivity coefficient
R is then obtained from the frequency-dependent electri-
cal conductivity σ(ω) (see appendix B).

The main difference of our approach from a full Kohn-
Sham calculation is that we use the density from the
orbital-free calculation in order to calculate the Kohn-
Sham potential and then find the single-particle orbitals
and occupation numbers by a single diagonalization as
opposed to a fully self-consistent Kohn-Sham calculation
which may require 10-20 diagonalization steps or more
depending on the initial guess. This then decreases our
computation time by at least an order of magnitude [23].

A. Hydrogen

We have performed calculations for hydrogen plasmas
from 1-10 g/cm3 and temperatures from 1,000-2,000,000
K. As discussed in [24] convergence with respect to the
number ions, the number of k-points and the width of
the Lorentzian smearing is critical. We have used 96
atoms for all calculations, except at 2,000,000 K where we
used 40 atoms. At 1,000,000 K we performed calculations
with 40 and 96 atoms and found no difference in results.
For higher densities and lower temperatures a 33 k-grid
was required, moving to higher temperatures a 23 grid
and finally Γ-point only calculations were sufficient. A
Lorentzian smearing of 0.1 eV was also adequate (see
Appendix A).

The results for the electrical and thermal conductivi-
ties σ and κ are plotted in Fig. 5. We find that our results
agree well with the previous calculations of Ref. [22] and
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FIG. 5: (Color online) Electrical (a) and thermal (b) conduc-
tivities for hydrogen at 10, 5, 2, 1 g/cm3 (decreasing from
top to bottom curves) from 1,000- 2,000,000 K. For a base-
line comparison we show the commonly used model results of
Kitamura and Ichimaru[26].

Ref. [24] for both σ and κ. We also find good agree-
ment with the deuterium results (at twice mass density)
of Ref. [25] for κ. Here though we are able to complete
calculations in the direction of lower densities and higher
temperatures than in those previous works which is where
the Kohn-Sham method becomes more computationally
expensive.

B. Aluminum

We have calculated the electrical and thermal conduc-
tivities and the reflectivity coefficient of warm dense alu-
minum from 0.1-10 eV at solid density (2.7 g/cm3) and at
the ambient liquid melt density of 2.35 g/cm3. Here we
found a much smaller width in the Lorentzian smearing,
0.015 eV, was required for convergence of the calculations
which all used 64 atoms and a 23 k-grid except at 10 eV
which used only the Γ-point. Also the 3-electron local
pseudopotential used here limits us to temperatures less
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FIG. 6: (Color online) Electrical conductivity (a), thermal
conductivity (b) and reflectivity coefficient (c) of aluminum
plasmas at 2.7 and 2.35 g/cm3. Previous Kohn-Sham and
experimental results at the liquid density agree with our cal-
culations.

than 10 eV.

The results of our calculations are shown in Fig. 6 to-
gether with previous results, including three independent
experimental measurements.

Our orbital-free results at 2.35 g/cm3 for σ and κ are
in very good agreement with previous Kohn-Sham calcu-
lations of Recoules et al. [27] and with the experimental
results [28, 29]. Similarly, our results for the reflectivity
agree very well with the experimental measurement near
1 eV reported in [30] (the experimental point is shown
with the error bar representing the dispersion over the ex-
perimental frequency range). By extending the previous
Kohn-Sham calculations to higher temperature, we find
a minimum in the electrical conductivities at about 6 eV,
while the reflectivity coefficients show an exponential de-



6

 0

 1

 2

 3

 4

 5

 6

 7

10-1 100 101 102

σ 
 (

10
6 /Ω

 m
)

T  (eV)

This work 2.7 g/cm3

This work 2.35 g/cm3

Recoules et al.  KS-DFT 2.35 g/cm3

Faussurier et al. AA 2.7 g/cm3

Sperling et al. Experiment 2.7 g/cm3

Sperling et al. Improved Born 2.7 g/cm3

Desjarlais et al. KS-DFT 2.0 g/cm3

Desjarlais et al.  KS-DFT 1.0 g/cm3

Benage et al. Experiment 1.95 g/cm3

FIG. 7: (Color online) Electrical conductivity of aluminum.
Recent experimental results for 2.7 g/cm3 [2] are not consis-
tent with DFT calculations and other experimental measur-
ments.

crease with temperature. Similar trends are seen for the
σ and R at 2.7 g/cm3. We note here that the minimum
in conductivity is expected as the aluminum transitions
from a lower temperature metal to a high temperature
plasma [31].

Surprisingly, while our results at 2.35 g/cm3 are in
agreement with previous experiments, our electrical con-
ductivities at 2.7 g/cm3 are inconsistent with the exper-
imental determination recently reported by Sperling et

al. at temperatures 0.2 eV and 6 eV [2] (as reported in
the text of their paper). This is clearly shown in Fig. 7
where we reproduce the results of Fig. 6 for the electri-
cal conductivity together with the result of Sperling et al.

and other results discussed below. The “improved Born
model” calculation is also reported in Sperling et al. and,
while it was described there as in satisfying agreement
with the experiment, this model is also in disagreement
with our calculations. Our calculations are also inconsis-
tent with the recent results of Faussurier et al. [32] based
on an average-atom (AA) model, which find a minimum
around 20-30 eV, significantly higher to the value of ∼6
eV that we find.

On the other hand, our results are consistent with
other Kohn-Sham calculations at 1 and 2 and 2.35 g/cm3

by Desjarlais et al. [33] and Recoules et al. [27], which
show a clear trend of increasing conductivity with den-
sity in this temperature region. To the contrary, the lower
temperature point of Sperling et al. even at full extent of
the error bars falls between the 1 and 2 g/cm3 DFT cal-
culations. Additionally, an experimental point from the
exploding wire experiments of Benage et al. [34] at 1.95
g/cm3, shows a conductivity a little lower than suggested
by the DFT but within the error.

IV. CONCLUSION

We have applied our recently-published orbital-free ap-
proximation of finite-temperature density functional the-
ory to the calculation of ionic and electronic transport
properties of dense plasmas from cold to hot conditions.
We have shown that our approach retains the level of ac-
curacy of the orbital-based, Kohn-Sham calculations, as
was previously shown for the static properties [1]. More-
over, the reduction of the temperature bottleneck which
exists in the Kohn-Sham method allows us to calculate
these properties at a fraction of the computational cost
of Kohn-Sham calculations, and further to complete cal-
culations where Kohn-Sham is simply computationally
prohibited.

The present results lend support to orbital-free quan-
tum molecular dynamics as a viable approach that can
significantly contribute to the theoretical exploration of
matter under extreme conditions, especially when ther-
modynamic and transport properties are needed over a
wide range of physical conditions of temperatures and
densities. Further work is needed to develop this ap-
proach to its full potential. Indeed, at present, our own
orbital-free method is limited to conditions where the
gradients in the electron density are small enough to be
consistent with the assumption made in the construc-
tion of the density functional (see discussion in Ref.[1]).
As a consequence, its applicability is limited to “sim-
ple” enough systems, such as hydrogen plasmas at large
enough densities (> 2 g/cm3), dense aluminum below 10
eV (which can be modeled with a 3-electron pseudopo-
tential), or very hot plasmas in which case the Thomas-
Fermi approximation is adequate. Consideration of more
“difficult” conditions involving larger density gradients,
such as aluminum calculations to temperatures above 10
eV, or of other elements that are less free-electron like,
require further developments of orbital-free functionals.
Potential research areas include the search for advanced
orbital-free functionals of higher order in the density gra-
dients [35]; the development of accurate local pseudopo-
tentials, as the transferability of the current pseudopo-
tentials across densities and temperatures remains an is-
sue, and for some elements and conditions they have been
simply unattainable; the development of density func-
tionals with a density decomposition, such as has been
explored for transition metals at zero temperature [36].

Further, here we have made use of the highly accurate
electron density available in our orbital-free DFT to de-
termine the Kohn-Sham potential and then obtain the
Kohn-Sham orbitals by a single diagonalization which
significantly reduces the computational time for high
temperature calculations of the electrical and thermal
conductivities through the Kubo-Greenwood linear re-
sponse theory. Of course, this reliance on a calculation of
Kohn-Sham orbitals for the evaluation of the conductivi-
ties is now the limiting factor. Development of an orbital-
free approach which does not resort to calculating the
Kohn-Sham orbitals, but retains the Kubo-Greenwood
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accuracy would be a significant advancement for the field,
from computational and aesthetic viewpoints.

This work was carried out under the auspices of the
National Nuclear Security Administration of the U.S. De-
partment of Energy (DOE) at Los Alamos under Con-
tract No. DE-AC52-06NA25396. The work was sup-
ported by the DOE Office of Fusion Energy Sciences.

Appendix A: Convergence Issues

Here we present some of the convergence issues which
were briefly stated in the main text. One such issue the
necessary smearing of the δ function in Eq. 5, which we
approximate as a Lorentzian, with width Γ

δ(εkµ − εkν − ~ω) ≈
Γ

π [(εkµ − εkν − ~ω)2 + Γ2]
. (A1)

In Fig. 8 the convergence of the electrical and thermal
conductivities are examined with respect to Γ for the case
of aluminum at 2.7 g/cm3 and 5 eV.

In the case of hydrogen, we found 96 atoms sufficient
down to our lowest temperatures at all densities. How-
ever, a 3 × 3 × 3 k-grid was needed up to 20,000 K at
10 g/cm3, but only up to 5,000 and 2,000 K at 5 and 2
g/cm3, and at 1 g/cm3 at 1000 K a 2 × 2 × 2 k-grid
was sufficient. We were able to use only the Γ-point for
temperatures down to 232,000 K at 1 and 2 g/cm3 and
down to 1,000,000 K at 5 and 10 g/cm3.

For the hydrogen conductivity calculations we included
450 bands at all densities and 1,000 K. While at 1,000,000
K we used 3,000 bands at 10 g/cm3 and 5,000 bands at
1 g/cm3.

In all electrical and thermal conductivity calculations
10 configurations from the molecular dynamics simula-
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FIG. 9: (Color online) Optical conductivity evaluated at each
ionic configuration and averaged over the 10 configurations at
2.7 g/cm3 and 5 eV.

tion were averaged over. In some cases averages over
20 configurations were additionally taken and no change
was found compared to the 10 configuration average. In
Fig. 9 we show the 10 single configurations and averaged
result for aluminum at 2.7 g/cm3 and 5 eV.

Appendix B: Calculation of the reflectivity

Following Ref. [37], with the real part of the frequency-
dependent electrical conductivity σ(ω) from Eq. (4),
the the imaginary part may be calculated through the
Kramers-Kroning relation,

σ2(ω) =
−2

π
P

∫

σ1(ν)ω

ν2 − ω2
dν . (B1)

The real and imaginary part of the dielectric function are
then given directly as

ǫ1(ω) = 1 −
σ2(ω)

ǫ0ω
, ǫ2(ω) =

σ1(ω)

ǫ0ω
(B2)

respectively. Then finally the real n and imaginary k
parts of the index of refraction are found through

n(ω) =
√

[|ǫ(ω)| + ǫ1(ω)] /2 , (B3)

k(ω) =
√

[|ǫ(ω)| − ǫ1(ω)] /2 , (B4)

(B5)

and used to determine the reflectivity R = r(ω = 0),
where

r(ω) =
[1 − n(ω)]2 + k(ω)2

[1 + n(ω)]2 + k(ω)2
. (B6)
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Zastrau, J. Hastings, L.B. Fletcher, and S.H. Glenzer,
Phys. Rev. Lett. 115, 115001 (2015).

[3] J.P. Hansen I.R. McDonald, The Theory of Simple Liq-

uids, 3rd ed. (Academic, 2006).
[4] G.S. Ho, V.L. Lingeres, and E.A. Carter, Comput. Phys.

Commun. 179, 839 (2008).
[5] P. Giannozzi et al., J.Phys.:Condens.Matter, 21, 395502

(2009).
[6] G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys.

126, 014101 (2007).
[7] J.P. Perdew and Alex Zunger, Phys. Rev. B 23, 5048

(1981).
[8] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett. 77, 3865 (1996); Erratum Phys. Rev. Lett. 78, 1396
(1997).

[9] V. V. Karasiev, T. Sjostrom, J. Dufty, and S.B. Trickey,
Phys. Rev. Lett. 112, 076403 (2014).

[10] T. Sjostrom and J. Daligault, Phys. Rev. B 90, 155109
(2014).

[11] As an aside we note the self-diffusion was calculated for
hydrogen at the same density and temperatures by Wang
et. al [Phys. Rev. E 88, 033106 (2013)] with the VASP
Kohn-Sham code. Their results underestimate our own
by ∼20%. Having investigated several possible contribut-
ing factors, as shown in the lower panel of Fig. 1, we do
not reproduce their results. What we did find is that,
first, there is very little difference for the case of warm
dense hydrogen in terms of the self-diffusion when using
the Perdew-Burke-Ernzerhof (PBE) generalized gradient
approximation for the exchange-correlation energy, as op-
posed to the local density approximation (LDA), and
second, when performing the calculations with a Nosé-
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