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Abstract

Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional

(3D) direct numerical simulations with grids up to 7683 points and two different types of ini-

tial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both

Laplacian and Laplacian squared dissipative operators are examined. At scales below the ion in-

ertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to

a magnetically dominated state. The transition in behavior is associated with the advection term

in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation

functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD

current structures are narrower and vorticity structures are wider. The electric field autocorre-

lation function is significantly narrower in HMHD than in MHD and is similar to the HMHD

current autocorrelation function at small separations. HMHD current structures are found to be

significantly more intense than in MHD and appear to have an enhanced association with strong

alignment between the current and magnetic field, which may be important in collisionless plasmas

where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region con-

sistent with a k−7/3 scaling is present for right polarized fluctuations when compared to Laplacian

dissipation runs.
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I. INTRODUCTION

Turbulence is a ubiquitous phenomenon that is believed to play a role in the dynamics of

a variety of space plasma environments, including the solar corona [1, 2], solar wind [3–5],

planetary magnetospheres [6–11], and the interstellar medium [12, 13]. While viscosity and

resistivity are often invoked to model the dissipation in simulations of magnetohydrodynamic

(MHD) turbulence, the collisionless nature of many space plasmas means a more complete

description of the kinetic scales, where the fluid approximation breaks down, is needed to

understand the small scales of plasma turbulence. Understanding how kinetic processes

interact with a turbulent environment is currently an active area of research [14] and from a

numerical standpoint is made difficult by the computational challenges associated with both

obtaining the large scale separations inherent to turbulent flows, and accurately describing

the kinetic scales of the plasma.

Nonlinearities associated with turbulence are thought to be important down into the

kinetic scales [15–17]. Kinetic effects can result in observed changes to the slope of the

energy spectrum and ultimately contribute to the dissipation of energy from the turbulence

[18–24]. A number of kinetic scale features observed in the solar wind and magnetosphere

are thought to be associated with turbulence. It has been suggested that observations of

electron phase-space holes and double layers in the Earth’s plasma sheet are caused by

currents generated by turbulence [11, 25, 26]. The behavior of Langmuir waves observed in

the solar wind has been attributed to turbulence [27]. Osman et al. [28] found an association

between kinetic scale instabilities and the turbulent energy cascade rate. New missions, such

as the recently launched Magnetospheric Multiscale (MMS) mission [29], with small spatial

separations between multiple spacecraft will help enhance the understanding of kinetic scale

turbulence and make necessary approaches using fully kinetic physics or a more complete

generalized Ohm’s law, such as Hall magnetohydrodynamics (HMHD).

One way to begin looking at kinetic effects in a turbulent environment numerically is

to consider more accurate approximations to the kinetic equations, such as the HMHD

equations. While not a complete model of the kinetic scales, HMHD begins to incorporate

kinetic effects by allowing for the decoupling of ion and electron motions at scales below

the ion inertial length through the addition of the Hall term in Ohm’s Law. The Hall

effect has been studied extensively in the context of magnetic reconnection using Harris

3



sheet configurations and HMHD is found to be the minimum plasma model necessary to

obtain fast reconnection rates comparable to those obtained from more complete kinetic

plasma simulations [30–32]. Signatures of the Hall term have been found in the Earth’s

magnetosphere [33, 34] and in laboratory plasmas [35]. Under some parameter regimes in

the solar wind, a steepening of the spectral slope from either a Kolmogorov spectrum [36] or

the so-called Iroshnikov-Kraichnan spectrum [37], has been associated with the ion inertial

length [38]. So-called plasmoids, as observed in the magnetotail by the Cluster spacecrafts,

are viewed as the signature of multiple reconnection events in the Hall regime and are linked

to substorms [39].

Spectra of HMHD turbulence are expected to be steeper than MHD at scales below the

ion inertial length in both the strong and weak turbulence regimes, with a power law slope of

−7/3 for the magnetic field in strong turbulence [40]. Steepening of the solar wind spectra

above the ion cyclotron frequency has been attributed to HMHD effects [41–43]. Some

numerical simulations have reported power law slopes similar to −7/3 [44–46]; however, it

is difficult to determine the spectral slope for HMHD at the numerical resolutions available

today. Meyrand and Galtier [47] found that right and left circularly polarized fluctuations

have different power law slopes with right polarizations showing a −7/3 slope and left

polarizations showing a −11/3 slope and showed heuristically that the magnetic field should

follow these power laws.

Previous studies of HMHD turbulence have found that although MHD scales control some

important average properties of the system, such as the energy decay rate [48], the structures

present in the flow can be significantly altered. Miura and Hori [46] and Miura and Araki

[49] examined the current and vorticity structures and found that there are smaller scale

structures present in HMHD; they speculated the much lower amplitude vorticity structures

were excited by the enhanced small-scale magnetic field activity in HMHD. Larger scale

vorticity structures were found to be potentially more tubular than in MHD, although roll-up

of vorticity sheets as well as current sheets have also been observed in MHD turbulence [50].

Two dimensional (2D) simulations have found reconnection sites in the turbulence become

similar in structure to laminar studies of HMHD reconnection which exhibit bifurcated

current sheets and quadrupolar magnetic fields [51]. Dmitruk and Matthaeus [52] found that

while the magnetic field was largely unchanged by the addition of the Hall effect, the electric

field was more intermittent. Using theoretical calculations and low resolution simulations,
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Mininni et al. [53] found that the Hall effect alters the coupling between the magnetic field

and velocity and can result in a backscattering of energy which is not seen in MHD. Reduced

HMHD models, which describe the system in the presence of a strong background magnetic

field, have also been examined and it was found that in this context structures widen and

generate internal eddies and currents resulting in an apparent reduction in intermittency

[54–56].

In this paper, we use three-dimensional (3D) direct numerical simulations (DNS) to ex-

amine the behavior of HMHD turbulence in the absence of forcing. The features in both

Fourier and real space are examined to better understand the small scale behavior. In

Sec. II the HMHD equations and initial conditions used in the DNS are discussed. Sec. IIIA

presents the numerical results in Fourier space and provides an interpretation for the be-

havior. Sec. III B discusses the numerical results in real space. Sec. IIIC briefly presents

runs using hyperdiffusivities and compares the results to the traditional diffusivity runs

presented in Sec. IIIA and Sec. III B. Sec. IV summarizes the results and discusses some

possible implications for collisionless plasmas.

II. EQUATIONS

The incompressible HMHD equations in dimensionless form are given by

∂b

∂t
= ∇× (v × b)− ǫH∇× (j× b) + η∇2b− η′∇4b (1)

∂v

∂t
= −v · ∇v −∇P + j× b+ ν∇2v − ν ′∇4v (2)

∇ · v = 0 , ∇ · b = 0 (3)

where the velocity v and magnetic field b are in units of a characteristic velocity U0 with

the magnetic field expressed in Alfvén units, P is the particle pressure, and j = ∇ × b

is the current density. The dissipation coefficients ν and η are the traditional kinematic

viscosity and magnetic diffusivity respectively whereas ν ′ and η′ are hyperviscosity and

hyperdiffusivity coefficients respectively associated with Laplacian squared dissipative terms.

In this paper ν = η, ν ′ = η′, and only one form of dissipative term is used in any given

run (that is to say if ν 6= 0, then ν ′ = 0 and vice versa). The mass density is taken to be

uniform and is absorbed into the nondimensionalization of the pressure. With the addition

of the Hall term, the dimensionless parameter ǫH = di/L0 giving the ratio of the ion inertial
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length to the characteristic length scale of the system enters into the equations. If ǫH = 0,

the HMHD equations reduce to the MHD equations. The electric field in HMHD is given

by

e = −v × b+ ǫHj× b+ ηj− η′∇2j. (4)

Since multiple nonlinear terms are present in the HMHD system, three distinct “dissipa-

tion” scales can be defined by comparing the timescales associated with the nonlinear terms

to the dissipation timescale. Using dimensional analysis, the conditions for these scales can

be written as

1

ν

√

EV (kA)

kA
= 1,

EM (kL)

ν
√

kLEV (kL)
= 1,

ǫH
√

kHEM(kH)

η
= 1 (5)

for traditional viscosity and diffusivity and as

1

ν ′

√

√

√

√

EV (kA)

k5

A

= 1,
EM(kL)

ν ′
√

k5

LEV (kL)
= 1,

ǫH
η′

√

√

√

√

EM(kH)

k3

H

= 1 (6)

for hyperviscosity and hyperdiffusivity. EV (k) and EM(k) are the kinetic and magnetic

energy spectra respectively, kA is the dissipation wave number associated with the advection

term (v · ∇v), kL is the dissipation wave number associated with the Lorentz force (j× b),

and kH is the dissipation wave number associated with the Hall term (ǫH∇× [j × b]). For

ν = η or ν ′ = η′, kA is identical to the dissipation wave number for ∇× (v × b). In MHD,

where the Hall term is absent and there is generally near equipartition between magnetic

and kinetic energy in the small scales [57], all of the dissipation scales coincide. The largest

of the wave numbers kA, kL, and kH corresponds to the overall dissipation scale of the system

where all nonlinearities are subdominant to dissipation. In this study, the numerical spectra

output by the DNS are used in computing the dissipation wave numbers so as not to require

assumptions for the spectral slopes that develop.

The HMHD equations can alternatively be written in the form [58]

∂b

∂t
= ∇× [(v − ǫHj)× b] + η∇2b− η′∇4b (7)

∂

∂t
(b+ ǫHω) = ∇× [v × (b+ ǫHω)] +∇2 [ηb+ ǫHνω]−∇4 [η′b+ ǫHν

′
ω] (8)

with ω = ∇× v the vorticity. In the ideal system (neglecting dissipative terms), the fields

ΩR ≡ b and ΩL ≡ b+ ǫHω are frozen into the fields uR ≡ v− ǫHj and uL ≡ v respectively.
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That is to say, they obey the flux-conservation equations

∂tΩR = ∇× [uR ×ΩR] , ∂tΩL = ∇× [uL ×ΩL] . (9)

The fields uR,L are equivalent to the HMHD version of the Elsässer variables in the limit

ǫHk ≫ 1 [40].

The ideal invariants for the MHD system are the total energy (ET ), magnetic helicity

(HM), and cross helicity (HC) defined as

ET = EV + EM =
1

2
〈|v|2 + |b|2〉, HM =

1

2
〈a · b〉, HC =

1

2
〈v · b〉 (10)

with 〈...〉 denoting a volume average, and where b = ∇×a, a being the magnetic potential.

In HMHD, HC is no longer conserved and instead the generalized helicity defined as

HG =
1

2
〈(a+ ǫHv) · (b+ ǫHω)〉 = HM + 2ǫHHC + ǫ2HHV (11)

is conserved [59]. HV = 〈v · ω〉/2 is the kinetic helicity, which is an invariant in ideal

hydrodynamics. Relative helicities are defined as

σM =
a · b
|a||b| , σC =

v · b
|v||b| , σG =

(a+ ǫHv) · (b+ ǫHω)

|a+ ǫHv||b+ ǫHω| , σV =
v · ω
|v||ω| (12)

and measure the degree of alignment (cosine of angle) between the vectors in the conserved

helicities. Additional alignments considered in this study are

σR =
uR ·ΩR

|uR||ΩR|
, σL =

uL ·ΩL

|uL||ΩL|
, σjb =

j · b
|j||b| . (13)

These alignments inform us on the strength of the nonlinear terms appearing in the primitive

equations. In Fourier space these alignments are defined using cross-spectra. The magnetic

polarization, which measures the direction of circular polarization relative to the magnetic

field, is given by PM = σMσC computed in Fourier space. PM > 0 and PM < 0 correspond

to left and right circularly polarized fluctuations respectively [47].

For ν = η, the average energy dissipation in the system for both MHD and HMHD is

given by νΩT where ΩT = 〈|j|2〉+ 〈|ω|2〉 is the total enstrophy. For decaying turbulence, the

time at which ΩT is maximum corresponds to when the turbulence is most fully developed.

In the hyperdiffusive case, when ν ′ = η′, the average energy dissipation in the system is

given by ν ′PT where PT = 〈|∇2b|2〉+ 〈|∇2v|2〉 is the total palinstrophy.
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The linearized incompressible HMHD equations support two types of wave modes; the

right circularly polarized whistler wave and the left circularly polarized ion cyclotron wave

[60]. For the whistler and ion cyclotron modes PM = −1 and PM = 1 respectively. At small

wave numbers the two modes merge onto the same dispersion relation consistent with MHD

where circular polarization is not a relevant parameter and there is only one wave mode, the

Alfvén wave. The linear ratio of magnetic to kinetic energy is given by

EM(k)

EV (k)
=

k2ǫ2H
4

(

±1 +

√

1 +
4

k2ǫ2H

)2

(14)

with k the wave number and + or − giving the right and left polarized modes respectively.

In the limit of kǫH ≫ 1, the whistler mode is magnetically dominated with EM(k)/EV (k) =

k2ǫ2H and the ion cyclotron mode is kinetically dominated with EM (k)/EV (k) = (k2ǫ2H)
−1.

An alternative way to “linearize” the system is if the fluctuations have perfect alignment

between uR and ΩR and between uL and ΩL, which makes all nonlinear terms zero [42, 58].

This type of configuration is referred to as a double curl Beltrami solution and gives equiva-

lent solutions to the small-amplitude linear fields, but for arbitrary amplitude fluctuations.

The necessary alignments would need to occur as a result of the nonlinear dynamics and it

is not obvious the alignment should occur in any arbitrary turbulent system.

A. Initial conditions

All runs are performed using the Geophysical High-Order Suite for Turbulence (GHOST)

code [61]. GHOST is a general purpose pseudospectral community code with periodic bound-

ary conditions and parallelized up to in excess of ≈ 130, 000 processors using a hybrid

(MPI-OpenMP) methodology, which is advantageous at high resolutions.

Two types of initial conditions are examined in this study, one using a prescribed set of

phase relationships, and the other one using randomly phased fluctuations. Details about

the runs are listed in Table I. The first set of initial conditions is a modification of the

Orszag-Tang vortex based on Biskamp and Welter [62] and extended to 3D in a manner

similar to Politano et al. [63]:

bOT = b0 [sin(y + 4.1) + sin(z), −2 sin(2x+ 2.3) + sin(z), sin(x) + sin(y)] , (15)

vOT = v0 [sin(y + 0.5), − sin(x+ 1.4), 0] . (16)
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TABLE I. Resolution, value of ν (which is the same as the value of η), value of ǫH , and eddy

turn-over time τnl at the peak of ΩT (or PT for the hyperdiffusive runs) for the 16 runs performed

in this study. In the Run ID, OT stands for the Orszag-Tang initial condition, R stands for the

random initial condition, M stands for MHD, H stands for HMHD, the number after H gives 10ǫH ,

and K4 indicates the use of hyperdiffusivity. Run OTH2c is started from the OTMc peak of ΩT .

Run ID Resolution ν or ν ′ ǫH τnl

OTMa,b,c 2563, 5123, 7683 1× 10−2, 5× 10−3, 3.3× 10−3 0.0 5.77, 4.39, 4.01

OTH1 2563 1× 10−2 0.1 5.88

OTH2a,b 2563, 5123 1× 10−2, 5× 10−3 0.2 6.07, 5.11

OTH2c 7683 3.3 × 10−3 0.2 4.11

OTH5 2563 1× 10−2 0.5 6.26

RMa,b,c 1283, 2563, 5123 2× 10−2, 1× 10−2, 5× 10−3 0.0 3.61, 3.43, 3.16

RH2a,b,c 1283, 2563, 5123 2× 10−2, 1× 10−2, 5× 10−3 0.2 3.26, 3.07, 2.84

RH2K4a,b 2563 2.5× 10−5, 7× 10−6 0.2 2.53, 2.30

The values of b0 and v0 are set such that 〈|bOT |2〉 = 0.64 and 〈|vOT |2〉 = 1.36 initially,

resulting in nearly equal values of 〈|j|2〉 and 〈|ω|2〉. Runs are performed at resolutions using

2563, 5123, and 7683 grid points in a cubic box and with periodic boundary conditions.

At all resolutions ǫH = 0.0 or 0.2. Additionally at 2563, runs with ǫH = 0.1 and 0.5 are

performed. At 7683, the initial condition for the ǫH = 0.2 run is taken to be the peak

of dissipation from the 7683 ǫH = 0.0 run. This method of starting an HMHD run from

the peak of dissipation was tested at 2563 resolution and produced comparable results to a

2563 HMHD run started from scratch using the Orszag-Tang initial conditions. The initial

relative helicities for all Orszag-Tang runs are σM ∼ σC ∼ −0.2, and σV ∼ 0.0. Furthermore,

at ǫH = 0.2, σG ∼ −0.28 whereas for both ǫH = 0.1 and 0.5, σG ∼ −0.26 initially. Runs

using this initial condition are denoted with an OT in Table I.

The second set of initial conditions initialize the fields uL and uR with random phases

and power spectra which follow the form EL,R(k) = CL,Rk
4 exp(−k2/k2

0
). The wave number

k0 is set such that the spectra peak at k = 2 and CL and CR are set such that 〈|uL|2〉 = 1.00

and 〈|uR|2〉 = 0.5. Noting that ǫ2H〈|j|2〉 = 〈|uR|2〉 + 〈|uL|2〉 − 2〈uR · uL〉, the correlation

between uL and uR is set such that the initial 〈|j|2〉 and 〈|ω|2〉 are nearly equal. In the
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case of MHD, identical initial conditions to the HMHD case are used even though ǫH = 0 in

MHD. Random runs are performed at resolutions 1283, 2563, and 5123 with ǫH = 0.0 and 0.2

in all cases. Initially σM ∼ 0.24, σC ∼ 0.01, σV ∼ −0.04, and σG ∼ 0.17. Two HMHD runs

with this initial condition have also been performed using hyperdiffusivity for comparison

with the regular diffusivity results. This initial condition is denoted with an RM or RH (for

MHD and HMHD respectively) in Table I.

Physically the OT configuration is structured with an X-point centered on a stagnation

point (with a sinusoidal variation in the third direction) so that current sheets are known to

form rather rapidly. In the formulation of the OT configuration presented here, phase shifts

are introduced that break some of the symmetry present in the traditional configuration. On

the other hand, random initial conditions are possibly more representative of a natural flow,

with less symmetries and thus possibly more complicated to analyze in terms of structures in

physical space. Both types of initial conditions are studied here to cover a larger dynamical

range. The relative helicity coefficients are chosen so as to represent generic data; indeed, if

zero or one, they represent very specific and unlikely configurations unless one imposes the

symmetries (such as in the case of the Taylor Green or Beltrami configurations). Moreover,

when taking the relative helicities close to unity, the nonlinear terms are strongly damped

and the evolution out of that state will be slow [64].

The eddy turn-over time is defined as τnl ≡ Lint/ 〈|v|2〉1/2, where Lint is the integral scale

defined as

Lint = 2π

∫

[EV (k)/k] dk
∫

EV (k)dk
. (17)

Table I also gives the value of τnl for each run computed at the peak of ΩT or PT .

III. NUMERICAL RESULTS

Fig. 1 plots ET and ΩT as a function of time for runs RH2c and RMc. The following

sections are focused on data taken from near the peak of ΩT (for the two runs shown in Fig. 1

this corresponds to t ∼ 1.925 for run RH2c and t ∼ 1.75 for run RMc in simulation units)

unless otherwise noted. Despite HMHD showing enhanced small scale activity (see Fig. 2),

HMHD tends to show slightly smaller ΩT than MHD resulting in slightly different profiles

of ET . The smaller ΩT is linked to the steepening of the HMHD spectrum at scales below

the ion inertial length. The predicted spectral slope for magnetic fluctuations in HMHD is
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FIG. 1. (Color Online) (Panel a) Total energy (black circles) and enstrophy (red squares) as a

function of time for RMc (dashed lines) and RH2c (solid lines). (Panel b) Ratio of magnetic to

kinetic energy and ratio of mean square current to mean square vorticity as a function of time for

the same runs and in the same format as in Panel a.

steeper than −2. In the DNS presented here the total energy spectrum also tends to become

steeper than k−2 at near 1/ǫH and since ΩT (k) = k2ET (k), the peak of the ΩT spectrum

will be near 1/ǫH . The steepening of the spectrum is not necessarily present in MHD until

dissipation becomes significant and therefore a broader profile to the ΩT (k) spectrum can

be formed resulting in a larger average value of ΩT when the spectrum is integrated. Even

with smaller values of ΩT on average, locally currents are enhanced significantly in HMHD

(see Sec. III B). Fig. 1 also shows the ratios of magnetic to kinetic energy and mean square

current to mean square vorticity for the same runs. In both MHD and HMHD the flows

tend to be magnetically dominated as interpreted from either ratio; for the random initial

condition it is slightly less so in HMHD. The OT initial conditions and other resolutions

(not displayed) behave similarly except for some slight differences in the ratios.

The behavior of the relative helicities as a function of time are similar between MHD

and HMHD and therefore are not displayed. In all cases, σM shows the most growth over

the course of the run. The value of σG also shows significant growth over the course of the

HMHD runs likely associated with the presence of HM in the definition of HG.
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FIG. 2. (Color Online) (Panel a) ET (k) for runs OTMa, OTH1, OTH2a, and OTH5, which have

varying values of ǫH . Vertical dashed lines mark 1/ǫH with colors and markers corresponding to the

run. (Panel b) ET (k) for runs OTMa,b,c and OTH2a,b,c, which have varying Reynolds numbers.

(Panel c) ET (k) for runs RMa,b,c and RH2a,b,c, which have varying Reynolds numbers. In panels

b and c, Reynolds numbers Re = 〈|v|2〉Lint/ν at the peak of ΩT are given in the legend. (Panel d)

Ratio of ET (k) for run RH2c to ET (k) for run RMc. The region of negative slope indicates where

HMHD is steeper than MHD. In panels a, b, and c vertical dashed lines show 1/ǫH .

A. Behavior in Fourier space

Fig. 2 shows ET (k) for the runs analyzed in this study. The most distinct feature of the

HMHD spectra is the excess of energy relative to MHD in the small scales in all cases, which
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is associated with the magnetic energy. The excess of energy becomes more pronounced as

ǫH is increased (Fig. 2, panel a). While the spectra are similar for small wave numbers,

at moderate wave number above 1/ǫH , the HMHD spectra tend to be slightly steeper than

MHD consistent with theory (however the exact spectral slope can not be determined at the

resolutions here) [40]. For reference, in the case of run RH2c, the steeper region lasts from

roughly k ∼ 6 to k ∼ 20 as shown in Fig. 2, panel d. However, dissipation in the MHD cases

quickly causes the MHD spectra to become steeper than HMHD; indeed, we take the same

viscosity for the MHD and HMHD runs, but due to the fact that in MHD the production

of small scales is not as intense as for HMHD, the runs have a larger dissipation range. In

runs OTH1 and OTH2a, the steeper region is likely not evident because of the location of

the dissipation scale. Run OTH2c likely does not show a steeper region because the run was

continued from the peak of dissipation of the MHD version and the small to moderate wave

numbers did not change significantly in the time it takes to reach the new peak in ΩT .

As suggested by Meyrand and Galtier [47], another way of examining the spectra in

HMHD is to look at the energy spectra of strongly circularly polarized fluctuations. Fig. 3

plots energy spectra constructed using only wave vectors with PM > 0.3 and PM < −0.3 or

PM > 0.7 and PM < −0.7. In both the random and OT initial conditions the left polarized

spectra are steeper than the right polarized spectra, as was found by Meyrand and Galtier

[47] using hyperdiffusivities, indicating the excess energy at small scales seen in Fig. 2 is

associated with right polarized fluctuations. However, in the random case the left polarized

spectrum dominates in the large scales, whereas right and left polarizations are roughly in

equipartition in the large scales of the OT runs. This behavior is likely related to the mean

square values of uR and uL which are roughly equal initially in the OT runs and set to

be a factor of two apart initially in the random runs. Using a threshold of |PM | > 0.3,

short regions where the right and left spectra may be compatible with spectral slopes of

−7/3 and −11/3 respectively can be found (Fig. 3, panel b), consistent with the results

of Meyrand and Galtier [47]. When the threshold is set to 0.7 (Fig. 3, panel c), the −7/3

scaling extends over a wide range in the right polarized spectrum in run RH2c, but the left

polarized spectrum is even steeper than −11/3. The break in the −7/3 spectrum for run

RH2c in panel c at k ∼ 65 roughly corresponds with the wave number kH .

Fig. 4 plots EM(k)/EV (k) for a variety of HMHD runs. The spectra in MHD are found to

be in near equipartition (within a factor of 2) at all scales (see for example Stawarz et al. [57]),
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and this is the case for all of the MHD runs performed in this study (not shown). In HMHD,

the spectra are in near equipartition at large scales and then transition to a magnetically

dominated state in the small scales, where the spectra exactly match the whistler wave

linear prediction. In the context of a shell model for HMHD, Galtier and Buchlin [65] also

noted that a magnetically dominated regime could be obtained under certain parameter

regimes. The wave number at which the transition occurs is below 1/ǫH in most cases and

moves to larger wave number as the Reynolds number is increased. In the region of near

equipartition, the random runs have relatively more kinetic energy than the OT runs, likely

because uR < uL and left polarized fluctuations (expected to be kinetically dominated from

linear theory) dominate the spectra in the large scales. Based on Fig. 3, it is not surprising

the small scales are magnetically dominated since the left polarizations fall off more steeply

than the right polarizations.

One possible explanation for the seemingly linear behavior observed in the small scales in

Fig. 4 is through the presence of the double curl Beltrami configuration in the small scales.

To examine the role of this configuration in the dynamics of HMHD turbulence, Fig. 5 plots

σR and σL computed in Fourier space (see Eq. 13 for the real-space formulation) for run

RH2c. Absolute values are performed before averaging over spherical shells in Fourier space

to create the spectra so as to avoid cancellations of positive and negative alignment. All

HMHD runs analyzed behave similarly to the displayed curves. If both σR and σL correspond

to full alignment, the nonlinear dynamics stop and in the presence of a uniform background

magnetic field B0, the linear solution is obtained. In the simulations presented here, no B0

is explicitly imposed; however, it is possible for the largest scale magnetic fluctuations to

appear as a quasi-uniform field to the small scale fluctuations, provided there is enough scale

separation [37]. Starting at roughly 1/ǫH , σR and σL are constant at a value of roughly 1/2.

At k ∼ 40 for run RH2c, σL begins to decrease significantly and then increases somewhat

at k ∼ 100. The lack of both large σR and σL in the small scales seems to contradict the

idea that the small scales are in a double curl Beltrami state. However, the effect may be

obscured by the difficulty of separating B0 from the fluctuations in the current simulations.

The theory of Krishan and Mahajan [42] only requires the nonlinear fluctuations, and not

the background field, to have the double curl Beltrami alignments.

To better understand the change in behavior present in Fig. 4, consider the Fourier

transform of the induction and vorticity equations (Eq. 1 and the curl of Eq. 2) neglecting
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FIG. 3. (Color Online) (Panel a) Spectra for fluctuations with |PM | > 0.3 for runs OTH2b and

RH2c. (Panel b) Spectra for the same values of PM as panel a, but compensated by either k11/3

for positive PM (left polarized ion cyclotron fluctuations) or k7/3 for negative PM (right polarized

whistler fluctuations) as predicted and observed in hyperdiffusive simulations by Meyrand and

Galtier [47]. (Panel c) Spectra with |PM | > 0.7 compensated by either k11/3 for positive PM or

k7/3 for negative PM . The compensated spectra are for runs RH2a, RH2b, and RH2c, which have

various Reynolds numbers. In all panels, vertical dashed lines mark 1/ǫH .

dissipation

∂bk

∂t
= ik× ([v × b]k − ǫH [j× b]k) (18)
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∂ωk

∂t
= ik× ([v × ω]k + [j× b]k) (19)

where i =
√
−1, k is the wave vector, and subscript k denotes the Fourier transform of

a quantity ([...]k is the Fourier transform of a whole nonlinear term). From dimensional

analysis, one might expect the Hall term to dominate the induction equation at scales above

the ion inertial length (ǫHk ≫ 1), so at small scales the [v× b]k term will be neglected and

v no longer influences the evolution of b. However, it is unclear from dimensional analysis

alone which terms may be important in the vorticity equation. An important distinction

between the MHD scales and HMHD scales is that in terms of powers of k the nonlinear

terms in the induction equation scale as the momentum equation at MHD scales and the

vorticity equation at HMHD scales.

Different behaviors of the vorticity and therefore the velocity fluctuations will occur

depending on the relative importance of the [v × ω]k and [j× b]k terms. If k × [j× b]k

dominates the vorticity equation, which could happen if v is significantly more aligned with

ω than b is with j, if |v||ω| ≪ |j||b|, or if the angles between the nonlinear terms and

k are significantly different, then the vorticity equation (with a factor of −ǫH) will evolve

identically to the induction equation. We can then write −ǫH∂tωk = ∂tbk, which assuming

small scale fluctuations are initially zero can be integrated to obtain −ǫHωk = bk. Since

each component of ωk and bk are equal the magnitudes must be equal and using the fact

that |ωk| = k|vk|, an expression for the ratio of magnetic to kinetic energy can be written

EM(k)

EV (k)
= ǫ2Hk

2 . (20)

This expression is true for both linear and nonlinear small scale HMHD fluctuations where

the [j× b]k term dominates over the [v × ω]k term in the vorticity equation. Eq. 20 can

similarly be obtained from the magnetic vector potential and velocity equations if the pres-

sure term is neglected. In the linear solution, obtaining the lower frequency and kinetic

energy dominated ion cyclotron wave requires the influence of the [v × b]k term, which has

been neglected in obtaining Eq. 20. Eq. 20 is equivalent to the linear prediction for whistler

waves in the limit ǫHk ≫ 1, which is the region where the ratios in Fig. 4 match up with

the linear prediction. Galtier and Buchlin [65] also found a relationship between magnetic

and kinetic energy consistent with Eq. 20 for some parameters, as well as an alternative

kinetically dominated regime in other parameter regimes based on shell model results and
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it was noted through heuristic arguments involving the balance of nonlinear timescales that

various behaviors of EM(k)/EV (k) may be linked to the wide range of spectral slopes ob-

served at sub-ion scales in the solar wind. The DNS results presented in this study only

show a transition to the magnetically dominated state.

To understand the state described by Eq. 20 in more physical terms, first note that v is

a mass weighted average of ion and electron velocities and since ions have much more mass

than electrons, v is approximately the ion fluid velocity. Also note that ǫHj is the difference

between ion and electron velocities. Therefore, the dominance of the Hall term in the

induction equation corresponds to a state where ions are approximately stationary compared

to electrons and only electron motions are carrying the currents in the small scales. With the

Lorentz force dominating over advection in the vorticity equation, small scale fluctuations

in v are simply responding to the magnetic field fluctuations and in turn electron velocity

fluctuations without any significant advection or feedback on the evolution of the magnetic

field. This behavior is similar in some ways to the electron MHD approximation.

The relative importance of the various nonlinear terms in run RH2c is examined in panels

a and b of Fig. 6, which show the ratios of the spectra associated with the nonlinear terms

[j× b]k, [v × ω]k, and [v × b]k and their curls. In the magnetic vector potential equation,

ǫH [j× b]k dominates over [v × b]k at scales smaller than 1/ǫH . Since the derivative in time

of a is given by the electric field, this means that the Hall term is dominating the electric

field at wave numbers below 1/ǫH . The actual wave number where the Hall term becomes

dominant occurs at k ∼ 8, which is consistent with the energy in the initial conditions

mainly being located between k = 1 and k = 2, making L0 slightly smaller than 2π. In

the induction equation, ǫHk × [j× b]k is comparable to the k × [v × b]k at wave numbers

above 1/ǫH , but does not become dominant until larger wave numbers. Based on the linear

solution, left polarized waves have equipartition between ǫHk× [j× b]k and k× [v × b]k at

wave numbers above 1/ǫH (similar to the midrange wave numbers in Fig. 6, panel b), while

in the right polarized waves the Hall term dominates.

In the velocity equation, the term [j× b]k is found to be comparable to [v× ω]k into the

Hall regime, but in the small scales [j× b]k is dominant. The wave number at which the

ratio [j× b]2k / [v× ω]2k begins to increase roughly corresponds to the wave number where

EM(k)/EV (k) begins to increase towards the prediction of Eq. 20. In the vorticity equation,

the ratio of k × [j× b]k to k × [v × ω]k decreases with k × [v × ω]k dominating at wave
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FIG. 6. (Color Online) (Panel a) Ratios of the spectra of the nonlinear terms present in the

magnetic vector potential, velocity, and “uncurled” ΩL equations. The horizontal dashed line

marks a value of unity, and the vertical dashed lines mark the ion inertial length (1/ǫH ), and

dissipation scales given by Eq. 5 (kA, kL, and kH). (Panel b) Same as panel a but for the nonlinear

terms in the induction, vorticity, and ΩL equations. (Panel c) Spectra of the cosine of the angles

between the vectors involved in the nonlinear terms (σjb, σK , and σC). In creating the spectra,

the absolute value of the correlation is taken before averaging over spherical shells so as to avoid

cancellation of positive and negative alignment. The vertical dashed line gives the ion inertial

length. All three plots are for run RH2c. Other HMHD runs show the same general behavior.
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numbers above 1/ǫH ; however, the ratio begins to increase at moderate wave numbers and

k×[j× b]k dominates at the smallest wave numbers. The change in behavior of the nonlinear

terms in the vorticity equation seems to be associated with the change in behavior in the

nonlinear terms of the velocity equation. The scale at which these changes in behavior

occur appear to be associated with the scale kA, which roughly is consistent with where

EM(k)/EV (k) begins to increase. The association with kA is consistent with the transition

to the magnetically dominated state occurring at larger wave number for higher Reynolds

number as seen in Fig. 4. While k× [j× b]k does not dominate the vorticity equation at the

scale where the energy begins to become magnetically dominated, k×[j× b]k does dominate

the vorticity equation at the scales where EM(k)/EV (k) follows Eq. 20 as expected. kA is

smaller than the overall dissipation scale of the system (in this case kH) indicating that the

interplay of dissipation with the various nonlinear terms can lead to different regimes of

HMHD turbulence. Similar results to run RH2c are found for the other HMHD runs. Panel

c of Fig. 6 shows spectra of σjb, σV , and σC , which are the alignments associated with the

nonlinear terms. The spectra of σjb and σV are similar at small scales indicating it is the

magnitudes of the vectors that are causing [j× b]k to dominate the velocity equation rather

than the angles between the vectors.

Although in the example shown kL seems to roughly correspond to a change in behavior

in [v × b]2k/(ǫ
2

H [v × ω]2k) and in |k× [j× b]k |2/|k× [v × ω]k |2, examination of other runs

reveals that kL is not associated with strong changes in behavior as is the case with kA.

In the runs at resolution 5123, kH seems to be associated with Hall term dominating the

induction equation, however at lower resolutions this is not necessarily the case.

The decrease in σL in Fig. 5 may be associated with the increase in the importance of

the v × b compared to the ǫHv × ω term (Fig. 6, panel a) and increase in σvb to the value

of σvω (Fig. 6, panel c). Both of these quantities are relevant to σL and show significant

changes in behavior at k ∼ 40, which is where σL begins to decrease. σL begins to increase

again when σvb ∼ σvω .

B. Behavior in real space

The occurrence of strong localized structures at small scales is a hallmark of turbulent

flows, for incompressible fluids [66] (see [67] for the supersonic case), as well as in MHD
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FIG. 7. (Color Online) 2D cuts of |j| (panel a), |ω| (panel b), and σjb (panel c) at the location

of maximum current near the peak of ΩT for run OTH2b. White crosses mark the location of

maximum current and white curves give the half-maximum contours of the current. Values of

|σjb| < 0.9 are masked out to highlight the highly-aligned structures. The x and y axes are in units

of grid points.

[68, 69], where it can lead to finite dissipation in the limit of small viscosity and resistivity

[50]. Indeed, in real space, coherent structures in the current, associated with intermittency

[70, 71, and references therein], play an important role. In the context of resistive MHD and

Hall MHD, velocity gradients and currents are responsible for local dissipation of energy

[50, 63, 68] (see also [72]). In collisionless plasmas, the current structures in particular are

thought to play a key role in dissipation [11, 73–75]; directional discontinuities are observed

as well, often attributed to the Hall regime although they are also present in MHD at

sufficiently high Reynolds numbers [76, 77].

Fig. 7 shows 2D cuts for the current, vorticity, and σjb near the peak of ΩT for run

OTH2b. The 2D cuts are for a subset of the domain located around the current structure

containing the maximum current. For the cut in σjb, alignments less than 0.9 are masked

out to highlight the most aligned structures. In Fig. 7, white curves mark the half-maximum
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current contours and the white + marks the location of the maximum current. It is found

that for both types of initial conditions, strong currents tend to be associated with regions

of highly-aligned magnetic field and current (σjb ≈ ±1). σR shows similar results to σjb;

however, this is not unexpected since in the small scales the Hall term dominates, which

should give σR ∼ −σjb. We also observe that in the vicinity of regions of high alignment,

σjb can vary in sign (corresponding to parallel or anti-parallel configurations of the fields),

as was already observed in MHD for the velocity-magnetic field correlation [78].

To further examine this association, Fig. 8 plots probability distributions (PDFs) for

various alignments conditioned on the strength of the current being greater than 75% of the

maximum for runs OTH2b and RH2c. Since only a limited number of current structures form

within the domain for the runs presented in this study, it is possible to obtain false peaks

near strong alignment in the conditional PDFs if the current structures randomly coincide

with regions of strong alignment. However, if the current structures are not fundamentally

associated with a given alignment, the shape of the conditional PDF can significantly change

in time as current structures move or new current structures form. Based on the simulations

presented here, times slightly after the peak of ΩT appear to have more strong current

structures providing better statistics in the conditional PDFs. Conditional PDFs have been

examined at additional times for both types of initial conditions (see Fig. 8, panels a and

b for an example) and while the PDFs for most of the alignments change shape with time,

peaks at strong alignment consistently occur for σjb. Examination of conditional PDFs in the

MHD runs (not shown), reveals that, while there may be some association between strong

currents and highly-aligned σjb, the association tends to be stronger in HMHD. Evidence

has also been found that the inclusion of the Hall term can generate magnetic field-aligned

currents in laminar reconnection [79, 80].

Fig. 9 shows PDFs of the parallel and perpendicular magnitudes of the current with

respect to the magnetic field (|j||| = |j · b|/|b| and |j⊥| =
√

|j|2 − |j|||2) for runs OTH2b,

OTMb, RH2c, and RMc. Both |j||| and |j⊥| have similar PDFs, particularly for the random

initial conditions. Even though on average ΩT is weaker in HMHD, the PDFs extend to

greater magnitudes in the case of HMHD consistent with more intermittent behavior. The

value of |j||| reaches nearly the magnitude of the maximum current consistent with the

findings of Fig. 7. Stawarz et al. [11] have suggested that the destabilization of field-aligned

currents plays a key role in the dissipation of collisionless plasma turbulence, particularly in

22



−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

σ

P
D

F
(a)

 

 

σ
M

σ
G

σ
jb

σ
C

σ
V

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

σ

P
D

F

(b)

 

 

σ
M

σ
G

σ
jb

σ
C

σ
V

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

σ

P
D

F

(c)

 

 

σ
M

σ
G

σ
jb

σ
C

σ
V

FIG. 8. (Color Online) Conditional PDFs of σM , σG, σjb, σC , and σV for points where |j| is greater

than 75% of the maximum. Panels a and b show run OTH2b at the time of peak ΩT and 1.2 times

the time of peak ΩT respectively. Panel c shows run RH2c at the time of peak ΩT . At all times

and initial conditions examined, peaks in the conditional PDF for σjb are present at either +1 or

at -1 (as plotted here).

the Earth’s magnetotail. The association of intense currents with σjb and enhancement in

current magnitudes in HMHD may mean that Hall physics helps to enhance this dissipation

mechanism in collisionless plasmas.

From Fig. 7 it appears that not only are the currents significantly more intense than

the vorticity in HMHD, but they are also significantly thinner. One way of quantifying the
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FIG. 9. (Color Online) (Panel a) Distributions of |j||| = |j · b|/|b| (black circles) and |j⊥| =
√

|j|2 − |j|||2 (red squares) for runs OTH2b (solid lines) and OTMb (dashed lines). (Panel b) Same

as panel a but for runs RH2c (solid lines) and RMc (dashed lines). The magnitudes are normalized

to the standard deviation of the current. The HMHD runs have wider wings to the distributions

than the MHD runs.

size of structures on average in a turbulent system is by considering the autocorrelation

function. Fig. 10 panel a plots the autocorrelation functions for j, ω, and e for runs OTH2b

and OTMb. The autocorrelation functions are normalized by the mean square value of

each quantity such that the value at zero separation is unity. While in MHD j and ω have

virtually identical autocorrelation functions consistent with structures of similar size, HMHD

has a narrower j autocorrelation function and wider ω autocorrelation function. At larger

separations the HMHD j autocorrelation crosses both the MHD autocorrelation functions

indicative of more peaked current structures in HMHD. For MHD the correlation length

defined as the integral of the autocorrelation function is 0.042 for both j and ω. For HMHD,

the correlation lengths are 0.04 for j and 0.049 for ω (compared to the total box size of

2π). The behavior of j and ω autocorrelation functions is likely a manifestation of the effect

described in Sec. IIIA which causes ω to scale identically to b in the small scales. If ω ∼ b,

then j, which is the curl of b will end up being at smaller scale (unless the field is force-free).

The HMHD autocorrelation function for the electric field e is nearly identical to that of j

at small separations and then departs from j, ultimately becoming wider with a correlation

length of 0.048. The presence of j structures narrower than e structures is consistent with
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FIG. 10. (Color Online) (Panel a) Autocorrelation functions of the current, vorticity, and electric

field for runs OTH2b (solid lines) and OTMb (dashed lines). In MHD, the current and vorticity

autocorrelation functions are nearly identical consistent with current and vorticity structures that

are of similar scales. In HMHD, the current autocorrelation function is narrower and the vorticity

autocorrelation function is wider consistent with thinner current structures and wider vorticity

structures. Electric field structures are much narrower and follow the current autocorrelation func-

tion at small separations in HMHD. (Panel b) Spectra of e (Fourier transform of e autocorrelation

function) for runs OTMB (black circles) and OTH2b (red squares). The vertical dashed line marks

1/ǫH .

the findings of Bhattacharjee et al. [81] in 2D HMHD laminar reconnection. The MHD

e autocorrelation function is significantly wider than HMHD with a correlation length of

0.081. At small separations the MHD e autocorrelation is not identical to j. Enhanced small

scale e activity has also been observed in 3D HMHD turbulence simulations by Dmitruk

and Matthaeus [52]. Smaller scale e activity in HMHD is expected because the Hall term,

present in Eq. 4, is important at small scales.

The e spectra, which are the Fourier transform of the autocorrelation function, are also

shown in Fig. 10 panel b. At wave numbers below 1/ǫH the HMHD and MHD electric

field spectra are similar and at wave numbers above 1/ǫH HMHD has significantly enhanced

electric field activity over MHD. The behavior of the electric field spectra are consistent with

that reported by Dmitruk and Matthaeus [52].
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C. Comparison to Hyperdiffusive Runs

As has been pointed out by numerous authors [32, 41, 47], the timescale associated

with the Hall term dimensionally scales as k−2, which is the same as the scaling for the

diffusive timescale associated with Laplacian dissipation. As such, it has been suggested

that from a numerical perspective utilizing hyperdiffusivity may produce better results, in

that it will allow dissipation to cut in more sharply in the small scales resulting in a better

developed HMHD inertial range. The results may then be more comparable to the sub-

ion scale nonlinear dynamics present in collisionless plasmas, while still providing sufficient

dissipation for the numerics. In order to test if the method of dissipation (regular Laplacian

dissipation or hyperdiffusive Laplacian squared dissipation) alters the results of the previous

sections, two hyperdiffusive HMHD runs (see Table I for parameters) are performed and

compared to the runs using regular diffusivity. The hyperdiffusive runs are analyzed at the

time of maximum of PT .

In general, runs using hyperdiffusivity give comparable results to the regular diffusivity

runs. Some examples are shown in Fig. 11 where panel a gives the energy spectra for

Fourier modes with |PM | > 0.3. While 5123 resolution regular diffusivity runs seen in Fig. 3

show only short regions that may be consistent with k−7/3 scaling for PM < −0.3, the

hyperdiffusive runs show regions consistent with k−7/3 scaling from just above 1/ǫH until

k ∼ 30 in the case of run RH2K4b. However, PM > 0.3 still does not show a significant

range of k−11/3 scaling. Fig 11 panel b shows EM(k)/EV (k) for both the hyperdiffusive runs

with regular diffusivity runs RH2b and RH2c for comparison. In all runs a transition occurs

at scales well above the ion inertial length to a magnetically dominated state following the

prediction of Eq. 20 and the wave number of the transition moves to larger values as the

diffusivity coefficients are decreased. In the hyperdiffusive runs the transition from near

equipartition to EM (k)/EV (k) = ǫ2Hk
2 is steeper than in the regular viscosity runs. When

examining the ratios of the nonlinear terms in the magnetic vector potential (equivalent

to the electric field equation), momentum, and “uncurled” ΩT equations for run RH2K4b

(Fig 11, panel c) similar features are seen to the the regular diffusivity run shown in Fig. 6

panel a. The Hall term dominates the electric field at wave numbers above k ∼ 8. At

kA ∼ 28 a transition occurs in the momentum equation where the Lorentz force becomes

increasingly important and eventually dominates the equation. The wave number kA also
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FIG. 11. (Color Online) (Panel a) Energy spectra for Fourier modes with |PM | > 0.3 for the

two hyperdiffusive runs, as well as run RH2b for comparison. The spectra for negative PM are

compensated by k7/3 and the positive PM spectra are compensated by k11/3. The vertical dashed

line marks 1/ǫH . (Panel b) EM (k)/EV (k) for the two hyperdiffusive runs with runs RH2b and

RH2c (note that this run has 5123 resolution) for comparison. The vertical dashed line marks

1/ǫH . (Panel c) Ratio of nonlinear terms in the magnetic vector potential equation, momentum

equation, and “uncurled” ΩL equation for run RH2K4b. The horizontal dashed line denotes unity

and the four vertical dashed lines mark the scales 1/ǫH , kA, kL, and kH . (Panel d) Autocorrelation

functions for the current, vorticity, and electric field in run RH2K4b and RH2c for comparison.
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roughly coincides with the beginning of the transition to the magnetically dominated state

in Fig. 11 panel b as also found in the regular diffusivity runs. Fig. 11 panel d shows the

autocorrelation functions of j, ω, and e for runs RH2K4b and RH2c (also see Fig. 10 for

another regular diffusivity example). Again the curves show similar general features between

hyperdiffusive and regular diffusive runs. At small separations the ω autocorrelation tends

to wider than the j autocorrelation with a crossover that occurs at larger separations. The e

autocorrelation is similar to the j autocorrelation at small separations but ultimately wider

at large separations. Other results discussed in this paper, but not shown in Fig. 11, are

likewise similar between hyperdiffusive and regular diffusivity runs.

IV. DISCUSSION AND CONCLUSIONS

In this study, 3D direct numerical simulations of Hall MHD turbulence are examined in

both Fourier and real space and compared to MHD simulations. Runs using both tradition

Laplacian dissipation and hyperdiffussive Laplacian squared dissipation are performed and

similar results are obtained regardless of the dissipation operator used. It is found that

at small to moderate wave numbers, which can extend to scales below the ion inertial

length, EM(k)/EV (k) is in near equipartition. Unlike MHD, at large wave numbers the ratio

becomes magnetically dominated and scales as ǫ2Hk
2 which is consistent with the behavior of

linear whistler waves. However, it is shown that this scaling is also consistent with nonlinear

fluctuations when the j × b terms (Lorentz force and Hall terms) are dominant in the

equations. The transition to the magnetically dominated state, which may be akin to the

electron MHD regime where ions are taken to be a dynamically unimportant neutralizing

background, is found to occur when the v · ∇v term becomes subdominant to dissipation.

Unlike MHD, this length scale is potentially different than the overall dissipation scale of

the system. The near equipartition of energy into the Hall regime is strongly linked to

the nonlinearity of the system, since the v · ∇v term does not contribute to the linearized

system. While the simulations presented here are performed in the presence of viscous and

resistive dissipation, the results suggest that examination of the ratio of magnetic to kinetic

energy spectra may provide insight into the behavior of dissipation in collisionless plasmas

or at least provide an indication of the relative importance of the various nonlinearities in

the system.
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The spectra of right and left polarized fluctuations in HMHD turbulence have also been

examined in the manner proposed by Meyrand and Galtier [47]. The ratio of 〈|uR|2〉 / 〈|uL|2〉
in the initial conditions seems to have an effect on the relative amplitudes of the right

and left polarized spectra and, therefore affects the exact ratio of EM (k)/EV (k) in the

near equipartition region. Smaller ratios of 〈|uR|2〉 / 〈|uL|2〉 appear to be associated with

more kinetic energy. The slope of the right and left polarized spectra have short regions

that may be consistent with k−7/3 and k−11/3 respectively when considering moderate to

large polarizations (|PM | > 0.3) and regular diffusivity. However, when considering just

strongly polarized fluctuations (|PM | > 0.7) left polarized fluctuations show a much steeper

spectrum than k−11/3 while right polarization has a significant k−7/3 region. When using

hyperdiffusivity the region consistent with k−7/3 is somewhat enhanced for PM < −0.3.

Current structures in HMHD are found to be narrower and more intense than in MHD,

as has been noted by various other authors [46, 49, 51]. In particular, it is found that

while current and vorticity structures have nearly equal sizes on average in MHD, in HMHD

current structures become narrower and vorticity structures become broader. Evidence

is also found that there may be a relationship between the strong current structures and

alignment between the current and magnetic field. This behavior is somewhat different than

the idea of strong currents forming in the boundary between regions of strong alignment,

which has been proposed in the context of MHD [78, 82]. Alignment between j and b within

strong current structures may be of particular importance in collisionless plasmas where

intense field-aligned currents can be unstable.

Electric field autocorrelation functions are found to be significantly narrower in HMHD

than in MHD and to behave similar to the current autocorrelation function at small sep-

arations. The similar behavior to the current autocorrelation may be of use for in situ

measurements of space plasmas, since the electric field is often easier to obtain than the

current. However, further understanding of how additional kinetic effects alter this behavior

is necessary to use this feature in space plasmas.

Additional simulations may provide further insight into some of the results found here. In

light of the EM (k)/EV (k) findings, studies varying the magnetic Prandtl number such that

ν 6= η (in particular ν < η) may be interesting in HMHD, since this can alter the ordering

of the various dissipation scales and could produce different behavior. Simulations with an

explicitly imposed B0 could provide more insight into the role of the double curl Beltrami
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configuration in the small scales. Finally, simulations with smaller scale initial conditions

or forcing, such that more strong current structures are generated and better statistics

are obtained, would help to characterize the relationship between current structures and

alignments.
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