
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Uniform heating of materials into the warm dense matter
regime with laser-driven quasimonoenergetic ion beams

W. Bang, B. J. Albright, P. A. Bradley, E. L. Vold, J. C. Boettger, and J. C. Fernández
Phys. Rev. E 92, 063101 — Published  1 December 2015

DOI: 10.1103/PhysRevE.92.063101

http://dx.doi.org/10.1103/PhysRevE.92.063101


1 
 

Uniform heating of materials into the warm dense matter 
regime with laser-driven quasi-monoenergetic ion beams 

 

W. Bang,1, a) B. J. Albright,1 P. A. Bradley,1 E. L. Vold,1 J. C. Boettger,1 and J. C. 
Fernández1 

1Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 
 
Abstract 
In a recent experiment on the Trident laser facility, a laser-driven beam of quasi-monoenergetic 
aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 eV and 1.7 eV, 
respectively. Here theoretical calculations are presented that suggest the gold and diamond were 
heated uniformly by these laser-driven ion beams. According to calculations and SESAME 
equation-of-state tables, laser-driven aluminum ion beams achievable on Trident, with a finite 
energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 
140 MeV aluminum ions with zero energy spread. The robustness of the expected heating 
uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected 
plasma temperatures of various target materials achievable with the current experimental 
platform are presented.  
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I. Introduction 

Rapid heating of matter using a short (tens of fs to ps) laser pulse is an emerging research 

area in plasma physics [1-18]. In these settings, the interaction between intense light and matter 

is sufficiently strong and fast for the atoms to be ionized instantaneously and the resulting 

electrons or ions (or both) attain large kinetic energies very quickly. By directly illuminating a 

small, reduced-mass solid target with an intense laser beam, target temperatures on the order of 

100 eV have been demonstrated [16]. Using even smaller targets (~10 nm radius spheres) [19], 

an ion temperature exceeding tens of keV has been achieved in the laboratory [10], which is 

sufficiently high for deuterium ions to produce nuclear fusion reactions efficiently [20-23].  

While such high temperature plasmas have been reliably produced using this direct and 

intuitive approach for rapid heating of a target, this approach is less desirable when heating 

uniformity is crucial. In direct laser heating, most of the laser pulse energy is absorbed by the 

electrons at the front surface of the target (within 100 nm), and the rest of the target is 

subsequently heated by the resulting hot electrons and the return currents of cold electrons [24]. 

A recent study by Lévy et al. [14] showed that uniform heating can be achieved for a 0.5 μm 

thick silver target using a free electron x-ray laser beam, but a uniform heating of a thicker target 

(>1 μm) has yet to be reported using this approach.  

With the development of new laser-driven ion sources in recent years [25-36], an 

alternative approach was explored. When a beam of energetic (> 1 MeV) ions is incident on a 

cold target, the ions can transfer a significant amount of their kinetic energy to the target. This 

heating occurs sufficiently rapidly (~20 ps) [37] that the target does not have time to expand 

hydrodynamically during heating, and is thus called isochoric heating. In isochoric heating 

experiments with laser-driven ions [4-8,37-41], the temperature of the target may reach 1–

100 eV while still maintaining near-solid density, and the originally cold target becomes warm 

dense matter (WDM) [42]. For example, Patel et al. demonstrated that a laser-driven proton 
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beam can volumetrically heat a 10 μm thick Al target to 23 eV [4], and a subsequent experiment 

delivering more laser energy showed a rear-surface temperature as high as 83 eV [38].  

Although WDM is commonly found in astrophysics (e.g., in planetary cores) as well as in 

high energy density physics experiments [17,43-47], the properties of WDM are not well 

understood and are difficult to predict theoretically [8,48,49]. This is because neither the 

approximations made to describe condensed matter, nor those made to describe high-temperature 

plasmas are strictly valid in this intermediate regime. WDM samples that are uniformly heated 

would be ideal for these studies because gradients complicate the measurements and their 

interpretations. However, such WDM samples have been unavailable to date. Typical laser-

driven ion beams possess an exponential energy spectrum, which leads to nonuniform heating 

along their propagation direction because of the presence of a large number of low-energy ions, 

which heat preferentially the front surface of the target [6,7,30,39,41].  

Recently [37], we proposed that this issue could be resolved by the use of ion beams with 

a quasi-monoenergetic energy spectrum [29,50-54]. In this paper, we examine the details of the 

expected heating calculations from laser-driven quasi-monoenergetic aluminum ion beams. We 

study the expected heating uniformity within the samples using a Monte Carlo simulation code, 

SRIM [55,56], and using SESAME [57] equation-of-state (EOS) tables. We also investigate how 

sensitive the uniform heating conditions are to the energy spectrum of the incident aluminum 

ions by using different ion energy spectra in the simulation. Using stopping power calculations 

and available SESAME EOS tables for various target materials, we have calculated expected 

plasma temperatures that can be achieved with our experimental platform. 

 

II. Stopping power calculations 
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The experiments in Ref. [37] were performed on the Trident laser facility at Los Alamos 

National Laboratory (LANL), which delivered 60–80 J, 650 fs, 1054 nm wavelength pulses to 

irradiate 110 nm thick aluminum foils. Figure 1 shows the schematic of the target layout inside a 

vacuum target chamber. Using an f/3 off-axis-parabola, the peak intensity of the laser pulse on 

the thin aluminum foil (ion source, not shown in Fig. 1) was about 2×1020 W/cm2. The laser-

driven aluminum ion beam diverged with a 20° cone half-angle [54], and impinged upon gold 

and diamond foils located 2.37 mm from the ion source inside the vacuum target chamber. A 

5 μm thick aluminum filter, inserted 0.37 mm behind the source and 2.0 mm before the target, 

blocked any laser light propagating through the 110 nm aluminum foil after it became 

relativistically transparent [54], ensuring the target was indeed heated isochorically with the 

laser-driven aluminum ion beam. The filter also blocked low energy protons (< 0.5 MeV) and 

aluminum ions (<10 MeV). We estimate the heating from laser-generated protons [54] to be 

insignificant because the stopping powers of gold and diamond for protons are much smaller 

than those for aluminum ions. For example, the stopping powers of gold and diamond for a 

5 MeV proton are less than 1% of those for a 140 MeV aluminum ion. For the same reason, we 

expect the heating from protons originating from the filter itself (after interacting with the 

transmitted laser light at much lower intensity) to be insignificant. 

Figure 1 shows a 10 μm thick gold foil (right hand side) and a 15 μm thick diamond foil 

(on the left side) with a vacuum gap (~100 μm) between. The aluminum ions (depicted as black 

arrows in the figure) are incident on the target at 45°. At a source-to-target distance of 2.37 mm, 

the ions incident on target are nearly parallel to one another. The aluminum ions that pass 

through the vacuum gap are recorded by a magnetic ion spectrometer [58], which monitors shot-

to-shot fluctuations in the incident ion energy spectra and fluence. A Thomson parabola ion 

spectrometer replaced the magnetic ion spectrometer on some shots. 

Figure 2 shows the calculated energy spectra of the transmitted aluminum ions using the 

SRIM code. The black bars indicate the input data to SRIM, which represent the incident energy 
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spectrum of 10,000 aluminum ions on gold or diamond. The average kinetic energy of the 

incident ions is 140 (±33) MeV. This input energy spectrum is based on a typical energy 

spectrum of the aluminum ions [54] measured from a Thomson parabola ion spectrometer. The 

red bars indicate the calculated energy spectrum of the aluminum ions after penetrating through a 

10 μm thick gold foil at 45°. Likewise, the blue bars indicate the calculated energy spectrum of 

the aluminum ions after penetrating through a 15 μm thick diamond foil at 45°. The aluminum 

ions that went through the vacuum gap did not lose their kinetic energy, and were measured 

experimentally in Ref. [37], showing close agreement with the input to SRIM (black bars). 

According to these simulations, 82% of the incident aluminum ions are expected to penetrate the 

10 μm thick gold foil, while 86% of the incident aluminum ions are expected to exit the 15 μm 

thick diamond foil. The average kinetic energy of aluminum ions after traversing a 10 μm thick 

gold foil is expected to be 42 (±29) MeV, while the average kinetic energy of the ions after 

traversing a 15 μm thick diamond foil is expected to be 68 (±35) MeV. Indeed, a large fraction 

of their original ion beam kinetic energy is expected to be transferred to the gold and diamond 

foils according to our SRIM simulations. 

Although the SRIM code uses cold stopping powers of gold and diamond, we expect the 

uncertainties in these calculations would be reasonably small. In a recent paper [47], Zylstra et al. 

reported their experimental results showing that the stopping power of warm dense Be at 32 eV 

for 14.7 MeV protons was merely 3–8% higher than the cold stopping power predicted from 

SRIM. Since the stopping power is known to increase very gradually with the ionization level of 

the target [47] and the calculated temperatures of our warm dense plasmas are only 5.5 eV for 

gold and 1.7 eV for diamond, we expect minor increases of the ionization level and estimate the 

errors in our SRIM calculations would be smaller than 10%. 

In Fig. 3(a), the stopping power of gold according to SRIM is plotted as a function of 

target depth. A flat curve in this plot means a very uniform heating across the whole target depth. 

Solid red circles indicate the average stopping power of gold for the laser-driven aluminum ions, 
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while hollow black triangles show the stopping power of gold for a perfectly monoenergetic 

140 MeV aluminum ion. These SRIM simulations suggest that the laser-driven quasi-

monoenergetic aluminum ion beam with a finite energy spread as demonstrated on Trident heats 

the 10 μm thick gold foil even more uniformly than a perfectly monoenergetic aluminum ion 

beam. This is a result of a fortuitous balance between heating power from ions in the low-energy 

part of the spectra absorbed in the target (decreasing stopping power with target depth) and 

heating from ions from the high-energy part (increasing stopping power with target depth). Our 

quantitative analysis of the expected heating uniformity indicates that gold foils thicker than 

6 μm show better heating uniformity when heated by the laser-driven aluminum ion beam (see 

Appendix A, Fig. 9, for more details). A target depth of 14 μm in Fig. 3(a) is equivalent to the 

travel distance of ions within a 10 μm thick gold foil at 45°. 

Figure 3(b) shows the stopping power of diamond as a function of target depth. Solid 

blue triangles represent the average stopping power of diamond for the laser-driven aluminum 

ions, while hollow black triangles indicate the stopping power of diamond for a perfectly 

monoenergetic 140 MeV aluminum ion. Again, the stopping power calculations suggest more 

uniform heating of diamond foil with the laser-driven ion beam. This is true for diamond foils 

thicker than 11 μm according to our analysis (see Appendix A, Fig. 9, for more details). In Fig. 

3(b), a target depth of 21 μm is equivalent to the travel distance of ions within a 15 μm thick 

diamond foil at 45°. 

In Figs. 3(a) and 3(b), the area under the curve defined by the data points in each plot 

represents the average energy lost within the target by a single incident aluminum ion, which is 

equivalent to the energy deposited to the target atoms. In the next section, we show how one can 

estimate the absorbed energy per atom using the stopping power calculations.  

 

III. Heating per atom and expected temperature calculations  
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Figure 4 shows an example scenario that illustrates how we estimate the ion kinetic 

energy deposition into the foils. In this example, we assume ten aluminum ions are incident on a 

target that consists of ten million atoms. The average kinetic energy of the incident ions is 

140 MeV, and each ion loses an average kinetic energy of 40 MeV while passing through the 

target. Then, one can calculate the average absorbed energy per target atom, or heating per atom, 

using the following relation [37]: Heating per atom ൌ  ேழாೞவேೌೝ ,       (1) 

where Nion is the total number of incident aluminum ions on the target, <Edeposit> is the average 

energy deposited by one aluminum ion, and Ntarget is the total number of target atoms irradiated 

by the ion beam. Using Eq. (1), the heating is calculated to be 40 eV per atom in this example 

scenario. Radiation losses are insignificant and are neglected in Eq. (1) because the anticipated 

temperatures of the plasmas are of order several eV [37], well below the temperature where 

radiation losses are significant. Using Eq. (1) and the input data to SRIM shown in Fig. 2, we 

expect an average heating per atom of 38 eV for gold and 6.3 eV for diamond at a source-to-

target distance of 2.37 mm used in Ref. [37]. 

 We use SESAME EOS tables to estimate the expected plasma temperatures of gold and 

diamond from the heating per atom calculations. Figure 5 shows the expected plasma 

temperatures of gold and diamond as functions of heating per atom. The solid red line indicates 

the expected temperature of gold as a function of heating per atom using SESAME EOS table 

#2700, and the dashed red line shows the expected temperature of gold when using #2705 EOS 

table [59]. At a heating of 38 eV/atom, there is a difference of 0.5 eV (~10%) in the temperatures 

predicted from two different EOS tables for gold. The difference between the expected 

temperatures when using different EOS tables was not as large for diamond. The solid blue line 

indicates the temperature of diamond using SESAME EOS table #7834, while the dashed blue 

line shows the expected temperature of diamond with SESAME #7830 table [46]. 
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Figures 6(a) shows the expected temperature of gold as a function of target depth using 

SESAME EOS table #2700 (solid red circles with red error bars) and #2705 (hollow black 

circles with black error bars). Although both EOS tables predict uniform heating within the 

10 μm thick gold foil (45° incidence angle has been taken into account in this figure), the 

resulting temperatures differ by 0.5 eV in Fig. 6(a). SESAME EOS table #2705 was produced in 

2011 as a replacement for SESAME #2700 table [59], which was created in 1978. SESAME 

#2705 table gives predictions of the room-temperature isotherm, principal Hugoniot, thermal 

expansion, heat capacity, melt line, and vapor pressure for pure gold that are substantially 

different from and superior to the equivalent predictions using SESAME #2700 table [59]. 

Figure 6(b) shows similar calculations for a 15 μm thick diamond foil. Solid blue 

triangles indicate the expected temperature of diamond using SESAME #7834 table, while 

hollow red triangles with red error bars show the expected temperature using SESAME #7830 

table. SESAME EOS table #7834 was produced in 2006 as an improvement to SESAME #7830 

table, which was created in 1979. SESAME #7834 matches the shock data and atomistic 

simulations used in Ref. [60]. In the current experimental settings, both SESAME #7830 and 

#7834 tables predict nearly identical temperatures of diamond after heating. 

The vertical error bars in Figs. 6(a) and 6(b) represent the uncertainties in the expected 

temperatures of gold and diamond, respectively, owing to the observed shot-to-shot variation of 

about ±30% in the incident number of aluminum ions [37]. To account for the variation in the 

number of incident aluminum ions, we have added ±30% error bars in the heating per atom 

calculations [37], which resulted in rather large error bars of up to ±1.0 eV in the expected 

temperatures of gold in Fig. 6(a) and error bars up to ±0.5 eV for diamond in Fig. 6(b). Since we 

estimate the errors in SRIM calculations to be smaller than 10% and heating from other sources 

such as laser-generated protons, x-rays, hot electrons to be insignificant, the error bars in Figs. 

6(a) and 6(b) are mostly determined by the shot-to-shot variation in the ion fluence. 
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Figures 6(c) and 6(d) show the expected plasma temperatures of gold and diamond foils, 

respectively, heated by a perfectly monoenergetic 140 MeV aluminum ion beam. The calculated 

temperatures are shown as functions of the target depth. SESAME EOS #2700 (hollow black 

squares) and #2705 (solid red squares) were used for gold, and SESAME EOS #7830 (hollow 

red squares) and #7834 (solid blue squares) were used for diamond. No error bars were added to 

Figs. 6(c) and 6(d) for a clear comparison with their counterparts heated by the laser-driven 

aluminum ion beam. Although the average temperatures of gold and diamond foils in Figs. 6(c) 

and 6(d) are comparable to those in Figs. 6(a) and 6(b), respectively, the achieved heating 

uniformity is slightly better when the foils are heated by the laser-driven aluminum ion beam.  

Based on calculations of electron-electron and electron-ion collision frequencies within 

our target [17,18], we expect that local thermal equilibrium is reached within several 

picoseconds, so the plasma temperature in Fig. 6(a) or in Fig. 6(b) represents both electron and 

ion temperatures. On the other hand, global thermal equilibrium is not expected to be reached 

within 10 μm thick gold or 15 μm thick diamond foils even after several hundred nanoseconds 

from heating based on our calculations of the diffusion coefficients of gold at 5.5 eV and 

diamond at 1.7 eV (see Appendix C for more details), which explains why the initial heating 

uniformity evidenced in Figs. 6(a) and 6(b) is important for the production of uniformly heated 

WDM sample.  

In Figs. 7(a) and 7(b), we examine how sensitive the uniform heating conditions are to 

the energy spectrum of the incident aluminum ions by using different ion energy spectra in our 

SRIM simulations (see Appendix B, Fig. 10, for expected heating calculations using a laser-

driven aluminum ion beam with an average kinetic energy of 280 MeV). Fig. 7(a) shows the 

calculated heating uniformity in the gold foil for 3 different input energy spectra of the 

aluminum ions. Solid red circles show the expected heating uniformity within the gold foil using 

the energy spectrum shown in Fig. 1 (black bars). Hollow blue triangles show the expected 

temperature of gold as a function of the target depth assuming each aluminum ion had 10% more 
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kinetic energy, while hollow black squares show the expected temperature of gold assuming 10% 

less kinetic energy for each ion.  

Figure 7(b) shows similar calculations of the expected temperature of diamond as a 

function of target depth using three different energy spectra. Solid blue triangles indicate the 

expected temperature of diamond as a function of target depth using the measured energy 

spectrum, while hollow red circles indicate the results using the ions with 10% more kinetic 

energy and hollow black squares indicate the results using the ions with 10% less kinetic energy.  

In Figs. 7(a) and 7(b), we have adjusted the total number of incident aluminum ions so 

that the total kinetic energy of the incident ion beam is conserved. For the case with aluminum 

ions with 10% more kinetic energy, we assume the total number of incident ions is 9% less than 

the measured ion fluence. For the case with aluminum ions with 10% less kinetic energy, we 

assume 11% more ions are incident on the target. We have used SESAME EOS table #2705 for 

gold and SESAME #7834 table for diamond in converting the SRIM predictions of deposited 

energy to material temperatures in these simulations. 

For applications involving materials other than gold and diamond, we have calculated the 

expected heating per atom for various target materials in Fig. 8(a). The same aluminum ion beam 

heats the target material, and error bars of ±15% are shown in the figure. We use ±15% errors 

instead of ±30% errors reported in Ref. [37] because we expect a better control of the ion beam 

in future experiments. The heating per atom increases almost monotonically with atomic number, 

primarily because of the increase in the total number of electrons in the target atom. We have 

also calculated expected plasma temperatures of various target materials using heating per atom 

calculations in Fig. 8(a) and their corresponding SESAME EOS tables. Figure 8(b) shows the 

expected plasma temperature as a function of the atomic number at a source-to-target distance of 

2.37 mm. The two experimental data points in Ref. [37] are also shown in the figure. The plasma 

temperature generally increases with the atomic number, and there are multiple local minima 



11 
 

around the location of the noble gases (Z=2, 10, 18, 36, 54, 86). We speculate that this is owing 

to the ionization potential peaks for the noble gases. 

In Fig. 8 and throughout this paper, we have assumed the targets remain at solid density 

throughout the heating. This is a valid assumption because the volume changes during heating 

are expected to be small. We estimate the volume increase during heating to be at most 3% for 

gold and 2% for diamond based on the measured average expansion speeds in Ref. [37], and 

expect similar amount of volume increase during heating for other materials. The rise time of 

heating was calculated to be about 20 ps at a source-to-target distance of 2.37 mm in Ref. [37]. 

For a 10 μm thick gold foil, this translates to a volume increase of 3% during heating using the 

expansion speed of gold at 7.5 μm/ns, while a volume increase of 2% is expected for a 15 μm 

thick diamond foil expanding at 6.7 μm/ns.  

 

IV. Conclusions 

We have presented a series of analyses that suggest uniform heating of gold and diamond 

with a laser-driven quasi-monoenergetic aluminum ion beam. Indeed, it appears that a quasi-

monoenergetic ion beam with a small but finite energy spread can heat ~10 μm thick target foils 

more uniformly than a perfectly monoenergetic ion beam of the same mean energy. We have 

investigated the robustness of the heating uniformity by applying several different perturbations 

to the ion energy spectra used in our SRIM calculations. For future applications, we have 

presented the expected temperatures achievable by various target materials with the current 

experimental platform. 

Such uniformly heated WDM samples would be useful for EOS, opacity, and 

conductivity [3,9] measurements. They can also be used for stopping power measurements of 



12 
 

WDM [47]. Such targets would be also useful for validating our understanding of the physics of 

giant planet interiors, which are also in WDM state [43]. 
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Appendix A: Heating uniformity achieved with the laser-driven aluminum ion beam vs. 

that achieved with a monoenergetic aluminum ion beam 

 In this section, we compare the heating uniformity expected from the laser-driven 

aluminum ion beam with that expected from a monoenergetic ion beam. For a quantitative 

analysis of the heating uniformity, we define the “heating nonuniformity” as Heating nonuniformity ൌ  ௌ௧ௗௗ ௗ௩௧  ௧ ௦௧ ௪௩ ௦௧ ௪  ൈ 100 ሺ%ሻ. (A1) 

For example, the average stopping power of a 14 μm thick gold foil for the laser-driven 

aluminum ion beam can be written as 7.41 (±0.27) MeV/μm in Fig. 3(a) (or in Fig. 9(a)), where 

±0.27 MeV/μm is the standard deviation of the stopping power within the 14 μm thick gold foil. 

Following the definition of the heating nonuniformity in Eq. (A1), we find that the heating 



13 
 

nonuniformity of a 14 μm thick gold foil is 0.27/7.41×100 = 3.6%. Here a heating nonuniformity 

of 0% represents a perfectly uniform heating throughout the target thickness. 

On the other hand, the stopping power of a 14 μm thick gold foil for a monoenergetic 

140 MeV aluminum ion beam is 8.05 (±0.77) MeV/μm in Fig. 3(a) (or in Fig. 9(a)), where ±0.77 

MeV/μm is the standard deviation of the stopping power. Therefore, the heating nonuniformity is 

0.77/8.05×100 = 9.6% for the monoenergetic ion beam case, and we claim that a 14 μm thick 

gold foil is more uniformly heated by the laser-driven aluminum ion beam (3.6%) than by a 

monoenergetic 140 MeV aluminum ion beam (9.6%). 

This analysis is graphically illustrated in Fig. 9. Figure 9(a) shows the average stopping 

power of gold for the laser-driven aluminum ion beam (solid red circles) as well as the stopping 

power of gold for a monoenergetic 140 MeV aluminum ion beam (hollow black triangles). 

Likewise, Fig. 9(b) shows the average stopping power of diamond for the laser-driven aluminum 

ion beam (solid blue triangles) and that for a monoenergetic aluminum ion beam (hollow black 

triangles). Figures 9(c) and 9(d) show the calculated heating nonuniformity achieved with these 

ion beams for gold and diamond, respectively. In Fig. 9(c), the solid red circles (heating by the 

laser-driven ion beam) are below the hollow black triangles (heating by a monoenergetic ion 

beam) for foil thicknesses greater than 6 μm, and this indicates that gold foils thicker than 6 μm 

are heated more uniformly by the laser-driven ion beam. Similarly, solid blue triangles are 

located below the hollow black triangles for diamond foil thicknesses greater than 11 μm in Fig. 

9(d), and this implies more uniform heating of diamond foils by the laser-driven ion beam for 

foils thicker than 11 μm. As expected, a sharp increase in the heating nonuniformity is observed 

for the monoenergetic ion beam case after the Bragg peak in Figs. 9(c) and 9(d).  
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FIG. 9. (Color online) (a) The average stopping power of gold for the laser-driven aluminum ion 
beam (solid red circles) is shown as a function of the target depth. Hollow black triangles 
indicate the stopping power of gold for a monoenergetic 140 MeV aluminum ion beam. (b) The 
average stopping power of diamond for the laser-driven ion beam is indicated as solid blue 
triangles, and the stopping power of diamond for a monoenergetic 140 MeV aluminum ion beam 
is shown as hollow black triangles. (c) Heating nonuniformity within a gold foil is shown as a 
function of the foil thickness for the laser-driven ion beam case (solid red circles) and for the 
monoenergetic ion beam case (hollow black triangles). (d) Heating nonuniformity within a 
diamond foil is shown as a function of the foil thickness for the laser-driven ion beam case (solid 
blue triangles) and for the monoenergetic ion beam case (hollow black triangles). 

 

Appendix B: More uniform but less effective heating from more energetic laser-driven ion 

beam 

In Ref. [54], Palaniyappan et. al. produced an aluminum ion beam with about twice the 

average kinetic energy (<E>~280 MeV) using an f/1.5 off-axis-parabola (four times the laser 
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intensity). Although this ion beam has not been used for warm dense matter experiments yet, we 

will examine the expected heating from this more energetic ion beam in this section. 

Figure 10 shows the expected temperature of a 40 μm thick gold foil heated by the more 

energetic laser-driven ion beam with <E>=280 MeV (hollow blue triangles) as well as the 

expected temperature of the same gold foil heated by the laser-driven ion beam used in Ref. [37] 

(solid red circles). Although the heating uniformity is expected to be better using the more 

energetic ion beam (hollow blue triangles), the number of incident aluminum ions becomes about 

half in this case, resulting in lower temperature of gold after heating. This is mainly owing to the 

nearly identical laser-energy-to-ion-energy conversion efficiency (~5%) observed in Ref. [54] for 

both ion beams (twice the energy, half the ion number with f/1.5 focusing). SESAME #2705 

table was used to calculate the expected temperatures in this plot. 

 

FIG. 10. (Color online) Solid red circles indicate the expected temperature of gold heated by a 
laser-driven aluminum ion beam with an average kinetic energy of 140 MeV, while hollow blue 
triangles show the expected temperature of gold heated by a more energetic ion beam with an 
average kinetic energy of 280 MeV.  The latter ion beam was produced using an f/1.5 off-axis-
parabola in Ref. [54]. 
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Appendix C: Time scale for the global thermal equilibrium 

In this section, we aim to estimate the time required for a global thermal equilibrium 

within a 10 μm thick gold foil and within a 15 μm thick diamond foil. Let’s assume no bulk 

hydro motion of the electron fluid. The dominant terms of the electron hydro energy equation 

[reference: NRL Plasma Formulary] become ଷଶ ݊݇ ௗ ்ௗ௧ ൌ െ ·  ,         (C1)ݍ

where ne is the electron number density, kB =1.6×10-12 erg/eV, Te is the electron temperature, and 

the heat flux is ݍ ൌ െצߢ݇ ܶ. Assuming a weakly coupled plasma, Spitzer-Harm theory is 

appropriate for the classical heat flux provided the mean free path is small compared with the 

temperature gradient scale length (which it is in our problem). Spittzer-Harm theory has different 

coefficients for different Z species, but we should be able to get rough estimates using the values 

for hydrogenic plasma, for which 

צߢ  ൌ 3.2 ಳ ்ఛ ,         (C2) 

taking τe =(3.4×105 s)Te
3/2/(neλ), where λ is the Coulomb logarithm, to denote the characteristic 

electron collision time. To leading order, צߢ is seen to be insensitive to ne. 

Together, this gives us a nonlinear diffusion equation for the electron temperature Te. To 

get rough estimates of magnitudes, let us denote the temperature gradient scale length and 

characteristic equilibration time as ՜ ଵ and డడ௧ିܮ ՜ ߬ିଵ, respectively, getting, dimensionally, 

߬~ ଷଶ  .          (C3)צߢ/ଶ݊ܮ

The electron thermal conductivity is 

~צߢ  ଷ.ଶሺଵ.ൈଵషభమሻሺଷ.ସൈଵఱሻ ்ఱ/మଽ.ଵൈଵషమఴ ఒ  (cm-1s-1) = (2×1021 cm-1s-1) ்ఱ/మఒ ,   (C4) 
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which means that 

 ߬~5 ൈ 10ିସሺ ଵ ఓሻଶ ఘఒ ்ఱ/మ s,        (C5) 

where Z is the ionization state, ρ is the mass density in g/cm3 unit, and A is the atomic mass 

number. 

 For a 10 μm thick gold foil at 5.5 eV, Eq. (C5) gives a times scale of 1.4 μs using 

L=10 μm, Z~2.07, ρ=19.3 g/cm3, A=197, and a Coulomb logarithm of ~1. For a 15 μm thick 

diamond foil at 1.7 eV, the time scale becomes 30 μs using L=15 μm, Z~0.35, ρ=3.515 g/cm3, 

A=12, and a Coulomb logarithm of ~1. Although these time scales are rough estimates, it is 

evident that global thermal equilibrium is not reached within these foils on a nanosecond time 

scale relevant to most warm dense matter experiments. Therefore, the above calculations support 

our claim that the initial heating uniformity evidenced in Figs. 6(a) and 6(b) is important for the 

production of uniformly heated warm dense matter sample.  
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Figures 

 

FIG. 1. (Color online) Schematic layout of the target (not to scale). A laser-driven beam of quasi-
monoenergetic aluminum ions is incident on the target at 45°. The diamond and gold foils are 
heated isochorically by the energetic aluminum ions, and become WDM. The ions that pass 
through the vacuum gap between the two foils are recorded by a magnetic ion spectrometer. On 
some shots, a Thomson parabola ion spectrometer replaced the magnetic ion spectrometer. 
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FIG. 2. (Color online) Energy spectrum of the incident aluminum ions at 0° (black bars) 
measured from Ref. [54] along with the calculated ion energy spectra after penetrating through a 
10 μm gold foil (red bars) or a 15 μm diamond foil (blue bars). The measured ion energy 
spectrum (indicated as black bars) was used as input data in our SRIM calculations. 

 

FIG. 3. (Color online) (a) The average stopping power of gold for laser-driven aluminum ions 
(solid red circles) is shown as a function of target depth. The stopping power of gold for a 
perfectly monoenergetic 140 MeV aluminum ion is shown together (hollow black triangles) to 
emphasize the heating uniformity expected from the laser-driven ion beam. (b) Similar 
calculations of the average stopping power of diamond for laser-driven aluminum ions (solid 
blue triangles) and for a 140 MeV aluminum ion (hollow black triangles) are shown as functions 
of the target depth.  

 

FIG. 4. (Color online) An example scenario illustrates how we calculate the heating per atom. 
Ten aluminum ions with an average kinetic energy of 140 MeV are incident on a target. In this 
example, the target consists of ten million atoms, and the aluminum ions exit the target with an 
average kinetic energy loss of 40 MeV per ion.  



21 
 

 

FIG. 5. (Color online) Expected plasma temperatures of gold and diamond are shown as 
functions of the heating per atom. SESAME EOS #2700 (solid red line) and #2705 (dashed red 
line) are used for gold, and SESAME EOS #7830 (dashed blue line) and #7834 (solid blue line) 
are used for diamond. 

 

FIG. 6. (Color online) (a) Expected plasma temperature of a 10 μm thick gold foil heated by the 
quasi-monoenergetic aluminum ion beam is shown as a function of the target depth. SESAME 
EOS #2700 (hollow black circles) and #2705 (solid red circles) were used. (b) Expected plasma 
temperature of a 15 μm thick diamond foil heated by the quasi-monoenergetic aluminum ion 
beam is shown as a function of the target depth. SESAME EOS #7830 (hollow red triangles) and 
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#7834 (solid blue triangles) were used. (c) Expected plasma temperature of a gold foil heated by 
a monoenergetic 140 MeV aluminum ion beam is shown as a function of the target depth. 
SESAME EOS #2700 (hollow black squares) and #2705 (solid red squares) were used. (d) 
Expected plasma temperature of a diamond foil heated by a monoenergetic 140 MeV aluminum 
ion beam is shown as a function of the target depth. SESAME EOS #7830 (hollow red squares) 
and #7834 (solid blue squares) were used. The error bars in (a) and (b) were calculated assuming 
a shot-to-shot variation of ±30% in the incident aluminum ion fluence.  

 

FIG. 7. (Color online) (a) Calculated heating uniformity in the gold foil for 3 different input 
energy spectra of the aluminum ions. Solid red circles show the expected heating uniformity 
within the gold foil using the measured energy spectrum of the incident aluminum ions in SRIM. 
Hollow blue triangles show the resulting temperatures of gold versus target depth assuming each 
aluminum ion had 10% more kinetic energy than the measured energy, while hollow black 
squares show the temperatures assuming 10% less kinetic energy for each ion. (b) Calculated 
temperatures of diamond are shown as functions of the target depth using 3 different energy 
spectra. Solid blue triangles indicate the temperatures obtained from the measured spectrum, 
while hollow red circles indicate the results using the ions with 10% more kinetic energy and 
hollow black squares indicate the results using the ions with 10% less kinetic energy. SESAME 
table #2705 is used for gold and #7834 table is used for diamond. 
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FIG. 8. (Color online) (a) Heating per atom as a function of the atomic number. The expected 
heating per atom calculations with the quasi-monoenergetic aluminum ion beams are shown for 
various target materials to serve as a reference for future experiments. The heating per atom 
increases with the atomic number. (b) Expected plasma temperatures of various target materials 
are shown as a function of the atomic number. The temperatures determined by the measured 
expansion speeds in Ref. [37] are shown together with the calculated plasma temperatures of 
various target materials using the heating per atom calculations and their corresponding 
SESAME EOS tables. Error bars of ±15% are shown in the above figures. 

 


