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High quality (Q) factor whispering gallery modes (WGMs) can induce nonlinear effects in liquid
droplets through mechanisms such as radiation pressure, Kerr nonlinearity, and thermal effects.
However, such nonlinear effects, especially those due to radiation pressure, have yet to be thoroughly
investigated and compared in the literature. In this study, we present an analytical approach that
can exactly calculate the droplet deformation induced by the radiation pressure. The accuracy of
the analytical approach is confirmed through numerical analyses based on the boundary element
method. We show that the nonlinear optofluidic effect induced by the radiation pressure is stronger
than the Kerr effect and the thermal effect under a large variety of realistic conditions. Using liquids
with ultra-low and experimentally attainable interfacial tension, we further confirm the prediction
that it may only take a few photons to produce measurable WGM resonance shift through radiation
pressure induced droplet deformation.

I. INTRODUCTION

Optical whispering gallery modes (WGMs) in dielec-
tric micro-spheres have been extensively investigated for
various applications such as quantum electrodynamics [1]
and chemical and biological sensing [2, 3]. Due to the
high quality factor (Q-factor) and small mode volume
of WGMs, many nonlinear optical effects can be signifi-
cantly enhanced in such resonators [4–6]. While most ex-
isting research used solid structures as WGM resonators,
it has been shown that a micro-sized liquid droplet im-
mersed in a fluid with lower index can also serve as a
good optical resonator [7, 8].
During the past decade, there has been significant de-

velopment in the field of optofluidics, where one used
fluids to achieve various optical functionalities such as
lasing [9], sensing [3], and tunable photonic devices [10].
Optical techniques have also been used in the characteri-
zation of liquid properties [11, 12]. The mechanical inter-
play between optical fields and solid structures have been
widely explored in the context of optomechanics [13–16].
By contrast, the impact of optical force on fluidic sys-
tems have only been investigated in a limited number
of cases [17–23]. In general, optical fields can interact
with the fluid system through radiation pressure, scat-
tering force or thermal capillary force. Ashkin et al. [17]
first demonstrated that a flat liquid surface can be de-
formed using focused laser pulses. Later experiments on
flat and spherical fluid interfaces with different fluid prop-
erties confirmed the effect of radiation pressure on fluid
interfaces [18, 20–23]. Brasselet et al. [22], for exam-
ple, showed that a stable liquid column can be generated
and sustained by the radiation pressure on a system with
ultra-low interfacial tension (∼ 1.75 × 10−7N/m). The-
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oretical and boundary element models were developed
to study fluid motion and interface deformations of a flat
fluid interface produced by the radiation pressure [20, 24].
For liquid droplets, analytical theories were also devel-
oped to predict the radiation pressure effect [19, 25–27].
Theoretical description of the droplet shape dynamics
were developed in the aforementioned work to quantify
the effect of radiation pressure on the drop interface. In
a recent work [28], large droplet deformation under op-
tical pressure was also predicted numerically when low
interfacial tension was assumed (∼ 1× 10−6N/m).
Most research to date analyzed the interplay between

optical fields and liquids in isolation, and did not con-
sider them as a single coupled system. For example,
Refs. [19, 20, 25–27] investigated the deformation of liq-
uid systems due to the radiation pressure of a focused
laser beam. The impact of the deformed liquid systems
on the optical fields, however, was not considered. In a
recent work [29], we first considered optical fields and liq-
uids as a single system coupled together through optical
radiation pressure. Under such a framework, we predict
many interesting phenomena such as optofluidic solitons
and single-photon-level nonlinearity. In particular, we
demonstrated that the existence of radiation pressure on
micro-sized droplets can lead to a large WGM resonance
shift that is analogous to the Kerr effect, which is a clas-
sical third-order nonlinear process. However, our previ-
ous analysis in [29] was based on several approximations.
The validity of these approximations was not justified
through rigorous analyses. Additionally, the exact shape
of the deformed droplet was not obtained.
A major objective of this work is to present an analyt-

ical framework that can exactly calculate the deforma-
tion of the droplets induced by the radiation pressure of
the WGMs. The validity of this analytical method shall
be confirmed through direct comparison with numerical
fluid simulations based on the boundary element method.
The results of our analytical and numerical calculations
can also be used to justify the approximation we made
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in [29]. Additionally, in this study, we quantify the mag-
nitudes of nonlinearities associated with the thermal and
Kerr effects, as well as the optofluidic effect induced by
the radiation pressure. Specifically, in Sect. II, defor-
mations of the droplet interface are solved analytically
by force balance on the interface and numerically by the
boundary element method (BEM). Section III discusses
the thermal effects of the WGM on the refractive index
and droplet volume using the BEM. Nonlinearities asso-
ciated with droplet interface deformation, thermal and
Kerr effects will be compared in Sect. IV. Finally, the ef-
fect of fluid interface tension and the feasibility of single
photon level nonlinearities are analyzed in Sect. V.

II. RADIATION PRESSURE INDUCED

DROPLET DEFORMATION

A. WGM in a droplet

We consider a high-Q WGM circulating along the
equator of a high-index liquid droplet (core) immersed
in a low-index immiscible fluid (cladding). For a typ-
ical drop, its radius a is in the order of 100µm, and
the density difference ∆ρ between two fluids is about
200 kg/m3. Such an optofluidic system possesses a low
Bond number (Bo = ∆ρga2/σ ∼ 10−3, where the sur-
face tension σ ∼ 30mN/m) and a low Reynolds number
(Re = ρUa/µ ∼ 10−2, where the characteristic velocity
U = 10−3m/s and fluid viscosity µ = 13mPa · s). Given
the low Bond and Reynolds numbers, we can safely ig-
nore gravity and inertia effects in our analysis. In this
paper, we denote variables associated with the core phase
with subscript “co” and the cladding phase with sub-
script “cl”.
To simplify our analysis, the optical field in the res-

onator is assumed to be a transverse electric (TE) mode,
which can be expressed as [30],

~Elm = gl(kr) ~Xlm(θ, φ),

~Hlm = − i

kZ
∇×

[

gl(kr) ~Xlm(θ, φ)
]

,
(1)

where mode numbers l andm satisfy l > 0,−l ≤ m ≤ l; ω
and k are the frequency and wave number of the WGM,
where k = kco = ωco/c in the droplet core and k =
kcl = ωcl/c in the cladding region; Z is the impedance

of the liquid; ~Xlm(θ, φ) is the vector spherical harmonic
function; gl(kr) is either the spherical Bessel function (if
in the core phase) or the spherical Hankel function (if in
the cladding phase),

gl(kr) =

{

Acojl(kcor), r ≤ a

Aclh
(1)
l (kclr), r > a

(2)

where Aco and Aco are two constants to be determined by
matching the optical field across the drop interface. The
field-matching process also gives the frequency ω of the

WGM. We denote the WGM in Eq. (1) as |l,m〉. Once
the WGM frequency is known, we can readily determine
the field distribution of the WGM using Eqs. (1) and
(2). For more details, refer to Ref. [29]. In this paper,
we are primarily interested in the fundamental WGM
with l = m ≫ 1, which corresponds to a high-Q WGM
circulating along the droplet equator, as illustrated in
Fig. 1.
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FIG. 1. (Color online) Schematic of a droplet containing a
high-Q WGM circulating along the equator with a deformed
interface. A spherical coordinate system (r, θ, φ) is defined to
assist further analysis.

As demonstrated in [29] and illustrated in Fig. 1, the
radiation pressure of the WGM can deform the liquid res-
onator and produce a large shift in the WGM resonance
frequency. The radiation pressure of the WGM can be
calculated as [29],

popt =
1

2
ǫ0

(

n2
co − n2

cl

)

| ~Esurf|2, (3)

where ǫ0 is the free space permittivity, nco and ncl are re-

fractive indices of the liquid core and cladding, and ~Esurf

is the electric field on the interface. Given the expression
in Eq. (3), the radiation pressure popt of the WGM is
proportional to the total circulating power (PWGM) as-
sociated with the WGM. As in [29], PWGM can be calcu-
lated through a surface integration of the Poynting vector
component Sφ over a cross-section on any φ = constant
plane (as shown by the dashed rectangle in Fig. 1),

PWGM =

∫∫

SφdA. (4)

In the following two sections II B & IIC, we describe
two different approaches that can calculate the interface
deformation and fluid motions induced by the radiation
pressure on the droplet.

B. Balanced interface shape

On a stationary fluid interface, the forces on the inter-
face must be balanced by the interfacial tension. When
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the optical radiation pressure is applied on the interface,
the Young-Laplace equation implies,

σ∇ · n̂ = pco − pcl + popt, (5)

where σ is the interfacial tension and n̂ is the unit nor-
mal vector to the surface. Bulk pressures in the core and
cladding phases are pco = p0co + ∆p and pcl = p0cl, re-
spectively. Here, p0co and p0cl are equilibrium pressures in
the core and cladding phases before deformation, which
satisfy 2σ/a = p0co − p0cl. ∆p is the pressure increase in-
side the droplet caused by the optical pressure, which will
be determined later. The Young-Laplace equation for a
spherical droplet with the radiation pressure becomes,

σ∇ · n̂ = σ
2

a
+∆p+ popt . (6)

Assuming axial symmetry and using spherical coor-
dinates, we can describe the interface shape as r(θ) =
a + ∆R(θ), where ∆R(θ) is the interface deformation.
Hence, the interface curvature (∇ · n̂) can be calculated
based on the form of ∆R(θ). We can further normalize
the shape deformation by a as h(θ) = ∆R(θ)/a. Un-
der the assumption of small deformation (h ≪ 1), the
Young-Laplace equation (6) is linearized as,

h′′(θ) + cot(θ)h′(θ) + 2h(θ) = − a

σ
(∆p+ popt). (7)

The unknown ∆p value in Eq. (7) serves as a Lagrange
multiplier to ensure the volume conservation of droplet.
For a given trial value of ∆p, Eq. (7) is integrated numer-
ically to produce a solution h(θ), from which the droplet
volume is calculated. Among all the trial values of ∆p,
the only ∆p that satisfies the conservation of the droplet
volume is assumed to be the true value.

Due to the linearity of Eq. (7), it is clear that h(θ) is
proportional to 1/σ and the magnitude of popt (∝ PWGM)
(see Appendix A). This relation holds as long as the
small deformation assumption is valid.

C. Boundary Element Method

The motions of the fluid interface and volume are gov-
erned by the Navier-Stokes equations. Stokes equations
can be applied to this problem as a consequence of the
low Reynolds number. Stokes equations and incompress-
ibility condition are written as,

−∇p+ µ∇2~u = 0,∇ · ~u = 0. (8)

Stokes equations can be solved numerically by the
Boundary Element Method (BEM) [31]. For a two-phase
fluid system with a sharp interface, the interfacial veloc-
ity and pressure are related by the following boundary

integral equations,

~u(~x0) = − 1

4πµcl(1 + λ)

∫

S

(σ∇ · n̂− popt)n̂ ·U(~x0, ~x)

×dS(~x) +
(1− λ)

4π(1 + λ)

∫

S

~u(~x) ·K(~x0, ~x) · n̂(~x) dS(~x),
(9)

where λ = µco/µcl is the viscosity ratio of the core and
cladding phases; “S” denotes the interface of the droplet;
position vectors ~x and ~x0 are located on the fluid inter-
face. Also, U and K are Green functions for Stokes flow
in free space,

U(~x, ~y) =
1

d
I +

1

d3
~d~d, K(~x, ~y) = − 6

d5
~d~d~d, (10)

with ~d = ~x− ~y, d = |~x− ~y|, and I is the identity tensor.
Due to the axisymmetric nature of the geometry and

boundary conditions, we can integrate Eq. (9) over the
φ variable analytically to simplify the numerical imple-
mentation. The resulting boundary integral equations
and Green functions are well known and available in lit-
erature [31, 32].
In our simulations, the fluid interface on the φ =

constant plane is discretized into N circular arc elements,
and ~x0 are located at the center of each element. Assum-
ing constant surface velocity and pressure on each ele-
ment, Eq. (9) can be discretized and written as a linear
system relating the unknown interface velocity ({vi}) and
the known pressure ({fi} = (σ∇ · n̂− popt) {n̂i}) vectors,

Aijvj = Bijfj, (11)

where [Aij ] and [Bij ] are 2N×2N matrices whose entries
are integrals of U and K on the interface elements.
The solution to the above linear system gives the ve-

locity at the center of each element on the interface.
Velocities at the end points of each element are inter-
polated by a cubic spline with vanishing derivatives at
θ = 0, π. The element edges and center displacements
are integrated over time by explicit Euler scheme, i.e.,
∆~x = ~u∆t, and a new interface shape is obtained for
the following time step. The time step size is chosen
by the criteria ∆t ≤ τm = (µco + µcl)l/(2σ), where l is
the element size [33]. This process is iterated until the
maximum velocity magnitude |~u| is sufficiently small.
In our simulations, we find that N = 128 elements are

sufficient to resolve the interface shape. Each numerical
simulation takes about 10 ∼ 12 hours of CPU time until
a convergent interface shape is obtained.

III. THERMAL NONLINEARITY

The optical power (PWGM) carried by the WGM in
the resonator can possibly be absorbed by the liquid and
converted into thermal energy. Therefore, the droplet
temperature may change, which should lead to changes
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in the optical properties of the droplet as well as the
WGM. In this section, we provide an order of magnitude
estimate on the thermal effects.
First, we define the steady-state temperature change

(T ) as the temperature variation induced by the WGM
energy. The spatial variation of T in the liquid, which is
induced by a heat flux associated with the absorption of
the WGM, is governed by the Poisson’s equation,

∇2T (~x) = g(~x), (12)

where g(~x) = −αSφ/κco [34], α is the absorption con-
stant of the droplet core, and κco is the thermal con-
ductivity of the core liquid. Here we assume that optical
absorption occurs predominantly in the droplet core, and
all absorbed optical energy is converted to heat.
The solution of temperature field within the droplet

core can be easily obtained from the results in [30],

T (~x0) = −
∫

V

g(~x)G(~x, ~x0)dV (~x)

−
∫

S

G(~x, ~x0) [n̂(~x) · ∇T (~x)] dS(~x)

+

∫

S

T (~x) [n̂(~x) · ∇G(~x, ~x0)] dS(~x), (13)

whereG = 1/(4π|~x−~x0|) is the free space Green function;
“V ” denotes the core fluid volume. The temperature
change in the cladding phase is also governed by Eq. (13)
with corresponding fluid properties.
In our simulations, we assume the continuity of tem-

perature and heat flux at the droplet interface. We also
assume that in the cladding region far away from the
droplet, liquid temperature remains unchanged. Similar
to the techniques used in Sect. II C, we also take advan-
tage of the axisymmetry of the problem and introduce a
discretization of the boundary on the φ = constant plane.
We can then relate the discretized interface temperature
values ({Ti}) to the known volume integral ({Ivi }) at the
boundary elements by a linear system similar to Eq. (11),

HijTj = Ivi , (14)

where [Hij ] is anN×N matrix whose entries are integrals
of the Green function on the interface elements.
The thermally induced refractive index change (de-

noted as ∆nT ) can be estimated by,

∆nT =
dn

dT
Tmax, (15)

where (dn/dT ) is the thermal coefficient of refractive in-
dex; Tmax is the maximum temperature change in the
droplet.
The droplet may also expand in size as its temperature

increases. To estimate the effect of thermal expansion,
we consider the change in droplet radius near its equa-
tor, ∆RT ≡ ∆R(θ = π/2)/a. To simplify our analysis,
we “overestimate” its magnitude by assuming that the

mode volume of the WGM is uniformly heated to the
maximum temperature within the droplet (Tmax). The
relative change of radius is then,

∆RT =
1

3
αTTmax, (16)

where αT is the thermal expansion coefficient.

IV. NONLINEAR EFFECTS IN LIQUID

DROPLETS

The properties of the WGMs depend on the liquid re-
fractive indices as well as the size and shape of the res-
onator. In our studies of nonlinear effects, we choose a
liquid system based on an oil droplet immersed in wa-
ter. The fluid we used for the droplet core is an in-
dex matching fluid (Series AA14500, Cargille Laborato-
ries). Fluid viscosities of the core and cladding media are
µco = 13mPa·s and µcl = 1mPa·s, and the heat conduc-
tivities are κco = 0.126W/m·K and κcl = 0.60W/m·K,
respectively. The oil-water interfacial tension is mea-
sured by a goniometer (Model 590, ramé-hart instrument
co. ) to be around σ = 30mPa·s.
This system has the highest Q factor at the wavelength

of λ ≈ 700 nm, since optical absorption is lowest at this
wavelength. At λ ≈ 700 nm, the effective refractive in-
dices of the core and cladding phases are nco = 1.44 and
ncl = 1.33, respectively. We apply the procedure in [29]
to determine the resonance frequency of the WGMs res-
onator. We first consider the fundamental mode |l, l〉,
which corresponds to an optical field with a single maxi-
mum along the polar direction. The angular mode num-
ber l’s of the WGMs are chosen so that λ’s are close to
700 nm. Table I gives the angular mode number l and
the resonance wavelength λ of the WGMs in droplets
with different radii a.

TABLE I. Angular Mode Number l and Resonance Wave-
length λ of WGMs in Liquid Droplets.

a(µm) 400 300 250 200 150 120
l 5145 3847 3204 2569 1918 1529

λ(nm) 699.35 700.66 700.45 698.05 699.95 701.26

a(µm) 100 80 70 60 50 40
l 1275 1018 889 761 632 504

λ(nm) 699.75 699.65 700.05 699.75 700.55 700.59

Assuming absorption in the droplet core is the only
source of the energy loss, we can estimate the WGM Q
factors of the above resonators to be Q = 2πnco/(αλ) ≈
108 with absorption constant α = 0.125m−1 (according
to the specification of the index matching fluid). The
interface deformations of the above resonators are com-
puted using both the analytical method in Sect. II B and
the numerical method in Sect. II C. Nonlinearities due
to interface deformation, temperature change and Kerr
effect are estimated separately.
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FIG. 2. (Color online) | ~E|2 distribution in the droplet on a
φ = constant plane. The electric field has been normalized
so that on the interface the maximum intensity | ~E|2max = 1 .
The white curve represents the droplet interface.

A. Nonlinear effects

In this section, we consider nonlinearities associated
with the fundamental WGM |l, l〉, with the mode number
l given by Table I. The electric field across the droplet
interface is calculated by Eq. (1). As an example, the
electric field intensity in a droplet with a = 100µm is
shown in Fig. 2. The total WGM power of the elec-
tric field is then given by Eq. (4). Since nonlinear ef-
fects induced by the radiation pressure are proportional
to PWGM, we only need to analyze droplet deformation
at a specific WGM power level. In this paper, the elec-
tric field is normalized such that the total WGM power
is PWGM = 1W. With known electric field intensity on
the interface, droplet interface deformations induced by
the radiation pressure are computed by the force balance
Eq. (7) and BEM Eq. (9).

In Fig. 3, we compare the interface deformation ob-
tained using the analytical method in Sect. II B and the
numerical BEM simulations described in Sect. II C. The
equilibrium interface shapes obtained by the BEM are
in excellent agreement with the force balance predictions
given by Eq. (7). The BEM solutions also produce a
velocity distribution in the droplet, as shown in Fig. 4.

As discussed in Sect. II B, the maximum droplet in-
terface deformation ∆R/a is linearly dependent on the
values of 1/σ and PWGM, which is also implied by
the approximated solution in literature [29] (Sect. IVB,
Eq. (17)). Therefore, the interface shapes under arbi-
trary WGM powers and interfacial tension values can be
linearly extrapolated from the solutions in Fig. 3.

The temperature change due to the optical absorption
of theWGM can be computed numerically as described in
section III. Again, we assume that the circulating WGM
power is 1W, and that all optical energy absorbed by
the core liquid (α = 0.125) is converted to heat. Based
on Eqs. (12) to (14), we can calculate temperature dis-
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FIG. 3. (Color online) Solutions of the balanced interface
deformation by the Young-Laplace equation and the BEM
simulations for radii a = 50, 100, 200 and 400µm.
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FIG. 4. (Color online) Fluid velocity direction (arrow) and
magnitude (color) distribution on the x = 0 plane at time
t = 0. Velocity values are normalized by σ/µ.

tribution within the droplet. The results are shown in
Fig. 5. Figure 6 gives the changes in refractive index and
the size of the liquid core as estimated by Eqs. (15) and
(16), where we assume the core liquid possesses a thermal
coefficient of (dn/dT ) = −3.9× 10−4K−1, and a thermal
expansion coefficient of αT = 8 × 10−4K−1. In terms of
their impact on the WGMs, these two thermal processes
are nearly the same, as can be seen from Fig. 6.

Kerr effect is a classical third-order nonlinear process,
where the material refractive index depends linearly on
optical field intensity [35]. For the liquid resonator, the
refractive index change as a result of the Kerr effect can

be estimated as ∆n ≈ χ(3)| ~E|2max, where χ(3) is the

third order nonlinear optical susceptibility, and | ~E|max

is the maximum electric field intensity in the droplet. To
provide an order of magnitude estimate of the Kerr ef-

fect, we use water and carbon disulfide (CS2) (χ
(3)
water =

2.5 × 10−22m2/V2 and χ
(3)
CS2

= 3.1 × 10−20m2/V2 ) to
calculate the refractive index change due to the Kerr ef-
fect.

We now compare the impact of the three nonlinear pro-
cesses — radiation pressure effect, thermal effects, and
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FIG. 5. (Color online) Changes in fluid temperature in the liq-
uid core due to optical absorption. (a) Temperature distribu-
tion in the x = 0 plane for a droplet with radius a = 100µm.
(b) Radial temperature distribution at θ = π/2 for droplets
with radii a = 50, 100, 200 and 400µm.

Kerr effect — on liquid droplets. Let us define the in-
terface deformation at the equator as ∆R(θ = π/2)/a ≡
∆Rp. As shown in Fig. 6, interface deformation induced
by the radiation pressure (∆Rp) is a few orders of mag-
nitude higher than the Kerr effect (∆n/n). Additionally,
for smaller liquid droplets, nonlinearity caused by the ra-
diation pressure is also significantly higher than the ther-
mal nonlinearity. However, for millimeter-sized droplets,
the radiation pressure effect and the thermal effects can
be comparable in magnitude. However, even for cases
where thermal effects are significant, it might be possible
to distinguish radiation pressure effect and thermal ef-
fects through direct measurements of the interface defor-
mation. According to Fig. 6, for a droplet with 100µm
radius and typical interfacial tension (σ = 30mN/m),
a WGM with 1W power can deform the droplet radius
by approximately 100nm. Many optical interferometry
techniques are capable of measuring this estimated inter-
facial deformation. For example, the methods reported
in Refs. [36–38] can all measure surface deformation with
nanometer or sub-nanometer spatial resolutions.

B. Comparison of the exact solution and the

approximate solution

In [29], we gave an analytical formula that can esti-
mate the magnitude of the nonlinearity induced by the
radiation pressure. In that approach, the droplet defor-
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FIG. 6. (Color online) Comparison of the strength of nonlin-
earity due to radiation pressure, thermal effects, and Kerr
effect. The vertical axis is either relative deformation at
the droplet equator (∆R(θ = π/2)/a, caused by radiation
pressure and thermal expansion), or refractive index changes
(∆n/n, caused by thermo-optic effect and Kerr nonlinearity).
Droplet radius changes ∆RT associated with thermal expan-
sion overlap with the refractive index changes ∆nT /n induced
by temperature changes.

mation was approximated by an ellipsoid and the radius
change at the equator (∆R(θ = π/2)/a) was given by,

∆Rp =
Γlm
θ ǫ0λ

4Γσσnco

(

n2
co − n2

cl

)

| ~Epeak
surf |2, (17)

where Γσ ≈ 1.01 is given by the ellipsoid assumption,
and Γlm

θ is associated with the angular dependence of
the radiation pressure,

Γlm
θ = −ncoa

λ

∫ π

0

flmY20(θ) sin(θ) dθ, (18)

where flm is the normalized radiation pressure whose
maximum value on the interface is one.
With the help of Clebsch-Gordan coefficients, Eq. (18)

can be simplified as (Appendix B),

Γlm
θ = −ncoa

λ

1

2π| ~Xlm|2max

[

1− 3

l(l+ 1)

]

√

5

4π
(19)

× 〈2, l; 0,m|l,m〉 〈2, l; 0, 0|l, 0〉 .
Note that taken together, Eqs. (17) and (19) give an an-
alytical estimate for the droplet deformation induced by
the radiation pressure. The accuracy of this analytical
approximation is investigated here.
The exact interface deformation can be expressed in

terms of the spherical harmonics YLM as,

∆R(θ)

a
=

N
∑

L=2

√
4π∆LYL0(θ), (20a)

∆R(π/2)

a
=

N
∑

L=2

(∆Rp)L, (20b)
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FIG. 8. (Color online) (a) Comparison of the maximum inter-
face deformation between exact solutions given by the current
work with approximated solutions in [29]. (b) Spherical har-
monics expanded terms (|(∆Rp)L|) normalized by the first
nonzero term |(∆Rp)2|.

where YL0(θ) is the spherical harmonic function YL0(θ, φ)
with φ = 0, ∆L is the expansion coefficient, and
(∆Rp)L =

√
4π∆LYL0(π/2) denotes droplet deformation

at the equator due to the YL0 term. Due to the rotational
symmetry (with respect to the z axis) and the mirror re-
flection symmetry (with respect to the z = 0 plane), the
droplet deformation does not contain any YLM term with
odd L number or with M 6= 0. The values of (∆Rp)L up
to L = 50 are shown in Fig. 7 for interface deformations
of droplets with four different radii. Note that we must
have (∆Rp)0 = 0 to satisfy the volume conservation. Fig-
ure 7 shows that the value of |(∆Rp)L| decreases rapidly
as L increases, with (∆Rp)2 being the dominant term.
A comparison of the L = 2 term in Fig. 7 with the so-

TABLE II. The approximate analytic solutions of droplet de-
formation (∆Rp according to Eq. (17)), and the leading spher-
ical harmonic expansion term ((∆Rp)2, due to Y20 only) of the
exact interface deformation solution.

a(µm) ∆Rp (∆Rp)2
400 1.247 × 10−4 1.246 × 10−4

200 2.490 × 10−4 2.488 × 10−4

100 4.967 × 10−4 4.962 × 10−4

50 9.891 × 10−4 9.882 × 10−4

lution in Eq. (17) is shown in Table II. In Fig. 8(a), we
also compare the exact droplet deformation given by the
current work with the approximate solution in Eq. (17).
The results show that the first order approximation in
Eq. (17) can provide a reasonably accurate prediction of
the interface deformation caused by the radiation pres-
sure. In fact, if we change the constant Γσ in Eq. (17)
from Γσ = 1.01 to Γσ = 0.643, the slightly modified an-
alytical formula (“modified approx.” in Fig. 8(a)) agrees
very well with the equator deformation ∆Rp as given by
the exact solutions. This excellent agreement can be ex-
plained by the observation that for the simulation param-
eters considered in this work, the interfacial deformation
∆R(θ)/a can be factored into a product of the equator
deformation ∆Rp and an angular shape function f(θ),
with f(θ) being mostly independent of parameters such
as droplet radius, interfacial tension, and optical power.
This observation can be easily confirmed by normalizing
various orders of (∆Rp)L with the leading term (∆Rp)2,
as shown in Fig. 8(b). Regardless of droplet radius, the
normalized deformation factors, (∆Rp)L/(∆Rp)2, are al-
most identical, which indirectly confirms the shape inde-
pendence of the radiation pressure induced deformation.

V. SINGLE PHOTON LEVEL NONLINEARITY

In this section, we discuss perhaps the most important
prediction of our theoretical analysis, namely the feasi-
bility of single-photon-level nonlinearity.

As proposed in [29], for the ultra-low interfacial ten-
sion fluid systems that have been demonstrated in the
past experiments, the radiation pressure induced droplet
deformation may lead to a measurable WGM shift at
single-photon energy level. In contrast with our earlier
work [29] based on the approximate solution, here we
estimate the magnitude of the WGM resonance shift in-
duced by the radiation pressure using the exact solution
presented in Sect. IV.

The general framework of our analysis is as follows.
First, we expand the exact solution of the deformed
droplet using spherical harmonic functions. Then, based
on the perturbation theory in [39], we can sum over the
frequency shift due to each spherical harmonic term, and
obtain the total resonance shift for a specific WGM mode
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FIG. 9. (Color online) Contribution to WGM frequency
shift as a result of different YLM terms in shape deformation
∆ωL/ω in Eq. (21), normalized by the leading contribution
∆ω2/ω.

|l,m〉. Mathematically, this means,

∆ω

ω
=

∞
∑

L=2,4,6,...

∆ωL

ω
= −

∞
∑

L=2,4,6,...

∆LF (L, l,m), (21)

where the expansion coefficients ∆L are given in
Eq. (20a), and F (L, l,m) can be derived as,

F (L, l,m) =
√
4π

∫∫

| ~Xlm|2YLM dΩ (22)

=

[

1− L(L+ 1)

2l(l+ 1)

]√
2L+ 1

× 〈L, l;M,m|l,m〉 〈L, l; 0, 0|l, 0〉 .

The expression in Eq. (22) is derived in Appendix B. Val-
ues of |(∆ωL/ω)/(∆ω2/ω)| up to L = 50 in Eq. (21) are
shown in Fig. 9 for several representative cases. Clearly,
the leading contribution is due to the lowest order defor-
mation (i.e., the L = 2 term).
As proposed in [29], droplet deformation due to a single

photon can occur if fluids with low interfacial tensions
are used. The WGM frequency shifts induced by the
interface deformation as a result of WGM with single
photon energy (~ω) are shown in Fig. 10. Terms up to
L = 200 are considered in the summation (21). The
results for a lower interfacial tension assumption (σ =
1mN/m) are also shown in the same plot. The solid
lines in Fig. 10 correspond to the exact solutions given
by Eq. (21), whereas the dashed lines are based on the
approximate solutions in [29]. The frequency shifts given
by the exact solution are actually larger than our original
estimates given in [29]. Experimentally, frequency shift
as small as ∆ω/ω ∼ 10−8 has been measured [40]. Based
on this value and the results shown in Fig. 10, it should be
feasible to detect the frequency shift induced by a single
photon if the droplet diameter is around 10µm and the
interfacial tension is of the order of σ = 1mN/m. Again,
our results confirm the possibility of optical nonlinearity
induced by only a few photons.

10
2

10
−12

10
−10

10
−8

a (µm)

|∆
ω

/ω
|

 

 

σ = 30 mN/m

σ = 1 mN/m

FIG. 10. (Color online) WGM frequency shift induced by
the radiation pressure of a single photon for interfacial ten-
sion σ = 30mN/m and σ = 1mN/m. Solid lines are the
frequency shift values computed by the exact interface shape,
while dashed lines are computed from the first order approx-
imated interface deformation.

It is worth mentioning that droplets with low interfa-
cial tensions (σ ≤ 1mN/m) have been obtained in dif-
ferent studies [41–43]. With the help of surfactant, an
interfacial tension as low as 1µN/m was obtained in an
emulsion system [44].

To investigate the nonlinear optofluidic effects for
higher order WGMs |l,m〉 with m < l, we also calcu-
late the droplet interface deformations and the frequency
changes induced by such modes. The results are shown in
Fig. 11 as blue (dark gray) bars, which give the frequency
shifts of the |l,m〉 mode. For these results, the radia-
tion pressure is produced by the |l,m〉 mode itself. Note
that the fundamental mode |l, l〉 generates the largest fre-
quency shift. Since the droplet is no longer a sphere, the
(2l + 1)-fold degeneracy of the WGM should be broken.
To quantify this effect, we also calculate the frequency
shifts of the |l,m〉 mode, where the radiation pressure
is produced by the fundamental WGM mode |l, l〉. The
results are again shown in Fig. 11 as red (light gray)
bars. As expected, WGMs with the same l but differ-
ent m numbers are no longer degenerate. All results in
Fig. 11 are based on a droplet with radius a = 100µm,
with l = 1275 and PWGM = 1W for the WGMs.

In the calculation of the thermal effects, we neglected
the thermocapillary effect caused by the temperature in-
crease. To justify this, here we estimate the interfacial
tension increase and the resulting shear stress on the
interface. Based on the well-known Eötvös rule [45],
the interfacial tension of the fluid system is given by
σ = k̄(Tc−T )/V̄ 2/3, where k̄ and V̄ are material proper-
ties, Tc is the critical temperature of the fluid. Using the
critical temperature of water Tc = 374 ◦C, and a temper-
ature increase of 1 ◦C from room temperature (25 ◦C),
the change in interfacial tension is ∆σ/σ = −0.28%.
Along the arc length of the droplet interface, s, the shear
stress is roughly, ∂σ/∂s ≈ 1.8 × 10−3(σ/a). Compared
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FIG. 11. (Color online) Resonance frequency shift in a droplet
with radius a = 100µm and interfacial tension σ = 30mN/m
for WGMs |l,m〉 with the same l = 1275 but different m
numbers. The blue (dark gray) bars give the frequency shifts
of the |l,m〉 mode that is caused by the radiation pressure of
itself, i.e., the |l,m〉 mode. The red (light gray) bars are the
frequency shift of the |l,m〉 mode, where radiation pressure is
produced by the fundamental mode |l, l〉.

with the maximum radiation pressure on the interface
of the a = 100µm droplet, pmax

opt ≈ 6 × 10−2(σ/a), we
have (∂σ/∂s)/pmax

opt ≈ 3%. Thus the thermocapillary ef-
fect can be neglected in our calculations of the interface
deformation.
Our calculations on droplets with lower surface tension

show that a single photon can possibly produce mea-
surable interfacial deformation. However, recent stud-
ies show that the effect of thermal fluctuations may be-
come important for interfaces with low interfacial ten-
sion [46, 47], and thus it might be difficult to distin-
guish the single photon effect from those due to ther-
mal fluctuations. To reduce the effect of thermal fluctu-
ation experimentally, we may consider using liquid drops
at low temperature. For example, the surface tension
of a liquid helium droplet at temperature T < 1K is
σ ∼ 0.38mN/m [48], which is low enough to admit single
photon nonlinearity.
In summary, this section confirms the feasibility of sin-

gle photon level nonlinearity if the interfacial tension of
the liquid droplet is of the order of σ = 1mN/m or less.
Our results also suggest that radiation pressure induced
deformation should lift the degeneracy of the WGMs.

VI. CONCLUSION

In this paper, we investigate the nonlinear optofluidic
effect in micro-sized liquid resonators. The nonlinear-
ity is induced by the radiation pressure associated with
a high-Q WGM. The interface deformation of the liq-
uid droplet is calculated both analytically by force bal-
ance and numerically by BEM, which agree with each
other very well. The effect of temperature change is
also quantified by BEM. The nonlinearity induced by the
radiation pressure is shown to be higher than the tem-

perature effect and Kerr effect. Based on our analytical
and numerical models, we confirm the possibility of mea-
surable optofluidic nonlinearity at single photon energy
level. The conditions that may allow one to experimen-
tally observe single photon level nonlinear optofluidic ef-
fects are also discussed. Experimental measurement of
the nonlinearity induced by the radiation pressure will
be performed using the white light interferometry tech-
nique for future research.
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Appendix A: Linear relation between ∆p and popt

We claim that the value of ∆p is proportional to
PWGM. To prove this, let’s assume a ∆p1 and p1opt (cor-

responding to P 1
WGM) result in a interface deformation

h1(θ) that satisfies Eq. (7) and volume conservation, i.e.,

h1′′(θ)+ cot(θ)h1′(θ)+ 2h1(θ) = − a

σ
(∆p1 + p1opt). (A1)

If we change the WGM power to αP 1
WGM, then the opti-

cal pressure will be αp1opt, where α is a constant. We now

show that α∆p1 gives a h(θ) that satisfies volume con-
servation. If we simply substitute α∆p1 and αp1opt on the
right hand side of Eq. (A1), then the solution to Eq. (A1)
should be αh1(θ), because of the linearity of Eq. (A1).
Since h1(θ) give zero volume change, αh1(θ) should also
preserve the volume. Therefore, α∆p1 is the real ∆p
value. Here, we used the linearized volume change for
small h(θ),

∆V/V = 3

∫ π/2

0

h(θ) sin(θ) dθ +O(h2). (A2)

Appendix B: Clebsch-Gordan expression for Γlm
θ

From the radiation pressure Eq. (3) and electric field
Eq. (1) expressions, we can write the normalized pressure
flm as,

flm =
| ~Xlm|2

| ~Xlm|2max

. (B1)

Note that the expression of Γlm
θ in Eq. (18) can be trans-

formed into a surface integral,

Γlm
θ = −ncoa

λ

1

| ~Xlm|2max

∫ π

0

| ~Xlm|2Y20(θ) sin(θ) dθ,

(B2)

= −ncoa

2πλ

1

| ~Xlm|2max

∫∫

| ~Xlm|2Y20 dΩ.
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With the following Clebsch-Gordan expression for surface
integral [39],

∫∫

| ~Xlm|2YLM dΩ =

[

1− L(L+ 1)

2l(l+ 1)

]

√

2L+ 1

4π
(B3)

× 〈L, l;M,m|l,m〉 〈L, l; 0, 0|l, 0〉 ,

Eq. (19) can be obtained with L = 2,M = 0. Equa-
tion. (22) can also be obtained by Eq. (B3).
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