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Abstract 1 

Hydrodynamic interactions between a pair of capsules in simple shear are numerically 2 

investigated using a front tracking finite difference method. Membrane of the capsule is 3 

modeled using different hyperelastic constitutive relations. We also compare the pair 4 

interactions between drops with those between capsules. Increased viscosity ratio leads to 5 

a reduced net cross-stream separation between capsules as well as drops after collision. 6 

At low viscosity ratios, drop-pairs show higher cross-stream separation than those for 7 

capsule-pairs, while substantially large viscosity ratios result in almost the same value for 8 

both cases. We investigate pair-collisions between two heterogeneous capsules C1 and C2 9 

with two different capillary numbers. The maximum deformation of C1 was seen to 10 

increase with increasing stiffness (decreasing capillary number) of C2, even though the 11 

stiffness of C1 was kept fixed. The findings are similar for a drop-pair, however with a 12 

smaller maximum deformation for the same combinations of capillary numbers. The final 13 

cross-stream drift of the trajectory of C1 decreases with increasing stiffness of C2, but the 14 

relative trajectory between the capsules remains unchanged. The maximum deformation 15 

and the cross-stream drift of trajectory of C1 are shown to approximately vary with 16 

power-law functions of the ratio of the capillary numbers of C1 and C2. An analytical 17 

explanation of the dependence on the two capillary numbers is offered. Different 18 

membrane constitutive laws result in similar deformation and drift in trajectory.  19 

20 
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I. Introduction  1 

Blood is a suspension of different types of cell⎯erythrocytes, leukocytes and platelets⎯ 2 

dispersed in plasma. They differ in size and physical properties such as membrane 3 

stiffness and viscosity; leukocytes are less deformable than platelets and erythrocytes. 4 

Deformability of cells affects their interactions and the overall effective rheology, which 5 

in turn impact physiological functions [1]. Many cardiovascular diseases arise from 6 

change in cell deformability and shape. For example, red blood cells (RBC) become 7 

stiffer in sickle cell anemia and malaria [2] restricting their passage through small arteries 8 

leading to reduced oxygen supply. Cells are complex objects consisting of internal 9 

organelles bounded by a lipid bilayer. Fluid capsules enclosed by an elastic membrane 10 

have become a useful model system for cells. Dynamics of a single capsule has been 11 

studied quite extensively 1[3-6]. In this paper, we investigate the interactions between a 12 

pair of capsules in free shear varying their deformability. Specifically, we study the 13 

effects of viscosity ratio and heterogeneity⎯two capsules having different membrane 14 

stiffness.   15 

Hydrodynamic interactions between constituent particles (such as drops, rigid 16 

objects and cells) play a critical role shaping the overall rheology of an emulsion or a 17 

suspension [7-10]. Numerical investigations of concentrated suspensions of capsules have 18 

shown that interactions between capsules influence the rheology [5,8,11] giving rise to 19 

shear thinning [12,13]  or a layered structure [14]. Viscosity ratio was also seen to be an 20 

important factor in dynamics⎯a stable aggregate is shown to form only at higher 21 

cytoplasmic viscosity and membrane rigidity [15]. Understanding pairwise interactions 22 

between capsules is the first step towards a complete theory of multi-capsule systems. 23 

Barthes-Biesel and coworkers [16,17] simulated pair-collision between homogeneous 24 

capsules in a shear, analyzing post-collision increase in cross-stream separation. The 25 

separation was found to weakly depend on the capillary number. The authors also  26 

observed that capsules placed in different shear planes can lead to a net negative 27 

deflection in the vorticity direction [18]. The magnitude of the net negative deflection in 28 

the vorticity direction is lower than the shear direction [19]. Size of the computational 29 

domain and boundary conditions were seen to critically affects capsule trajectory; smaller 30 
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periodic domain in flow direction led to spiraling trajectories [20,21]. For heterogeneous 1 

collisions between a pair of capsules, simulations have noted that the stiffer capsule 2 

experiences larger cross-stream displacement [22,23]. There have been subsequent 3 

hydrodynamic Monte-Carlo simulation of a binary suspension of stiffer and floppier 4 

capsules in a confined system investigating the role of heterogeneity in the margination 5 

process [24]. However the heterogeneous collision between capsule pair has not been 6 

studied in detail, and therefore felt worthy of further investigation. We would show that 7 

how properties of one capsule affects the trajectory of the other which might have 8 

important implications in design of deformability based cell-sorting devices [25].  9 

The effects of varying viscosity ratio on the interaction would also be 10 

investigated. For a single capsule, viscosity ratio was found to change capsule dynamics 11 

from tank-treading (TT) to trembling (TR) and eventually to tumbling (TU) motion 12 

[6,26,27].  Note that we recently investigated pair-wise collision between viscous drops 13 

in shear to find that presence of finite inertia gives rise to a reversal of trajectory  14 

[28]⎯an effect also seen in case of a capsule pair  [20]. Increasing viscosity ratio leads to 15 

a reduced post-collision cross-stream separation for pair collision of drops in a free shear 16 

[29]. We also showed that a pair of viscous drops in a confined shear after collision 17 

comes to the center of the domain separated by a net stream-wise separation [30]. 18 

Although membrane provides very different interfacial stresses compared to those due to 19 

a drop simple drop, the similarity between drops and capsules are self-evident. Therefore, 20 

it is natural to enquire the difference in their behaviors, which has not been systematically 21 

investigated [31]. Here we offer a comparative study between pair-collisions of drops and 22 

capsules.    23 

Here we use a front tracking finite difference method [32,33] which we have 24 

previously applied to viscous [34-38] and viscoelastic [39-45] drops as well as capsules 25 

[3,31]. The problem setup and mathematical formulation are described in section 2. In 26 

section 3, we first compare our simulation with a previous boundary element simulation   27 

for interaction between a pair of homogenous capsules. Then we study effects of 28 

viscosity ratio on homogenous capsule-interactions followed by collision between a pair 29 

of heterogeneous capsules. We analyze the effects of stiffness on relative trajectory 30 
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between capsules, deformations, and lateral velocity of the capsules. In section 4, we 1 

summarize the present work. 2 

 3 

II. Mathematical Formulation 4 

The mathematical formulation and its front tracking implementation [32,35-37] along 5 

with constitutive equations for the membrane have been presented before [3] . Here, we 6 

provide a brief sketch of the same:   7 
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where p  is the pressure, ρ  the density and μ  the viscosity of the fluid. The density 9 

and viscosities are uniform in each phase and are allowed to have a sharp variation across 10 

the membrane ∂B separating them. In this work, the capsules are assumed to be neutrally 11 

buoyant with same density as that of the liquid outside. The superscript T represents 12 

transpose. mf  is the surface traction in the membrane arising as a jump in the stress 13 

condition across the membrane. The surface membrane force is written as a singular 14 

volume force using Dirac delta function ( ')δ −x x ; the force is present only at the 15 

boundary.  16 

 17 

A. Membrane constitutive models 18 

The elastic stress in the membrane is determined by the initial membrane configuration 19 

and its deformation state via two-dimensional constitutive laws. In this paper, three 20 

different laws, neo-Hookean, Skalak and Evans & Skalak are considered. The following 21 

description follows closely one of our recent publication [31]. A neo-Hookean membrane 22 

(NH) is a basic hyperelastic model that assumes the membrane to be an infinitely thin 23 

sheet of isotropic volume-incompressible elastic media. The area of the membrane is 24 

allowed to change and its change is balanced by the thinning of the membrane. Its strain-25 

energy function is: 26 
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where sG  is the shear modulus, 1λ  and 2λ  are the principal stretches on the membrane 2 

surface. The principal membrane stresses are: 3 
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Skalak et al [46] proposed a constitutive model for red blood cell membrane (SK) by 5 

incorporating area-incompressibility of the membrane in the stress computations. The 6 

strain-energy function is given as: 7 

( ) ( )24 4 2 2 2 2
1 2 1 2 1 22 2 2 1

4
sGW Cλ λ λ λ λ λ⎡ ⎤= + − − + + −⎢ ⎥⎣ ⎦

.                            (4) 8 

The first term of the energy equation is due to shear of the capsule whereas the second 9 

term involving C represents area dilation of the capsule. A large value of ( ) 1C ≥  leads 10 

to incompressible area of membrane. The principal membrane stresses are: 11 
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Evans and Skalak [47]  simplified the above constitutive model by adding linearly and 13 

independently contributions of the shear and dilations (denoted by ES).  The principle 14 

membrane stresses are:    15 
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At C =1 and A = 3, the NH, SK and ES model shows same deformation of a capsule in at 1 

small deformation regime but they show nonlinear stress-strain relation in large 2 

deformation [48]. 3 

B. Numerical implementation  4 

Two equal sized initially spherical capsules with radius a are placed symmetrically in the 5 

computational domain with initial separations 0 /x aΔ ,  0 /y aΔ  and 0 /z aΔ  in the three 6 

directions (Figure 1).  Periodic boundary conditions are imposed in the flow (x) and the 7 

vorticity (z) directions. The top and the bottom walls of the domain move in opposite 8 

directions with velocity U and –U respectively, resulting in a simple shear (with rateγ&  in 9 

y-direction). We use a domain size of 30a×30a×5a for cases when both capsules are in 10 

the same shear plane with a discretization level of 288×288×48 and 20480 elements on 11 

the surface of each capsule. We use the radius of the capsules a as the length scale and 12 

the inverse shear rate 1γ −& as the timescale to define dimensionless parameters for the 13 

problem: Reynolds number 2Re m maρ γ μ= & , elastic capillary number /m sCa a Gμ γ= & , 14 

viscosity ratio c mλ μ μ= .  For the case of drops, we use a capillary number 15 

/mCa aμ γ= Γ& , where Γ  is the interfacial tension. Subscripts m and c stands for matrix 16 

and capsules. Note that the explicit nature of the code prevents us from simulation in the 17 

Stokes limit. We use a small Reynolds number of Re = 0.01 as an approximant for Stokes 18 

flow in this paper.  19 

C2

C1

Δx0

Δy0

y 

z 

x 

γ&

 Figure 1: A Schematic of the computational domain showing the initial position of the 
pair of capsules. 
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III. Results and Discussions 1 

In this section, we present results of our numerical simulations for hydrodynamic 2 

interactions between a pair of capsules in the free shear in a domain30 30 5a a a× ×  after 3 

briefly examining the validity of the code. We analyze results for trajectory of individual  4 

capsule, relative trajectory between capsules as well as deformation and lateral velocity 5 

of the capsules. Unless otherwise specified, the capsules are enclosed with a NH 6 

membrane. We also compare with results from interactions between a pair of drops.  7 

Assuming an approximate ellipsoidal shape of the capsule/drop, we compute Taylor 8 

deformation ( ) / ( )D L B L B= − +  from numerically computed capsule/drop shapes ( L  9 

and B  are the major and the minor axes of the ellipsoid).  10 

 11 

A. Effects of domain size and validation 12 

Although our objective is to simulate pair collision in free shear, the computational 13 

domain is bounded. Domain size affects the simulated dynamics; small domain with 14 

periodic boundary condition in the flow direction has shown to result in spiraling 15 

trajectories [20,21] due to interactions between one capsule coming close to the periodic 16 

Figure 2: Relative trajectory of a pair of capsules at 00.30,  7Ca x a= Δ =  and 

0 1y aΔ =  in different computational domains. 

Δx/a

Δy
/a

-8 -4 0 4 8 12
0

0.5

1

1.5

2

Ly= 10a
Ly= 15a
Ly= 20a
Ly= 25a
Ly= 30a



9 
 

image of the other. They cannot be found in free shear. We have previously shown that a 1 

domain size of 30xL a=  is sufficient to achieve a net cross-stream separation between a 2 

pair of drops before they reach the boundary [29]. Small domain size in the shear 3 

direction also leads to lateral migration of a drop away from the bounded wall [30]. 4 

Confinement was also shown to result in wall induced lateral motion of drops and rigid 5 

Figure 3: (Color online) (a) Comparison of the simulated relative trajectory of pair of 
capsules with boundary element simulation of Lac et al, 2007, (LMB in figure) at 1,λ =
different initial separations and Ca values. (b) Simulated snapshots of the pair of 
capsules at the instants shown in (a) for 0 04 and 0.50.x a y aΔ = Δ =  

3 2 1 

5 6 4 

(b) 
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spheres post collision  giving rise to swapping [49] or reversed trajectories [28]. In Figure 1 

2, we study the effects of domain size in the shear direction on the relative trajectory of a 2 

pair of capsules. For 25yL a≥ , relative trajectory of the capsules does not vary with 3 

further increase in domain size, and after collision achieves a final value of y aΔ . 4 

However, in smaller domains, wall confinement leads to lateral motion of the capsules 5 

before and after collision. We conclude that the domain size 30 25 5a a a× ×  chosen here 6 

is sufficient to simulate the pair collision of capsules in free shear.  7 

We also compare our simulations with results in the literature. In our previous 8 

study, we compared deformation, orientation angle and tank treading period of a single 9 

capsule in free shear [3] with analytical results for small deformation [4,50] and  10 

Boundary Element Method (BEM) simulations [27].  Here, in Figure 3(a), we compare 11 

relative trajectories of colliding homogeneous capsule pair in a free shear computed here 12 

with those obtained using BEM by Lac et al [16]. For two different initial separations and 13 

two different capillary numbers (Ca = 0.30, 0.45) our results match very well with those 14 

obtained using a completely different method (note that BEM does not suffer from the 15 

limitations of a bounded computational domain). Figure 3(b) shows the shapes of the 16 

capsules at six time instants during their collision.  17 

B. Effects of viscosity ratio: different membrane laws and comparison with drops 18 

For many cells, viscosity of the internal fluid differs from that of outside. The viscosity 19 

ratio significantly changes the deformation, orientation angle and tank trading frequency 20 

of a capsule. Higher viscosity ratio shows increased rotational flow inside the capsules, 21 

and a decreased inclination angle. Here, we study the effects of viscosity ratio (λ) 22 

variation on the collision between a pair of identical capsules for different membrane 23 

constitutive laws  (neo-Hookean [51], Skalak (C=1)[46]  and Evans & Skalak (A=3) 24 

[47]).  Figure 4(a) plots the deformation of one of them (both behaving identically) as a 25 

function of their flow-wise separation /x aΔ . We choose a moderate capillary number 26 

Ca=0.3. The capsules initially separated by 0 /y aΔ  in the shear direction are driven 27 

towards each other (see Figure 3). During their approach, they press against each other in 28 

the compression quadrant⎯the imposed shear flow is a combination of planar extension 29 
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and rotation with compression axis oriented at 135° from the flow direction. Due to the 1 

interaction between capsules in the compression quadrant, the deformation sharply 2 

increases. Subsequently, the capsules pass each other and in the extensional quadrant 3 

Figure 4 (Color online) (a) Deformation vs Δx/a of a pair of NH capsules at 
0.30,Ca = 0 04,  0.5x a y aΔ = Δ = and different λ ( maxD as a function of λ for three 

constitutive laws in the inset, A= 3 for ES, C=1 for SK). (b) Relative trajectories for an 
NH capsule pair and a drop pair for the same conditions and different λ.  Inset shows 
the variation of finaly aΔ  as a function of λ for the drop and the capsule pairs.  
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(extensional axis is oriented at 45° to the flow direction) they separate with deformation 1 

decreasing during relaxation. At large separation, capsules achieve their equilibrium 2 

deformation. As for a single drop or capsule, the deformation is inhibited by increasing 3 

viscosity ratio. In the inset of Figure 4(a), we show that an almost linear decrease of 4 

maximum deformation with viscosity ratio is a feature common to different membrane 5 

constitutive equations. Note that Skalak model represents strain hardening and results in 6 

the smallest deformation. In contrast, NH and ES models result in very similar behaviors 7 

with values for NH slightly less than those of ES as was also seen in our earlier 8 

publication [31].  9 

In Figure 4(b), we investigate the effects of the viscosity ratio on the relative 10 

trajectory⎯ /y aΔ as a function of /x aΔ ⎯of a pair of Neo-Hookean capsules under same 11 

conditions. Post-collision, the pair achieves a net cross-stream separation finaly aΔ . 12 

finaly aΔ  decreases as the viscosity ratio increases as was also seen for interactions 13 

between pair of viscous drops in shear [29]. Increased viscosity ratio results in decreased 14 

deformation and quick alignment with the flow, i.e. reduced inclination angle. Note that 15 

the interactions start earlier along the approach trajectory at increasing viscosity ratio, 16 

and leads to reduced cross-stream displacement.  17 

Figure 4(b) also plots the relative trajectories for a colliding pair of viscous drops 18 

under the same condition for comparison. Effects of viscosity ratio on the pair collision 19 

of viscous drops were studied before in a Stokes flow [52] as well as in presence of finite 20 

inertia [29]. The cross-stream separation for the capsules is smaller than that of the drops 21 

for each viscosity ratio. The inset shows that finaly aΔ  for capsules is smaller than that of 22 

drops (this is found for other capillary numbers, but not shown here). Note that the 23 

difference of finaly aΔ  between the drop and the capsule cases decreases with increasing 24 

λ. At very large viscosity ratios ( 25λ ≥ , not shown here), both will result in the same25 

finaly aΔ , as viscous effects dominate over interfacial effects and eventually one obtains 26 

the rigid particle limit of zero finaly aΔ .   27 
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In the compression quadrant, when a capsule- or drop-pair presses each-other, a 1 

viscous film appears in the gap between them. Figure 5 compares drop and capsule cases 2 

for different viscosity ratios at their closest encounters. Here, the capsule viscosity plays 3 

a role. Unlike in deformable drops, film thickness, in case of a pair of capsules, does not 4 

change significantly with increasing viscosity ratio. A lower value of λ results in a higher 5 

elongation of the capsule; eventually the liquid films widens. The hydrodynamic 6 

lubrication pressure eventually causes the membrane to form a dimple.  Higher viscosity 7 

of the internal fluid resists the deformation and eventually the dimple reduces with 8 

increasing viscosity ratios. Interaction effects on drop trajectory are lesser than those for 9 

Figure 5: (Color online) Shape of capsules (NH) and drops at Ca=0.3 and 
different λ when they are in closest proximity in the compression quadrant.  

Drop    Capsule 

λ = 0.10 

λ = 1 

λ = 5 
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capsules (Figure 5). Note that previous BEM simulation has demonstrated that the film 1 

thickness widens with increasing capillary number[16]. 2 

Different membrane constitutive laws do not affect the capsule dynamics 3 

drastically as was also noted before in BEM simulation [17]. Note that NH is a strain 4 

Figure 6: (a) Effect of the stiffness of C2 on the deformation of C1 ( 1Ca  = 0.3).  both NH capsules. 

Inset shows the variation of the maxD with 2Ca  for different models (A=3 for ES, C=1 for SK). (b) 

Comparison of deformation of a single NH capsule for different constitutive laws with BEM 
simulation of Ramanujan & Pozrikidis (1998). (c) Variation of maxD with 2Ca  for different 1Ca  for 

NH capsule pairs.  Inset shows the scaling for *
maxD  with 2 1Ca Ca along with the empirical fit 

equation (8).  
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softening model under large deformation. On the other hand, SK is a strain hardening 1 

model that produces large stresses in same deformation [51]. Later, we will explain the 2 

effects of area-dilation modulus in the Skalak models on pair interactions.    3 

C. Heterogeneous collisions: effects of membrane stiffness and comparison with drops  4 

As mentioned before, many diseases results from change in cell membrane stiffness. In 5 

this subsection, we investigate collisions between capsules with different membrane 6 

stiffness, or in non-dimensional terms, with two different capillary numbers 7 

1 1SCa a Gμγ= &  for capsule C1 and 2 2SCa a Gμγ= &  for capsule C2. We fix the stiffness of 8 

C1 ( 1 0.3Ca = ) and vary the stiffness of C2 (i.e. 2Ca ) to see its effects on the dynamics of 9 

C1, and repeat the study for different 1Ca . Henceforth, the results such as deformation D  10 

or drift 0y ( )y yδ = −  will always correspond to those of C1. The hydrodynamic 11 

interactions between a pair of capsules are dictated by the flow-field. When stokes 12 

number ( 2
c maρ γ μ& ) of the capsule is very small (= 0.01 in the present study), capsule 13 

tends to follow the streamlines in the flow field. 14 

In Figure 6(a), we plot the temporal evolution of the deformation of C1 for 15 

different 2Ca . As expected, long time after collision 5x aΔ ≥ , hydrodynamic interactions 16 

between the capsules become negligible, and deformation of C1  does not change with 17 

further increase of 2Ca .  However, the peak deformation ( )maxD of C1, when both 18 

capsules press each other in the compression quadrant, decreases with increasing 2Ca , 19 

which at first seems surprising. One can understand this by noting that the excess 20 

deformation of C1 arises due to interactions with C2; the presence of C2 is felt by the 21 

viscosity mismatch inside C2 and the interfacial elastic force at its surface. In the present 22 

viscosity matched case, the elastic membrane force represented by 2Ca is the only effect. 23 

Decreasing it, i.e. increasing the C2 membrane stiffness, increases its effects on the flow 24 

that deforms C1. However, also note that decreasing 2Ca also decreases the deformation 25 

of C2, and thereby decreases its effects on the flow field. Competition between the two 26 

effects would determine the dynamics. Here we find that the first effect outweighs the 27 
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second giving rise to increasing D  with decreasing 2Ca . In the Appendix, we offer an 1 

analytical argument for the deformation of  C1 max 2~ 1/D Ca .  2 

We compare peak deformation of the capsule for different constitutive 3 

models⎯NH, ES (A=3) and SK (C=1)⎯in the inset of Figure 6(a). At low 2Ca , and 4 

correspondingly higher D ,  we notice higher difference in maxD  from one membrane 5 

model to the next, but it shows nearly the same value for NH and ES membrane at higher 6 

deformation. The Skalak model [46] shows the lowest deformation. To understand this, 7 

we plot the deformation of a single capsule in free shear for these models for different Ca 8 

values in Figure 6(b).  Deformation of NH and ES capsules matches well with  BEM 9 

simulations of Ramanujan & Pozrikidis (RP) [27].  In contrast, despite the same value of 10 

GS (C=1), Skalak model results in a smaller deformation. Note that computation of 11 

membrane force is based on the modulus of rigidity of membrane while RP computed 12 

this by Young’s modulus. For NH membrane 0.5ν =  leads to ( )2 1 3h s sE G Gν= + =  and 13 

therefore our computed 3NH RPCa Ca= .  Similarly, for SK model, (1 )v C C= +  and 1C = , 14 

/3SK NH hG G E= = .   15 

We also compare the variation of maxD with 2Ca  for different 1Ca in Figure 6(c).16 

maxD , as expected, increases with increasing 1Ca . One could also on dimensional ground 17 

argue that maxD  depends on both 1Ca  and 2Ca . We further normalize maxD  by its value 18 

for a homogeneous collision, homo
maxD  corresponding to 2 1Ca Ca=  (and therefore the same 19 

value for both capsules). Empirically we find the following relation from our simulations 20 

( ){ }max

0.275* homo
max max 2 1/ 1.40 1 0.28D D D Ca Ca= = − .     (7) 21 

The relation is shown in the inset of Figure 6(c) to collapse simulations from many 22 

different 1Ca and 2Ca to a single curve. Even different initial vertical separations 0yΔ23 

collapse on the same curve indicating the robustness of the relation. Note that the relation 24 

recovers the value of maximum homogeneous deformation for 2 1Ca Ca= .  In the 25 
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Appendix, we explore possible reasoning behind the 1 2/Ca Ca  scaling. Please note that 1 

the relation (7) is restricted to viscosity matched system.  2 

In Figure 7(a), we plot the trajectory of the center of capsule C1 for different 2Ca  3 

to see that the deformability of C2 also affects the trajectory of the capsule C1. However, 4 

we note that the cross-streamline excursion ( )0y y y aδ = −  of C1 increases with 5 

increasing 2Ca . Note that yδ  represents excursion of one capsule C1 from its original 6 

location while yΔ  represents relative separation between C1 and C2. Above, we 7 

recognized two competing ways C2 can affect C1.  Here the second effect dominates, viz., 8 

increasing 2Ca  increases deformation of C2, which in turn changes the flow around C1 9 

increasing its lateral drift. One can see that the maximum lateral drift maxyδ  of C1 10 

increases with increasing 2Ca . An alternative explanation for the same observation was 11 

offered in [53] in view of the dominating effects of the lubrication pressure in the contact 12 

dynamics⎯the floppy particle deforms in response to the lubrication pressure whereas 13 

the stiffer particle must displace. In Figure 7(b), we notice that the net drift ( finalyδ ) 14 

increases with 2Ca , but decreases with increasing 1Ca . However, the variation with 2Ca  15 

has different scalings for low and high 1Ca . At low 1Ca ( 1Ca <0.1) 2~finaly a Caδ  (inset 16 

of Figure 7b), but for 1Ca  ≥ 0.1, 0.6
2~finaly a Caδ . Although completely different 17 

phenomenon, we parenthetically note that 0.6 power scaling of Ca  was also found 18 

previously for lateral migration of capsules in free shear [54,55]. Similar to the 19 

deformation, we could obtain an empirical relation by normalizing it with the value for 20 

homogeneous collision   21 
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Results are shown in Figure 7(c) with different 1Ca and 2Ca collapse on to a single curve 23 

for both regimes (see also the inset of Figure 7c). Again as in deformation, different 24 
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initial separations fall on the same curve making the relation independent of initial 1 

configuration.   2 

Although, stiffness of the second particle is shown to have significant effects on 3 

Figure 7: (Color online) (a) Effect of 2Ca  on the trajectory of C1 for an NH capsule pair. Inset
shows finaly aδ  of C1 for different constitutive laws (ES A=3, SK C=1). (b) finaly aδ  versus 0.60

2Ca
for 1 0.10.Ca ≥  The Inset shows variation of finaly aδ  with 2Ca  for 1 0.10Ca < . (c) Empirical
expression (9) plotted along with simulated results for 1 0.10Ca > . The inset shows same plot for

1 0.10.Ca <   
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particle trajectory (Figures 7), the relative trajectory y aΔ as a function of x aΔ shown 1 

Figure 8: (Color online) (a) Relative trajectory of a pair of heterogeneous NH capsules at 

1 0.3Ca = and different 2Ca . Inset shows the variation of finaly aΔ  with 2Ca  for different 

constitutive laws (ES A=3, SK C=1) at 1 0.3Ca = . (b) Trajectories of the centers of 

capsules for three 2Ca  at 1 0.3Ca = . 
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in Figure 8(a), especially its final value, remains insensitive (see Figure 8a inset). It can 1 

be understood from Figure 8(b), where we see that although the lateral drift of C1 2 

increases with 2Ca , that of C2 concurrently decreases leaving the relative displacement 3 

unchanged. Note that in a heterogeneous collision, the stiffer particle experiences larger 4 

drift velocity [20].  Figure 8(b) accordingly shows that for 2 0.1Ca = , C2 moves faster 5 

than C1, whereas for 2 0.9Ca = , C1 moves faster. The inset of Figure 8(a) plots finaly aΔ  6 
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Figure 9: (Color online) (a) Comparison of the variation of maxD  with 2Ca  for pair collision of 

drops and capsules. Comparison of finaly aδ  between Drop and Capsule at two 1Ca  values.  
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vs. 2Ca  for different constitutive laws showing nearly identical results for the NH and ES 1 

models, whereas the SK model shows slightly smaller drift. The difference in behaviors 2 

for the strain hardening SK (Skalak)  model from NH model even for the same value of 3 

sG  has been previously observed [51]. The area dilation modulus C  affects the 4 

deformation and thereby the overall dynamics, which we investigate below. 5 

We also simulate heterogeneous collision between a pair of drops to compare the 6 

capsule and drop dynamics under collision. In Figure 9(a), maxD for C1 as a function of 7 

2Ca  shows similar dynamics for different values of 1Ca  for both drops and capsules. 8 

However, the drop deformation is smaller than that of the capsule for the same values of 9 

1Ca  and 2Ca . Previously, we found that a single capsule in deforms more than a drop in 10 

simple shear [31]. Note that the capillary number used here is a ratio of approximate 11 

measures of viscous to capillary forces for a drop and viscous to elastic membrane forces 12 

for a capsule. The actual forms of capillary and membrane stresses are different. At zero 13 

deformation, the drop experiences surface tension in contrast to a capsule, which 14 

experiences no stress. Therefore, the restoring force is stronger in case of a drop than in 15 

the capsule. In Figure 9(b) finaly aδ  for drop and capsule cases are plotted for two 16 

different 1Ca values. finaly aδ shows linear variation with 2Ca for 1Ca =0.05. For a larger 17 

value 1Ca =0.1, although the drop case still shows linear variation, the capsule case 18 

displays nonlinear variation as also seen above ( )0.6
2 1~  for 0.1Ca Ca ≥  (Figures 7b and 19 

7c). 20 

D. Effects of area dilatational modulus in Skalak model  21 

The Skalak model is characterized by the area dilation coefficient C  apart from sG . In 22 

Figure 10(a), we investigate its effects on the homogenous pair interaction for C a =0.3. 23 

y aΔ increases with increasing value of C . It grows quicker at lower values of ( )1C ≤ , 24 

and then seems to achieve an  asymptotic value independent of C  for larger C  (inset of 25 

Figure 10a). Larger values of C  leads to a nearly incompressible membrane with area 26 

dilation modulus ( )1 2S SK G C= +  dominating over the shear modulus [51]. Indeed 27 
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deformation was shown in that article to reach an asymptotic value at large C . 1 

Deformability affects trajectory explaining the C independent results here. A related 2 

effect of the strain hardening behavior of the Skalak model is that it prevents capsule 3 

from bursting even at large C a  values.   4 
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We investigate heterogeneous collisions between capsules C1 and C2 of two 1 

different capillary numbers 1 0.3Ca =  and 2Ca  but same C  in Figure 10(b). It plots net 2 

lateral drift /finaly aδ  of C1 for different C as a function of 2Ca  for 1Ca =0.3.  At low 3 

2Ca , C affects the drift more⎯it increases with increasing C , but at high 2Ca ,  4 

Figure 10: Relative trajectory of a pair of capsules in homogenous collision at 
different C for Skalak model at 0 00.3,  =4 and 0.5Ca x a y a= = . Inset shows the 

variation of finaly aΔ  with C. (b) Effect of C on the variation of finaly aδ of the C1 

with 2Ca . Inset shows the plot for maxD of C1 with 2Ca  at different C.   

C

Δy
fin

al
/a

0 2 4 6 8 101.1

1.2

1.3

1.4

Δx/a

Δy
/a

-4 0 4 8 12
0

0.5

1

1.5

2
C= 0.10
C= 1
C= 2
C= 5
C= 10

(a) 

Ca2

D
m

ax

0 0.25 0.5 0.75 1 1.250.2

0.4

0.6

0.8
C= 0.10
C= 1
C= 5
C= 10

Ca2

δy
fin

al
/a

0 0.25 0.5 0.75 1 1.25
0

0.1

0.2

0.3

0.4

0.5

(b) 



24 
 

difference between different C is negligible. The inset shows maxD  of C1 with 2Ca  for 1 

different C ; it decreases with increasing C as expected.  2 

 3 

IV. Summary 4 

We have investigated pair interactions between capsules encapsulated by an elastic 5 

membrane described by three different hyperelastic constitutive models⎯neo-Hookean, 6 

Skalak and Evans and Skalak. We show excellent match of our simulated results with 7 

prior boundary element simulations of homogeneous capsule interactions. For 8 

homogeneous interactions, the maximum deformation of capsules and the net cross- 9 

stream separation finaly aΔ  expectedly decrease with increasing viscosity ratio λ , as 10 

λ → ∞ one recovers reversible Stokes flow dynamics of interacting sphere-pairs. A pair 11 

of drops shows higher values of  finaly aΔ  than those of a pair of capsules, although the 12 

difference between the drop and capsule cases disappears for very large λ. For 13 

heterogeneous collisions between two capsules C1 and C2, the peak deformation maxD  of 14 

capsule C1 decreases with increased capillary number 2Ca of C2, while the cross-stream 15 

drift finaly aδ of capsule C1 increases. They scale with 1 2/Ca Ca  both for capsule and 16 

drop pairs. We provide an approximate analytical argument for the observed scaling in 17 

the Appendix. While for the same conditions maxD is larger for capsule, finaly aδ is larger 18 

for drops. Even though finaly aδ  of one capsule (C1) varies with the variation of the 19 

capillary number of the other capsule (C2), the relative shift finaly aΔ  does not change. 20 

Different membrane constitutive laws result in very similar behavior. The area-dilatation 21 

coefficient  C in Skalak model, when increased, gives rise to reduced maxD and enhanced 22 

finaly aΔ  for the other capsule.  23 
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 1 

Appendix: 1 2/Ca Ca scaling for heterogeneous scaling 2 

For heterogeneous collision between two capsules C1 and C2 of different capillary numbers 1Ca  3 

and 2Ca , we find that the maximum deformation [Eq. (7)] and the final lateral shift [Eq. (8)] both 4 

experience a scaling 1 2~ /Ca Ca  . Here, we explain the underlying physics and provide an 5 

approximate reasoning for the capillary dependence by investigating effects of the velocity field 6 

of one drop on the other. We express the flow field outside the capsule C2 due to the free shear 7 

in absence of C1 using the Stokes Green’s function ( , )ijG x y  and the corresponding stress 8 

( , )ijkT x y as [31,56-58] 9 

3 5

1 (1 )( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ),
8 8

( )( ) ( )( )( )
( , ) , ( , ) 6 .

d d

m
j j i ij i ijk k

m A A

ij i i j j i i j j k k
ij ijk

u u f G dA u T n dA

x y x y x y x y x y
G T

λ
πμ π

δ

∞ −= − +

− − − − −
= + = −

− − −

∫ ∫x x y x y y y x y y y

x y x y
x y x y x y

   ( 9) 10 

For the case of viscosity matched system ( 1λ =  ) the second term drops out.  iu∞ is the imposed 11 

shear. dA  is the surface of the capsule C2 with outward normal ( )in x . ( )m
if x is the 12 

membrane force appearing in (1) that also is equal to the jump in fluid traction across the 13 

membrane. Note that for the case of a drop pair this membrane force mf  will be replaced 14 

by the appropriate jump in the traction, namely the surface tension ( )= Γ ∇ ⋅f n n .  After 15 

nondimensionalizing the velocity by aγ&  , and the membrane traction by ,2 /sG a  ( ,2sG is the 16 

membrane shear modulus of capsule C2) the equation ( 9) for the velocity  outside C2  to be  17 
2

2

2
2

( ) ( ) ( ),

1( ) ( ) ( , ) ( ).
8 / 1/

d
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j j j

C m
j iji

sA

u u u
a a a

u Gf dA
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γ γ γ

γ π
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= − ∫

x x x

x y x y y
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&

     ( 10) 18 

Therefore the velocity due to C2 shows to be scaling as 21/ .Ca∝  The deformation and lateral 19 

motion of Capsule C1 is effectively controlled by the imposed shear and this velocity due to their 20 
mutual interactions. In principle, one can compute now the velocity and deformation of C1 and 21 
then develop a method of reflection to correct the velocity field and deformation of C2 and so on. 22 
For our purpose just the zeroth order result is sufficient. In that order the extensional part of the 23 
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velocity ( 10) would govern the deformation of C1. Based on Taylor’s theory of small deformation 1 

in the low 1Ca  limit one obtains deformation of C1,  2 

1 2 1 2~ (velocity due to C ) ~ Ca /D Ca Ca× ,      ( 11) 3 

especially when it is scaled by its reference value for homogeneous collision.  One can argue that 4 
the lateral drift follows deformation and shows similar scaling.    5 

  6 
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Figure Captions 1 

Figure 1: A Schematic of the computational domain showing the initial position of the 2 

pair of capsules. 3 

Figure 2: Relative trajectory of a pair of capsules at 00.3,  7Ca x a= Δ =  and 0 1y aΔ =  4 

in different computational domains. 5 

Figure 3: (Color online) (a) Comparison of the simulated relative trajectory of pair of 6 

capsules with boundary element simulation of Lac et al, 2007, (LMB in figure) at 1,λ =7 

different initial separations and Ca values. (b) Simulated snapshots of the pair of capsules 8 

at the instants shown in (a) for 0 04 and 0.50.x a y aΔ = Δ =  9 

Figure 4 (Color online) (a) Deformation vs Δx/a of a pair of NH capsules at 0.30,Ca =10 

0 04 ,  0.5x a y aΔ = Δ = and different λ ( maxD as a function of λ for three constitutive laws 11 

in the inset, A= 3 for ES, C=1 for SK). (b) Relative trajectories for an NH capsule pair 12 

and a drop pair for the same conditions and different λ.  Inset shows the variation of 13 

finaly aΔ  as a function of λ for the drop and the capsule pairs.  14 

Figure 5: (Color online) Shape of capsules (NH) and drops at Ca=0.3 and different λ 15 

when they are in closest proximity in the compression quadrant.  16 

Figure 6: (a) Effect of the stiffness of C2 on the deformation of C1 ( 1Ca  = 0.3).  both NH 17 

capsules. Inset shows the variation of the maxD with 2Ca  for different models (A=3 for 18 

ES, C=1 for SK). (b) Comparison of deformation of a single NH capsule for different 19 

constitutive laws with BEM simulation of Ramanujan & Pozrikidis (1998). (c) Variation 20 

of maxD with 2Ca  for different 1Ca  for NH capsule pairs.  Inset shows the scaling for 21 

*
maxD  with 2 1Ca Ca along with the empirical fit equation (8). 22 

Figure 7: (Color online) (a) Effect of 2Ca  on the trajectory of C1 for an NH capsule pair. 23 

Inset shows finaly aδ  of C1 for different constitutive laws (ES A=3, SK C=1). (b)24 

finaly aδ  versus 0.60
2Ca for 1 0.10.Ca ≥  The Inset shows variation of finaly aδ  with 2Ca  25 
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for 1 0.10Ca < . (c) Empirical expression (9) plotted along with simulated results for 1 

1 0.10Ca > . The inset shows same plot for  1 0.10.Ca <   2 

Figure 8: (Color online) (a) Relative trajectory of a pair of heterogeneous NH capsules at 3 

1 0.3Ca = and different 2Ca . Inset shows the variation of finaly aΔ  with 2Ca  for different 4 

constitutive laws (ES A=3, SK C=1) at 1 0.3Ca = . (b) Trajectories of the centers of 5 

capsules for three 2Ca  at finaly aΔ . 6 

Figure 9: (Color online) (a) Comparison of the variation of maxD  with 2Ca  for pair 7 

collision of drops and capsules. Comparison of finaly aδ  between Drop and Capsule at 8 

two 2Ca  values.  9 

Figure 10: Relative trajectory of a pair of capsules in homogenous collision at different 10 

C for Skalak model at 0 00.3,  =4 and 0.5Ca x a y a= = . Inset shows the variation of 11 

finaly aΔ  with C. (b) Effect of C on the variation of finaly aδ of the C1 with 2Ca . Inset 12 

shows the plot for maxD of C1 with 2Ca  at different C.   13 


