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The finest state space resolution that can be achieved in a physical dynamical system is limited by
the presence of noise. In the weak-noise approximation the stochastic neighborhoods of deterministic
periodic orbits can be computed from distributions stationary under the action of a local Fokker-
Planck operator and its adjoint. We derive explicit formulae for widths of these distributions in the
case of chaotic dynamics, when the periodic orbits are hyperbolic. The resulting neighborhoods form
a basis for functions on the attractor. The global stationary distribution, needed for calculation of
long-time expectation values of observables, can be expressed in this basis.
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I. INTRODUCTION

This paper investigates the interplay of deterministic
chaotic dynamics and weak stochastic noise, and pro-
poses a new definition of the neighborhood of a noisy
hyperbolic state space point. Such neighborhoods are
conjectured to partition the state space in optimal way
and provide a basis function set for the evaluation of the
stationary distribution.

A. Width of a noisy trajectory

The basic idea of a stochastic ‘neighborhood’ is that
the balance between the noise broadening of a trajec-
tory and the deterministic contraction leads to a proba-
bility distribution of finite width, as opposed to one that
spreads with time (diffusion only). For an orbit that con-
verges to a linearly stable, attractive equilibrium, this
neighborhood was computed in 1810 by Laplace [1, 2]
and is today known as a solution to the Lyapunov equa-
tion [3], or the Ornstein-Uhlenbeck process [4]: for a 1-
dimensional flow, the deterministic equilibrium point is
smeared into a Gaussian probability density centered on
it, whose covariance Q = −D/λ is a balance of the expan-
sion rate D (diffusion constant) against the contraction
rate λ < 0. Fokker-Planck equation [5] generalizations to
higher-dimensional stable equilibria and limit cycles (sta-
ble periodic orbits) are immediate, provided proper care
is taken of the diffusion along the periodic orbit [6, 7].

What if a periodic orbit is unstable? Both the diffusion
rate and the linearized stability rate λ > 0 now expand
forward in time, and cannot balance each other. This
problem was solved in refs. [8, 9] for repelling periodic
orbits with no contracting directions, by balancing the
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stochastic diffusion against the contraction by the adjoint
Fokker-Planck operator. The resulting covariance matrix
defines the stochastic neighborhood for a repelling orbit,
while the Ornstein-Uhlenbeck covariance defines it for a
stable orbit. However, neither these stable nor repelling
orbits play a role in chaotic dynamics. The long-time
attractors of chaotic dynamics are organized by an in-
finity of hyperbolic periodic orbits [10–12], orbits which
an ergodic trajectory visits by approaching them along
their stable eigendirections, and leaves along their unsta-
ble eigendirections.

The central result of this paper is that techniques de-
velopped for solving the Lyapunov equations [13–15] en-
able us to define the neighborhood of a hyperbolic peri-
odic point by splitting the covariance matrix Q into two
(mutually non-orthogonal) covariance matrices, Qcc for
contracting directions, and Qee for the expanding direc-
tions.

There are two immediate applications of the notion
of the neighborhood of a hyperbolic point: (a) ‘optimal
partition’ of the attractor, and (b) construction of a basis
set for the stationary distribution of a noisy chaotic flow.

B. An optimal partition from periodic orbits

While in the idealized deterministic dynamics the state
space can be resolved arbitrarily finely, in physical sys-
tems noise always limits the attainable state space reso-
lution.

This observation had motivated the many limiting res-
olution estimates for state space granularity of chaotic
systems with background noise. The idea of an opti-
mal partition in this context was first introduced in 1983
by Crutchfield and Packard [16] who formulated a state
space resolution criterion in terms of a globally averaged
“attainable information.” The approach was later gen-
eralized and applied to time-series analysis, where the
underlying dynamics is unknown [17, 18]). A different
strategy consists of computing a transfer matrix between
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intervals of a uniform grid, and estimating averages of ob-
servables from its eigenvalues and eigenfunctions. First
introduced by Ulam [19], this technique has been devel-
oped over the years [20, 21]. All of these approaches (see
ref. [9] for a review) are based on global averages, and as-
sume that granularity is uniform across the state space.
In contrast, the main, computationally precise lesson of
our work is that even when the external noise is white,
additive, and globally homogenous, the interplay of noise
and nonlinear dynamics always results in a local stochas-
tic neighborhood, whose covariance depends on both the
past and the future noise integrated and non-linearly con-
volved with deterministic evolution along the trajectory.
The optimal resolution thus varies from neighborhood to
neighborhood, and has to be computed locally. As was
shown in ref. [8] for a strictly expanding 1 d chaotic map
and a given noise, the maximal set of non-overlapping
neighborhoods of periodic orbits can be used to construct
an ‘optimal partition’ of the state space, and compute dy-
namical averages from the associated approximate matrix
Fokker-Planck operator.

C. The stationary distribution

In this paper we utilize our construction of optimal
partitions to approximate the stationary probability dis-
tribution function by a finite sum over Gaussians, one for
each neighborhood. When the dynamics is chaotic, the
most one can predict accurately for long times are the
statistical properties of the system, given by the state-
space averages of observables a(x),

〈a〉 =

∫
dx ρ(x) a(x) , (1)

where the stationary distribution (natural measure [22–
24]) ρ(x) is the probability of finding the system in the
state x on the attractor. For a deterministic system ρ(x)
is a singular, nowhere differentiable distribution with
support on a fractal set, and its numerical computation
is usually not feasible. However, for any physical system
the noise washes out fine details of the dynamics, and
the stationary distribution is smooth. Here we propose
a smooth function basis for ρ(x), based on the optimal
partition of the state space. We develop our formal-
ism for discrete-time dynamical systems and illustrate
it by computing the neighborhoods and estimating ρ(x)
for the Lozi map [25], a simple 2-dimensional discrete-
time chaotic system. The idea is to first partition the
attractor into an optimal partition set of neighborhoods,
and then use the associated local Gaussian distributions
as a finite set of basis functions for the global station-
ary distribution. In the 2-dimensional Lozi example, our
estimates for the stationary distribution are consistent
with those obtained by the direct numerical estimation
of the lattice-discretized probability densities computed
from long stochastic (Langevin) trajectories.

II. THE NEIGHBORHOOD OF A HYPERBOLIC
POINT

An autonomous discrete-time stochastic dynamical
system (M, f,∆) can be defined by specifying a state
spaceM, a deterministic map f :M→M, and an addi-
tive noise covariance matrix (diffusion tensor) ∆ = ∆(x).
In one time step, an initial Dirac-delta density distribu-
tion ρa(x) located at x is smeared out into a Gaussian
ellipsoid ρa+1(y) centered at y = f(x), with covariance
∆(x). This defines the kernel of the Fokker-Planck evo-
lution operator in d dimensions [5]

LFP (y, x) dx = e−
1
2 (y−f(x))> 1

∆(x)
(y−f(x)) [dx]

[dx] = ddx/ det(2π∆)1/2 . (2)

Consider a trajectory {xa} = (xa, xa+1, xa+2, · · ·) gener-
ated by the deterministic evolution rule xa+1 = f(xa),
and shift the coordinates in each xa neighborhood to
x = xa + za. In the vicinity of xa the dynamics can
be linearized as za+1 = Maza , where Ma = ∂f(xa) is
the one time-step Jacobian matrix.

Prepare the initial density of trajectories ρa(za) in the
xa neighborhood as a normalized Gaussian distribution
ρ(za, Qa), centered at za = 0, with a strictly positive-
definite covariance matrix Qa. The support of density
ρ(za, Qa) can be visualized as an ellipsoid with axes
oriented along the eigenvectors of Qa. The linearized
Fokker-Planck operator

L(za+1, za) dza = e−(za+1−Maza)> 1
2∆a

(za+1−Maza) [dza]

maps this distribution one step forward in time into an-
other Gaussian

ρ(za+1, Qa+1) =

∫
dza L(za+1, za) ρ(za, Qa) , (3)

with the covariance matrix deformed by the dynamics
and spread out by the noise, as given by the discrete
Lyapunov equation [3, 26],

Qa+1 = MaQaMa
> + ∆a . (4)

In other words, the two covariance matrices, (i) the de-
terministically transported Qa → MaQaMa

>, and (ii)
the noise diffusion tensor ∆a, add together in the usual
manner, as squares of errors.

Similarly, density evolution for dynamics with strictly
expanding Jacobian matrices Ma can be described by the
action of the adjoint Fokker-Planck operator [8, 9], with
kernel

L†(y, x) dy = e−
1
2 (y−f(x))> 1

∆(x)
(y−f(x)) [dy] .

The adjoint Fokker-Planck operator expresses the current
density ρa as the convolution of its image ρa+1 with the
noisy dynamics

ρa(za, Qa) =

∫
dza+1L†(za, za+1)ρa+1(za+1, Qa+1) .
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Like in the forward evolution, we may substitute a Gaus-
sian density into this equation to obtain the discrete ad-
joint Lyapunov equation for the covariance matrices

MaQaMa
> = Qa+1 + ∆a . (5)

We show in what follows that, if the Jacobian matrices
Ma have all eigenvalues strictly contracting (expanding),
any initial Gaussian converges to an invariant density
under the action of the (adjoint) Fokker-Planck operator.
Consider first the case of a map f(x) with a stable fixed
point at xa (at z = za = 0). The covariance matrix
transforms as

Q = ∆ +M∆M> +M2∆(M>)2 + · · ·

=

∞∑
m,n=0

Mn∆(M>)mδmn . (6)

By inserting the Fourier representation of Kronecker δmn
into (6), we can recast this expression into the resolvent
form

Q =

∫ 2π

0

dθ

2π

∞∑
m,n=0

(e−iθM)n∆(eiθM>)m

=

∫ 2π

0

dθ

2π

1

1− e−iθM
∆

1

1− eiθM>
. (7)

We do the same in the expanding case, by using the ad-
joint evolution

MQM> =

∞∑
m,n=0

1

Mn
∆

1

(M>)m
δnm

=

∫ 2π

0

dθ

2π

∞∑
m,n=0

(
eiθ

M

)n
∆

(
e−iθ

M>

)m
=

∫ 2π

0

dθ

2π

1

1− eiθ/M
∆

1

1− e−iθ/M>
, (8)

which is then easily reduced to (7), so that the resolvent
form is the same regardless of whether M is expanding or
contracting. This result comes particularly handy when
we deal with a hyperbolic fixed point, that is when Ma

has both expanding and contracting eigenvalues. The
monodromy matrix is not symmetric, and it cannot be
diagonalized by an orthogonal transformation, but its ex-
panding and the contracting parts can be separated with
a similarity transformation S that brings M to a block-
diagonal form,

Λ ≡ S−1MS =

(
Λe 0
0 Λc

)
. (9)

Here the blocks Λe and Λc contain all expanding, con-
tracting eigenvalues of the monodromy matrix, respec-
tively. The covariance matrix Q = SQ̂S> is not block-
diagonalized by the above similarity transformation, but
consider the four blocks

Q̂ij =

∫ 2π

0

dθ

2π

1

1− e−iθΛi
∆̂ij

1

1− eiθΛ>j
, (10)

where ∆̂ ≡ S−1∆(S−1)>, and i, j ∈ {c, e}, where {c, e}
denotes {contracting, expanding}. This expression may
be evaluated as a contour integral around the unit circle
in the complex plane [13, 15]

Q̂ij =
1

2πi

∮
Γ

dz
1

z1− Λi
∆̂ij

1

1− zΛ>j
. (11)

The diagonal blocks Q̂cc, Q̂ee have either all expand-
ing or all contracting eigenvalues, meaning at least one
pole inside and one pole outside the unit circle, and the
residue theorem yields a non-vanishing result for the in-
tegral. Consider next the off-diagonal block Q̂ce withΛi
contracting and Λj expanding: in this case the poles all
lie outside the unit circle, and the integral vanishes. The
remaining off-diagonal block having Λi expanding and Λj
contracting must also vanish when integrated, due to the
symmetry of Q̂, which is therefore block-diagonal,

Q = S

(
Q̂ee 0

0 Q̂cc

)
S> . (12)

These results are easily extended to a periodic orbit p
of period np, since any point xa of the orbit is a fixed
point of the npth iterate of the map. The forward and
adjoint evolution equations (4) and (5) for the covariance
matrix, as well as the resolvent (7) all still hold, with
some changes in the notation: each periodic point xa has
its own neighborhood, with its own covariance matrix
Qa. The monodromy matrix Ma of xa now evolves np
steps along the orbit

Mnp
a = Ma+np−1 · · ·Ma+2Ma+1Ma,

while the diffusion tensor ∆a now accounts for the total
noise accumulated along the periodic orbit,

∆p,a ≡
np−1∑
i=0

M
np−i−1
a+i+1 ∆a+i M

np−i−1
a+i+1

> . (13)

III. OPTIMAL PARTITION AND STATIONARY
DISTRIBUTION

At this point our strategy is to build a partition out
of neighborhoods of the periodic points, each defined by
means of the stationarity condition (7): solve for the ex-
panding and contracting blocks of (12) separately, and
draw a parallelogram on the supports of the resulting
Gaussians, with axes oriented along the eigenvectors of
the covariance matrices Qee and Qcc, their widths given
by one standard deviation along each direction. We say
that two neighborhoods overlap if they do so by at least
50% of their areas (consistent with the 1σ confidence in-
terval chosen as overlapping threshold in ref. [8]). For
a typical chaotic map, periodic points are dense in the
deterministic attractor [27], which we now aim to cover
entirely with the minimum number of neighborhoods pos-
sible. We do so via the following algorithm: i) Find
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(a) (b)

(c)

FIG. 1: Building the partition for the Lozi attractor, for an
isotropic constant diffusion tensor δij∆. In frames (a) and (b)
∆ = 0.01. The deterministic attractor is the fractal structure
in the background of each picture. Stochastic neighborhoods
of a set of periodic points are indicated by their standard
deviation parallelograms. (a) An initial partition: with only
periodic points of periods ≤ 5 much of the attractor remains
to be covered. (b) The final, optimal partition covers the
whole attractor, with no pair of neighborhoods overlapping by
more than 50%. (c) N , the number of neighborhoods needed
to achieve the optimal partition for a given noise strength ∆.

periodic points of period np = 1, 2, ..., and their corre-
sponding neighborhoods. ii) If any neighborhood over-
laps with the neighborhood of a shorter periodic point,
then it is discarded and the neighborhood of lower period
occupying the same area is instead kept in the partition.
iii) Among groups of neighborhoods of the same period,
discard those that overlap, while keep the rest in the
partition. iv) The algorithm stops when the attractor is
fully covered and no further non-overlapping neighbor-
hoods can be found. An example is shown in Fig. 1 for
the two-dimensional Lozi attractor [25].

The main utility of a good partition is that it provides
a basis for an accurate and efficient estimate of long-time
averages of observables defined on the dynamical system,
of the form (1). As explained in sect. I C, our goal here is
to determine the stationary distribution ρ(x). For that
purpose, we use as basis Gaussian ellipsoids that satisfy
the local stationarity condition (7) in each neighborhood
of the optimal partition. A set of Gaussians centered
at every point in the state space M forms an overcom-
plete, non-orthogonal basis for functions in L2(M), as is
well known from the study of coherent states of quan-
tum harmonic oscillators [28]. Our (also overcomplete
and non-orthogonal) set of Gaussians is centered only on

periodic points, which are dense in the deterministic at-
tractor, but not in the entire state space. Therefore our
basis is designed to resolve the structure of any function
with support on the hyperbolic ‘strange set’ (an attrac-
tor or a repeller). The Gaussians are constructed so that
their widths balance the noise spreading and the (time-
forward or -backward) contraction of the deterministic
dynamics. In the transverse directions, the basis gives
the width of the global stationary distribution, locally
everywhere determined by the balance between noise and
dynamics. Along the attractor, the basis determines the
minimum number of neighborhoods needed to fully re-
solve the structure of the stationary distribution.

There are numerical methods (such as refinements of
Ulam’s method [29]) that identify the asymptotic attrac-
tor by running long noisy trajectories, dropping the tran-
sients, and covering the attractor so revealed by a finite
number of boxes. These algorithms have no a priori in-
formation about how the stationary distribution behaves
transversely to the deterministic attractor, and they may
easily overestimate the number of basis elements needed
to resolve this structure. In contrast, in our approach
the transverse structure is automatically accounted for
by the local balance between the noise and the determin-
istic contraction along the stable, transverse directions,
given by covariance matrix block Q̂cc in (12). Further-
more, estimating ρ(x) by binning long noisy trajectory
over a finite number of attractor-covering boxes is feasi-
ble only in a low-dimensional state space, while (12) can
be computed for state space of any dimension.

In discrete time dynamics, the stationary distribution
is the ground-state eigenfunction of the Fokker-Planck
evolution operator (2) with escape rate γ,

L ρ(x) = e−γρ(x) . (14)

In order to estimate the stationary distribution, we write
it as a sum over the neighborhoods of the periodic points:

ρ(x) =

N∑
a=1

ha φa(x), (15)

where φa = e−x
>
a Qaxa are the Gaussian basis functions,

with Qa given by (12), and the coefficients {ha} to be
determined. The truncation of the expansion (15) to N
basis functions follow from our optimal partition. We es-
timate the coefficients ha by minimizing the cost function∫ ( N∑

a=1

ha(L − e−γ)φa(x)

)2

dx, (16)

together with the normalization constraint for ρ(x). We
can also estimate the escape rate of the system by mini-
mizing the error with respect to e−γ .

As an example, we apply the procedure to the Lozi
map [25]

xn+1 = 1− a|xn|+ b yn

yn+1 = xn (17)
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(a) (b)

FIG. 2: (Color online) The stationary distribution of the
Lozi map with ∆ = 0.01. (a) A direct numerical calcula-
tion obtained by running noisy trajectories for a long time.
(b) The stationary distribution calculated with the optimal
partition method.

with parameters a = 1.85, b = 0.3 and isotropic, con-
stant diffusion tensor δij∆ with ∆ ranging in the inter-
val [0.003, 0.1]. Figure 1 (c), which shows the number N
of neighborhoods required by the optimal partition for a
given ∆, illustrates the efficiency of our method: N goes
from tens to few hundreds in the noise range considered.
In order to test our algorithm, we also estimate ρ(x) and
γ by a direct numerical simulation. The (x, y) state space
is divided into uniform mesh 6.4×105 bins; we follow long
stochastic trajectories and count how many times they
visit each bin. The stationary distribution ρB(x) is then
the normalized frequency distribution of the whole grid.
The deterministic Lozi map has a fixed point at the edge
of attractor, whose stable manifold is the boundary of
the deterministic basin of attraction. The noise makes it
possible for a stochastic trajectory to cross this boundary
and escape. We compute the escape rate as the ratio of
the total number of points in the noisy trajectories to the
number of escapes. Fig. 2 shows an example of the sta-
tionary distribution estimated with both methods, while
in Fig. 3 we compare quantitatively the two procedures.
In particular, we estimate the relative error between the
stationary distribution ρ computed with the optimal par-
tition and ρB computed on the uniform grid, by using a
normalized L2 distance, as

d(ρ, ρB) =

∫
(ρ(x)− ρB(x))

2
dx∫

(ρB(x))
2
dx

. (18)

The two distributions are within 5% of each other,
whereas the escape rates differ by at most 10%, over a
range of ∆ that spans two orders of magnitude.

IV. DISCUSSION

In conclusion, we have generalized the optimal parti-
tion hypothesis first formulated in [8] to hyperbolic maps
in arbitrary dimension, and tested the method on a two-
dimensional system with weak white isotropic noise. As
noise induces a finite resolution of the state space of any
physical system, finite numbers of neighborhoods suffice

(a)

(b)

FIG. 3: (a) The escape rate from the attractor as the function
of the noise strength ∆. Squares: uniform grid discretization
method. Triangles: optimal partition. (b) The normalized L2

distance d(ρ, ρB) between the corresponding stationary distri-
butions.

to partition the state space explored by chaotic dynam-
ics, and to estimate long-time averages of observables.
Here we have used the deterministic unstable periodic
orbits as the skeleton on which to build an optimal par-
tition for the noisy state space. First we determine a
local stationary distribution in the neighborhood of each
periodic point by balancing the noise against the deter-
ministic expansion or contraction. From the separation
of expanding and contracting blocks in the covariance
matrix that characterizes the Gaussian approximation to
the local stationary distribution, we carve out a precise
definition of neighborhood, the constituent of our parti-
tion, which is then used to approximate the global sta-
tionary distribution, estimate the escape rate (for open
systems that allow escape), and any long-time averaged
observable. Numerical tests confirm that the accuracy of
our method is comparable to that of a uniform grid dis-
cretization, but the number neighborhoods required for
our optimal partition (∼ 10 to 100) is three-four orders
of magnitude smaller than the number of bins used in the
uniform grid discretization method (∼ 105).

The problems dynamical chaos (or ‘turbulence’) the-
ory faces nowadays are not two- but high-, even infinite-
dimensional. Today it is possible to compute numerically
exact periodic orbits (‘recurrent flows’ [30]) in a variety
of physically realistic turbulent fluid flows [31, 32], but
these calculations are at the limit of what current codes
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can do, and we hope that the methods presented here
can provide sharp criteria for when a sufficient number of
such solutions has been computed. Furthermore, unlike
the uniform grid discretization, our partitions are smart,
since they rely on the periodic orbits of the determinis-
tic system as skeleton of the dynamics, as well as effi-
cient, due to the finite (and optimal!) numbers of neigh-
borhoods and corresponding basis functions. This, we
believe, should make our algorithm less costly to imple-
ment than direct numerical simulations in higher dimen-
sions, where discretizations would be impractical. With
some modifications and application of Poincaré sections,
the formalism can be applied to continuous time flows as
well [9, 33]. Outstanding challenges include dealing with
the lack of hyperbolicity in higher dimensions (marginal
directions were treated in ref. [9] for 1d maps), as well as
extending the definition of neighborhood to other time-
invariant sets, such as relative periodic orbits and par-
tially hyperbolic invariant manifolds. Further technical

issues, such as improving the efficiency of the minimiza-
tion algorithm by modifying the basis of functions used in
the computation of the stationary distribution, are also
part of our agenda.
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