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Abstract

We study a mechanism of activity sustaining on networks inspired by a well-known model of

neuronal dynamics. Our primary focus is the emergence of self-sustaining collective activity pat-

terns, where no single node can stay active by itself, but the activity provided initially is sustained

within the collective of interacting agents. In contrast to existing models of self-sustaining activity

that are caused by (long) loops present in the network, here we focus on tree–like structures and

examine activation mechanisms that are due to temporal memory of the nodes. This approach

is motivated by applications in social media, where long network loops are rare or absent. Our

results suggest that under a weak behavioral noise, the nodes robustly split into several clusters,

with partial synchronization of nodes within each cluster. We also study the randomly-weighted

version of the models where the nodes are allowed to change their connection strength (this can

model attention redistribution), and show that it does facilitate the self-sustained activity.
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I. INTRODUCTION

The emergence of online social networking and microblogging sites has facilitated novel

channels of communication that did not exist under the traditional centralized dissemination

model [1]. Online platforms such as Twitter or Facebook enable users to produce content

and distribute it through social ties. This process is often modeled via threshold elements,

where a node is affected, or activated, whenever the influence of its local environment exceeds

a certain threshold. The affected node can then propagate the influence further, probably

causing a global activation cascade throughout the whole system [2–5]. Studies of such

cascades and related dynamic processes on networks have attracted significant attention;

see [6, 7] for recent surveys.

Threshold models have a long history in quantitative sociology, and different variants

have been used for describing weak ties [8], social impact [9], and economic activity [10–14].

Another line of research where threshold models are prevalent is neuronal systems [15–18].

Indeed, several scholars have noticed certain analogies between social and neuronal systems

[19–23]. In particular, both social agents and neurons can be viewed as information process-

ing units that gather information from their local neighborhood and act on that information

(firing in the case of neurons, posting in the case of social media users). Furthermore, the

electrical potential of the neuron can be reinterpreted as an accumulated “information” of

the agent. Those analogies were exploited in [16], where conditional reflexes of a single

(social) agent were described via a neuronal model.

A popular approach for describing neuronal dynamics is the so-called integrate-and-fire

(IF) family of models [17, 18], which emerged from the first formalization of neuronal net-

works proposed by McCulloch and Pitts [16]. The IF model was used to examine the

conditions under which certain network structures exhibit self-sustained dynamics due to

small-world effects [24–26]. More recently, the authors of [27] introduced a strongly driven,

perfect-memory integrate-and-fire neuronal model for describing the collective dynamics of

social networks. The model overcomes one of the main limitations of the cascade approaches

(absence of feedback, i.e., each node is active only once) and is applicable to the quantitative

description of Twitter data [27].

In this paper we formulate a simple IF-based model to study mechanisms of collectively

sustained activity patterns in networks. Note that we differentiate between activity cas-
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cades—activity propagating through the whole system at least once—and the collective

activity sustaining, where an agent cannot activate in isolation, but a collective of agents on

a network does keep (possibly locally) an initial activity over a sufficiently long time period.

There is a large body of work on collective activity patterns in neuronal systems [30–35].

This activity relates to proactive functions of the brain, e.g., attention and memory [36, 37].

The main mechanism for self-sustaining collective activity in such systems is based on the

existence of cycles in networks, which effectively serve as feedback loops [15, 38]. Such cycles,

also called reverberators, are abundant even in random networks [31–33]. Recent research

has focused on understanding how the loops contribute to sustained activity and how their

embedding in a network affects the activity patterns [31–33]. Besides neuronal networks,

self-sustained collective oscillations are observed in other systems [39].

Here we are interested in alternative mechanisms for collective activity, which do not rely

on the existence of long cycles. In particular, we are motivated by recent observations that

the effective networks in social media might not necessarily have long loops. For instance,

it has been established that the functional networks inferred using the activity traces of the

users are tree-like, with relatively short loops; see Sec. II E for details. Thus, it is important

to have a different mechanism of self-sustaining cascades that does not involve long feedback

loops.

The proposed mechanism of self-sustaining activity patterns is based on temporal memory

of an individual agent. Namely, we show that there is a parameter range of memory and

inter-agent coupling that allows self-sustaining collective activity patterns. The underlying

reason for emergence of this regime is the fragmentation of the network into (partially

synchronized) clusters. Furthermore, it is shown that under a weak (behavioral) noise, this

fragmentation is robust with respect to details of the activation process, number of nodes,

initial conditions, the noise model, etc.

We also study the activation dynamic on randomly weighted networks, where the weights

can be interpreted as attention the nodes pay to their neighbors. Our numerical results indi-

cate that the introduction of random weights does facilitate activity sustaining, sometimes

even violating intuitively obvious bounds.

The remainder of this paper is organized as follows. We introduce the model in Section II.

Section III outlines the memory-less situation, while in Section IV we deduce the implications

of an agent’s memory for self-sustaining collective activity. In Section V we study the effect
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of weak noise. Section VI shows how limitations on the agent’s attention can be described

via a (randomly) weighted network. We conclude by discussing our main results in Section

VII.

II. THE MODEL

A. Neurons versus agents

Before introducing our model, let us recall some essential facts about information pro-

cessing by neurons. A neuron collects signals from its environment and from other neurons

via dendrites (in-going channels) [16]. These signals build up its electrical potential. Once

this potential is larger than a certain threshold, the neuron fires (generates a signal) via its

single out-going channel, axon 1. The signal is received by all neurons that are connected

(via their dendrites) to the axon. After the neuron fires, the potential nullifies. It can ac-

cumulate again after some null period [16]. Certain neurons do have an internal ability to

generate signals even in isolation from other neurons [16].

To establish the analogy with a social system, we assume that the i’th agent in our social

system is characterized by informational potential wi, which can be modified due to content

that the agent receives from his neighbors. We assume that whenever wi overcomes a certain

threshold ui, the agent displays the generated content (fires). Immediately after that event,

the information potential nullifies, and then starts to accumulate again.

B. Basic equations

For each agent i (i = 1, ..., N) we introduce a variable mi(t) that can assume two values,

0 (passive with respect to content generation) and 1 (content generating) at discrete time t.

1 There are primarily two types of signaling: spiking is a relatively irregular activity; bursting is intensive

and regular [16].
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The state dynamics are described as

mi(t) = ϑ[wi(t)− ui ], (1)

wi(t+ 1) = [1−mi(t)]×

[ (1− κi)wi(t) + ri +
∑

j
qijmj(t) ], (2)

where wi(t) ≥ 0 is the information potential accumulated by the agent i till time t,
∑

jqijmj(k) is the cumulative influence from other agents (we assume qii = 0), and ϑ(x)

is the step function:

ϑ(x < 0) = 0, ϑ(x ≥ 0) = 1. (3)

In Eqs. (1, 2), ui is the threshold, ri is the external rate of potential generation, while

1 ≥ κi ≥ 0 can be interpreted as the rate of memory decay (or forgetting). The prefactor

[1 − mi(t)] in front of Eq. (2) ensures that the information potential of an agent nullifies

after displaying content.

The influence qijmj(t) of the agent j on the potential wi of i is non-zero provided that j

is in its content-displaying state, mj(t) = 1. Depending on the sign of qij , this influence can

encourage or discourage i in expressing itself. Here we assume that demotivating agents are

absent, 2 so we have

qij ≥ 0, and wi ≥ 0. (4)

In the memoryless limit κ = 1, Eqs. (1, 2) relate to the deterministic neuronal dynamics

model introduced by McCulloch and Pitts [16]. The original McCulloch-Pitts model also

included strong inhibition that is absent in the present model. In the continuous time-limit,

Eqs. (1, 2) reduce to the integrate and fire model [17, 18].

2 Facilitating and inhibiting types are well-known for neurons. Dale’s law states that a neuron cannot be

both inhibiting and facilitating (i.e., facilitating some neurons and inhibiting different ones). The law has

certain exclusions, but it does hold for the cortex neurons [16]. In the human brain, some 80 % of neurons

are facilitating [16]. Hence the assumption that all neurons are facilitating is frequently made in neuronal

models [15]. It is known that inhibiting neurons can lead to novel effects [15, 16].
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C. Isolated agent

For qij = 0, Eq. (2) reduces to

w(0) = 0, w(t) =
r

κ
[1− (1− κ)t], t = 1, 2, ... (5)

Thus, w(t) monotonically increases from 0 to r
κ
: if u < r

κ
, the agent fires with a period

determined from Eq. (5); otherwise it never fires.

D. Behavioral noise

The deterministic firing rule given by Eq. (1) should be modified to account for agents

with behavioral noise. Specifically, we want to make it possible for an agent to fire (not

to fire) even for sub-threshold (super-threshold) values of the potential. The noise will

be implemented by assuming that the threshold ui + vi(t) has (besides the deterministic

component ui) a random component vi(t). These quantities are independently distributed

over t and i. We shall employ two models for the behavior of vi(t).

Within the first model, vi(t) is a trichotomic random variable, which takes values vi(t) =

±V with probabilities η
2
each, and vi(t) = 0 (no noise) with probability 1 − η. In this

representation, η describes the magnitude of the noise. We assume that V is a large number,

so that with probability η, the agent ignores wi and activates (or does not activate) randomly.

Thus, instead of Eq. (1), we now have

mi(t) = ϑ[φi(t)(wi(t)− ui ) ]. (6)

In Eq. (1), φi are independent (over i and over t) random variables that assume values ±1

with probabilities

Pr[φi = 1] = 1− η, Pr[φi = −1] = η. (7)

Our second model, which has wide applicability in neural network literature [16], amounts

to replacing the step function by a sigmoid function. Instead of Eq. (1), we now have

mi(t) = 1 with probability
e(wi(t)−ui )/θ

1 + e(wi(t)−ui )/θ
, (8)

= 0 with probability
1

1 + e(wi(t)−ui )/θ
, (9)
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where θ ≥ 0 has the (formal) meaning of temperature, so that the noiseless model is recovered

when θ → 0.

In this paper we limit ourselves to the weak-noise limit (η and θ are small). As illustrated

below, both models (6, 8) lead to similar predictions.

E. Choice of the network

To proceed further, we have to specify the network structure on which the activation

process unfolds. For social media platforms such as Twitter, it seems straightforward to

identify the network structure using the declared list of friends and followers. This choice,

however, does not necessarily reflect the true interactions that are responsible for the activ-

ity spreading [45]. Indeed, there is accumulating evidence that a considerable part of links

in Twitter’s follower/friendship network are meaningless, in the sense that they do not nec-

essarily participate in information diffusion. Instead, one has to pay attention to functional

links, which are based on the observed activity patterns of the users. One possible way for

inferring such functional networks based on transfer entropy (or information transfer) was

suggested in Ref. [46]. As compared to formally declared networks, the ones based on the

activity dynamics have fewer loops [45, 46].

Here is an example that illustrates this point and motivates the introduction of a model

network below. A dataset was collected from Spanish Twitter, which contains 0.5 million

Spanish messages publicly exchanged through this platform from the 25th of April to the

25th of May, 2011. This dataset was already studied in [27]. We constructed the user-

activity network via the transfer-entropy method [46, 47], and found that over 99 % of

all nodes (users) do have loops attached to them; among those loops 84 % have length 2

(reciprocity), while other loops have length 3; loops of length ≥4 are either negligible or

absent.

Hence, we need a network model that is (nearly) symmetric, does not contain loops of

length 4 and larger and allows a well-controlled introduction of triangles (loops of length

3). As the basic model, here we focus on the (undirected) Cayley tree: one node is taken

as the root (zeroth generation) and then K symmetric links are drawn from it (nodes of the

first generation); see Fig. 1. In subsequent generations, each node of the previous generation

produces K symmetric links. Nodes of the last generation belong to the periphery, and each
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of them has only one connection. All other nodes belong to the core. The root is connected

with K nodes, while all other nodes in the core have K + 1 connections. If the Cayley tree

has p generations, then the overall number of nodes is

N = (Kp+1 − 1)/(K − 1) = gK + 1, (10)

where g is the number of nodes in the core.

Obviously, a Cayley tree has no loops. In our analysis, we will also examine the effect

of short loops via addition of a fixed amount of triangles, generated by randomly linking

pairs of nodes from the same generation. A similar procedure of studying the influence of

triangles (or other mesoscopic network structures) is frequently applied in literature [58]. As

we show below, these triangles do not lead to quantitative changes, at least for the scenarios

examined here; see [58] for related results.

In addition to being loop-free, the Cayley tree has another characteristic that makes

it a suitable choice for the present study. Specifically, one of the main mesoscopic motifs

observed in real-world complex networks is the core-periphery structure, where some of the

nodes are well interconnected (core), while sparsely connected periphery is around the core;

see [52–55] for reviews. The Cayley tree is one of the simplest network models that exhibits

features consistent with the definition of the core-periphery structure [52]: (i) the core is

more connected than the periphery; (ii) core nodes are located on geodesics connecting

many pairs of nodes (large betweenness degree); (iii) core nodes are minimally distant from

(possibly many) other nodes. As we show below, the identification of the core-periphery

structure for the Cayley tree is reflected in the dynamics of the model defined on it.

III. CLUSTERING AND SYNCHRONIZATION DUE TO STRONG COUPLING

In Eqs. (1, 2) we assume that all agents are equivalent and that the network is not

weighted:

r = ri, u = ui, κ = κi, qij = q. (11)

Note that for

q > u− r > 0, (12)
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activation of one agent is sufficient for exciting his neighbors. This is not a realistic condition.

Below we will almost always assume that q < u − r. However, let us first discuss what

happens when Eq. (12) is valid. We can focus on the memoryless situation κ = 1, since

under the condition Eq.(12), the memory is not relevant. We stress that u > r in Eq. (12)

means that that no agent is able to activate spontaneously by itself (i.e., for q = 0); cf.

Eq. (5).

Our numerical results are summarized as follows. Provided that there is at least one

active agent (mi(0) = 1) initially, after a few time-steps the system converges to a fully

synchronized state, where it separates into two clusters: the first cluster mainly includes the

core, while the second cluster mainly includes periphery. If the first cluster is active, then

the second one is passive, and vice versa. All agents have nearly the same firing frequency

that is close to its maximal value of 0.5. Finally, this scenario exists for any K ≥ 1.

Thus, the clusters alternate their active states, with one cluster collectively exciting the

other. Note that neither of those clusters can sustain activity by itself, because after each

activation, the potential for all the nodes drops to zero, and no isolated agent can be activated

by itself.

If instead of Eq. (12) we set u > r + q (but r < u and κ = 1), then the system converges

to a trivial passive fixed point for all initial states, where any initial activity dies out after

a few time-steps. This behavior crucially depends on the fact that the Cayley tree does not

have sufficiently long loops 3.

The above results remain qualitatively valid after adding (randomly) up to ∼ N/K ≈ g

3 If the network contains a sufficient number of mesoscopic loops, the self-sustaining activity in the memo-

ryless situation κ = 1 can be non-trivial; see [32, 33] for examples. For instance, consider Eqs. (1, 2) with

κ = 1 on the directed Erdos-Renyi network: for each agent i one randomly selects K other agents and

assigns to them K connections with equal weights qij = q. This network has a rich structure of mesoscopic

(length ∼ lnN) loops. In particular, the above two-cluster synchronization can also exist when condition

(12) does not hold (i.e., when u > r + q, r < u and κ = 1), but provided that K (the average number of

neighbors) is sufficiently large. Here are examples of the synchronization threshold in that situation:

q > u− r for 3 ≥ K ≥ 2,

q > (u− r)/2 for 6 ≥ K ≥ 4,

q > (u− r)/3 for 9 ≥ K ≥ 7,

q > (u− r)/4 for 11 ≥ K ≥ 10, etc.
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triangles. The same threshold (12) holds in this case.

IV. COLLECTIVE DYNAMICS DRIVEN BY MEMORY

A. Thresholds of self-sustaining activity

If the coupling is not strong, 0 < q < u− r, our numerical results suggest that there is a

self-sustaining collective activity regime, which exists under the following conditions:

ı) There should be sufficiently many neighbors:

K ≥ 2. (13)

ıı) The memory should be non-zero, κ < 1, but still small enough so that no agent can fire

in isolation [see Eq. (5), and note that conditions of Eq.(11) hold]:

u > r/κ. (14)

Without loss of generality, below we set

ui = 1, (15)

Note that u = ui can be adjusted by varying the parameters 1− κ, r and q; see Eqs. (1, 2).

The simulations of the model reveal that the collective activity pattern in this

regime—and its very existence—depend on initial conditions {wi(0)}
N
i=1 of Eqs. (1, 2), i.e.,

the choice of initially active nodes. To describe this dependence, we assume that in the initial

vector {wi(0)}
N
i=1 each wi(0) is generated randomly and homogeneously in the interval.

[0, b], 2 > b > 1. (16)

For N ≫ 1, Eqs. (15, 16) imply that ≃ (b− 1)N/b agents are active in the initial state (for

them mi(0) = 1).

Numerical results show that there exists an upper threshold Q+ < 1, such that for q > Q+

(and all other parameters being fixed), the collective activity is sustained in time for (almost)

all realizations of the random initial state:

q > Q+ =⇒ m(t) ≡
1

N

N
∑

k=1

mi(t) 6= 0 for t > 0. (17)
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Likewise, there is a lower threshold Q− < Q+ such that for q < Q− the activity decays to

zero in a finite time T for (almost) all initial states:

q < Q− =⇒ m(t) = 0 for t > T. (18)

In the range Q− ≤ q ≤ Q+, whether or not the initial activity will be sustained depends on

the realization of the random initial state {wi(0)}
N
i=1; see Figs. 2, 3, 4 and 5.

The thresholds Q+ and Q− depend on all the model parameters: κ, r, b, K and N . They

are decreasing functions of N , provided N is sufficiently large; see Table I. They are also

increasing functions of κ and saturate at Q+ = Q− = u = 1 for κ = 1 (no memory); see

Section III. The difference Q+ −Q− is small, but it persists for large values of N ; see Table

I.

Consider a pertinent case where only one agent is active initially. We find that in this

case the thresholds are still non-trivial; e.g., for parameters of Fig. 5(a) we obtain Q+[b →

1+] = 0.524, while Q+[b = 1.8] = 0.358. Also, for this example of b → 1, the collective

activity m(t) = 1
N

∑N
k=1mi(t) reaches 0.1, when starting from 1/N = 1.66× 10−4 at t = 0.

Note that there is a simple lower bound on Q−:

Q− >
1− r

K
. (19)

To understand the origin of this bound, recall that owing to Eq. (14), the agents cannot

activate spontaneously. If q < 1−r
K

, then even all stimulating connections (acting together)

cannot activate the agent, so that no initial activity can be sustained.

Finally, note that for cascading processes there is typically a single threshold that depends

on network structure [6, 7], even if one takes into account possible feedback effects in the

activation dynamics [27].

B. Clustering and synchronization

Our analysis suggests that the activity sustaining occurs via separation of the network

into clusters (groups) of neighboring agents, having the same firing frequency; see Figs. 2,

3 and 4 (note that certain nodes do not belong to any cluster). The number of clusters

and their distribution depend on the realization of the (random) initial state; cf. Figs. 2, 3

with Figs. 4. Furthermore, this dependence persists in the long time limit, suggesting that
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the long-term behavior cannot be adequately described by mean-field analysis that involves

only few parameters. Concrete scenarios of clusterization can differ from each other widely;

e.g., there is a scenario (related to specific initial states) where the distribution of clusters

is very regular, ranging from the core to the periphery of the Cayley tree; see Figs. VII.

Within each cluster C the firing frequency of agents is synchronized; i.e., the collective

intra-cluster activity

mC(t) =
1

NC

∑

i∈C

mi(t), (20)

where NC is the number of agents in the cluster C has a regular time-dependence; see

Figs. 3(a), 3(b), and 4. This dependence is displayed via few horizontal lines along which

mC(t) changes.

The distribution of clusters shows two common features: there is a cluster that involves

the major part of the periphery and a smaller cluster that is located inside of the core, close

to the core-periphery boundary; see Figs. VII, 4. For all realizations of the initial state,

where the activity is sustained over a long time, there is a clear transition between the core

and the periphery.

There are two well-separated time-scales here: after the first time-scale (∼ 50− 100 time

steps for parameters of Figs. 2, 3 and 4) the structure of clusters is visible, but the intra-

cluster activity is not synchronized; i.e., mC(t) looks like a random function of time. The

achievement of intra-cluster synchronization takes a much longer time, e.g., ∼ 103 time-steps

for parameters of Figs. 2, 3 and 4.

Figs. 5(a) and 5(b) show that after adding (randomly distributed) triangles (loops of

length 3), the distribution of firing frequencies becomes smeared, and the separation into

well-defined clusters is less visible. There is also a visible maximum of the frequency distri-

bution at the boundary between the core and periphery (i.e., at k ∼ g). Note that adding

triangles does not change the thresholds Q+ and Q− if the number of triangles is not large

(smaller than 30 - 40 % of nodes); cf. Section II E.

To summarize this section, the model studied here has revealed two novel aspects of

collective dynamics on networks. First, it shows that agent memory can facilitate collective

activity sustaining (via clustering and synchronization), even on networks without long

loops. And second, the model has two relevant (upper and lower) thresholds Q+ and Q−,

so that in-between these thresholds, the dynamics are very complex and sensitive to initial
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TABLE I: Activity sustaining thresholds Q+, Q− versus the overall number N of agents for u = 1,

r = 0.1, κ = 0.101, K = 3 and b = 1.8. Due to numerical errors, the numeric results given below

overestimate (underestimate) the value of Q+ (Q−).

N Q+ Q−

1.5× 103 0.404 0.356

3× 103 0.365 0.354

6× 103 0.358 0.333

1.5× 104 0.358 0.305

conditions. Further generalizations of this model that include effects of external noise and

network weighting are studied below.

C. Relation to prior work

Synchronization is well-known in neuroscience, because it relates to the normal activity

pattern of brain neurons; see [16, 38, 44] for reviews. It is seen on EEG measurement,

where macroscopic (many-neuron) activity is recorded and temporal correlations are found

between, e.g., the left and right hemispheres of the brain [16, 38, 44]. Synchronized states

are relevant for the brain functioning; they relate to consciousness, attention, memory, and

also to pathologies (e.g., epilepsy).

For the fully connected—all neurons couple with each other with the same

weight—integrate and fire model (1, 2) the fully synchronized state was studied in [17].

The existence of a few-cluster synchronized state was predicted in [34, 35], though the ex-

istence of two different thresholds Q+ and Q− were not seen, and the relation between

memory, loop-structure of the network and the activity sustaining was not recognized.

The existence of non-ergodic (initial state-dependent) fragmentation into clusters is well-

known for coupled chaotic maps [38, 40–44]. This many-attractor situation can be considered

as a model for neuronal memory [16]. However, the existing scenarios of clusterization are

based on a sufficiently strong inter-neuron coupling on a network that admits long loops; cf.

also [24–26]. Ref. [43] studied a specific model of coupled maps on the Cayley tree, but only

two relatively simple synchronization scenarios were uncovered.
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Thus, two novelties of our results are that we single out a specific mechanism for gener-

ating clustering and synchronization (memory on a network with long loops), and we show

that these phenomena (apart of various details) relate to two different thresholds Q+ and

Q−. Further generalizations of this model that include effects of external noise and network

weighting are studied below.

V. NOISE-DRIVEN CLUSTERIZATION

We now consider the model Eqs. (1, 2) under the behavioral noise, defined by Eqs. (6,

7). As in the noiseless case, we assume that both Eq. (13) and Eq. (14) hold, e.g., each node

has sufficiently many neighbors, each node has sufficiently strong memory, but without the

possibility of activating spontaneously.

In addition, we will also assume that the following conditions hold:

ı) Weak noise: η ≪ 1. Thus an isolated agent (for q = 0) will fire randomly with the

average activity η.

ıı) Sub-threshold coupling: 0 < q < Q−, i.e., no activity is sustained without the noise;

see Eqs. (17, 18).

Under the above conditions, the dynamics lead to the fragmentation of the network into

several clusters; see Fig. 6(a). A cluster is a set of neighbor agents with approximately

identical firing frequencies; see Fig. 6(a). The firing frequency is defined as the number of

firings in an interval

[τ0, τ0 + τ ] (21)

divided over the interval length τ . Here τ0 has to be sufficiently large for the system to

become independent from the initial state {wi(0)}
N
i=1. If τ is sufficiently large as well, the

distribution of frequencies does not change upon its further increase; see Fig. 6(a).

The overall number of clusters is never larger than 4— see Fig. 6(a), where it equals

4. The number of clusters decreases for larger q, because clusters located in the core tend

to merge with each other: for q close to (but smaller than) u = 1, there remain only 2

clusters—those involving (respectively) core and periphery. The distribution of clusters

does not depend on the initial conditions, i.e. no special conditions such as one specified by

Eq. (16) are needed. This is in stark contrast with the noiseless situation, where the number
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and structure of clusters are sensitive to initial conditions.

The smallest cluster includes the root of the Cayley tree, and has the largest firing fre-

quency. The largest cluster includes the whole periphery; here the (average) firing frequency

is the smallest one, but it is still clearly larger than the noise magnitude η.

Additional structure of clusters is observed by analyzing the short-time activity, i.e., when

τ in Eq. (21) is not very large; see Fig. 6(b). Each cluster consists of sub-clusters that also

have (nearly) the same firing frequency. Comparing Figs. 6(a) and 6(b) we see that there

are “boundary” agents: within the short-time [long-time] activity they do not [do] belong

to a definite cluster; cf. Fig. 6(b) with Fig. 6(a).

The above clusterization disappears under sufficiently strong noise, which makes all the

nodes equivalent. Fig. 6(a) shows that the influence of weak noise is non-additive: the

resulting agent activity (even in the periphery) is larger than the noise magnitude η. The

fragmentation into clusters and the non-additivity disappear if the magnitude of memory

decreases; e.g., for parameters of Fig. 6(a) (where κ = 0.101) both effects disappear for

κ = 0.2.

Note that the correspondence between noisy and noiseless results is there for limited

times and for η being sufficiently smaller than 0.01; see Fig. 7(b) for an example.

The results above were obtained under the noise model (6, 7). Similar results are obtained

for the model (8); cf. Fig. 6(b) with 7(a). The main difference between the two models

(provided that we identify them via η = θ) is that for Eq. (8) the spread around the average

frequency is smaller. This is expected, since Eqs. (6, 7) refer to a noise that can assume

large values.

Finally, we note that introducing triangles does not alter the cluster structure, but can

increase the activity—sometimes sizeably; see Fig. 8(a).

VI. RANDOMLY WEIGHTED NETWORK

A. Weighting and attention distribution

So far, we assumed that each agent stimulates its neighbors in exactly the same way, so

that the link wights qij do not depend on j, and each connection gives the same contribution

to the information potential wi of the i’th agent; cf. Eq. (11). This is clearly an oversimpli-

15



fication, as different connections are usually prioritized differently. This prioritization can

be related to the attention an agent pays to his neighbors[49, 50].

Below we extend our model to account for weighted attention mechanims. We consider

two different weighting schemes, frozen (or quenched), where the link weights are static

random variables, and annealed, where the weights ate frequently resampled from some

distribution 4.

B. Frozen versus annealed random weights

Under this model, the link weights qij-s are frozen (i.e., time-independent) random vari-

ables, sampled from some distribution. To account for limited attention of the agents, we

require the cumulative weight stimulating each agent to be fixed. Thus, we use the following

weighting scheme:

qij = qφiτij ,

φi
∑

j=1

τij = 1, (22)

where φi is the number of neighbors for agent i: φ1 = K, φ1<i≤g = K + 1, φi>g = 1; cf.

Fig. 1.

Eq. (22) allows a comparison with the non-weighted situation, where τij = 1/φi for all i

and j. Generally speaking, we can generate τij-s by sampling from any distribution defined

over a φi-dimensional simplex. Here we construct τij by sampling φi independent random

numbers nij and then normalizing them [48]

τij = nij

/

φi
∑

l=1

nil . (23)

In the numerical results reported below, we assume that nij are generated independently

and homogeneously in the interval [0, b′] with b′ = 10. We found that if b′ is sufficiently

larger than 1, its concrete value is not essential, e.g., b′ = 10 and b′ = 100 produce nearly

identical results.

Our numerical results suggest that the introduction of (frozen) random weights results in

modified upper and lower thresholds Q+
f and Q−

f ; cf. Eqs. (17, 18). For q > Q+
f [q < Q−

f ],

4 The distinction between quenched (slow) and annealed (fast) disorder is well-known in statistical physics

[59]. Recently, it was also studied in the context of neuronal dynamics as modeled by continuous-time

integrate-and-fire neurons [56, 57].
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any initial activity persists [does not persist] in the long-time limit, irrespective of the initial

conditions {wi(0)}
N
i=1 and the attention distribution {τij}. For Q

−
f < q < Q+

f , the existence

of a long-time activity depends on realizations of {τij} and of {wi(0)}
N
i=1.

Our analysis yields [cf. Eqs. (17, 18)]

Q+
f < Q+, Q−

f < Q−, (24)

which means that introduction of frozen weights facilitates the long-term activity sustaining.

Moreover, we find that Q−
f can be lower than the trivial bound given by Eq. (19), e.g., for

parameters of Fig. 10: Q−
f = 0.265, whereas (19) gives 0.3. Recall that Eq. (19) holds strictly

only for the non-weighted scenario. Though q in Eq. (19) still characterizes the average

magnitude of each connection also in the weighted situation [cf. Eq. (22)], numerical results

reported in Figs. 9(a), 9(b) and 10 show that Eq. (19) does not extend to this situation

(both for frozen and annealed weighting schemes, as seen below) 5.

Random frozen weights increase activity (as compared to the non-weighted situation),

because there are τij which is close to one; hence there are links with the weight close to

Kq, which is K times larger than for the non-weighted case, where all weights are equal

to q. Of course, there are also τij ’s which are close to zero, since both situations have the

same average weight per node; see Eq. (22). But the influence of those weak weights on the

activity sustaining appears to be weaker.

Similar to the non-weighted (and noisy) scenario in Section V, the dynamical system

defined on the weighted network factorizes into several clusters, which themselves consist of

sub-clusters, as seen by looking at the short-time activity; see Figs. 9(a) and 9(b). How-

ever, the cluster structure is somewhat different compared to the non-weighted situation.

Namely, different clusters can have agents that fire with (approximately) equal frequencies,

but different clusters are separated from each other by regions of low (but non-zero) activity.

This is especially visible near the threshold Q−
f ; see Fig. 10.

For the annealed random situation a new set of random weights is generated indepen-

dently (and according to Eqs. (22, 23)) at each time-step t. The corresponding thresholds

5 The introduction of frozen weights facilitates activity sustaining in the memoryless (κ = 1) situation as

well. Here the two-cluster synchronized state described in Section III exists even for q < u− r, i.e., below

the threshold (12). The periphery is completely passive (peripheric agents have only one connection;

hence they are not affected by the introduction of weights).

17



Q+
a and Q−

a appear to be lower than (respectively) the Q+
f and Q−

f ; cf. Eq. (24). For

example, Q−
f = 0.265 and Q−

a = 0.245 for parameters of Figs. 9(a) and 9(b).

As Figs. 11(a)–12(b) show, the activity pattern in the annealed situation is similar to

the noisy, non-weighted situation described in Section V (recall however that the latter does

not have sharp thresholds; the activity there decays together with the magnitude of noise).

In particular, this similarity concerns the factorization into clusters [cf. Fig. 11(a) with

Fig. 6(a)] and short-term versus long-term activity [cf. Fig. 12(a) with Fig. 6(b)].

VII. CONCLUSION

We have studied mechanisms for self-sustaining collective activity in networks using an

activation model inspired by neuronal dynamics (1, 2). Our specific set-up was motivated by

the empirical observation [see Section II E] that the social networks composed of functional

links do not have long loops (involving more then three nodes). As a concrete implementation

of this type of network, we focused on the Cayley tree with randomly added triangles, and

examine memory-induced mechanisms of sustaining activity patterns on those networks.

We uncovered several scenarios where the network is capable of sustaining collective

activity patterns for arbitrarily long times. For the non-weighted Cayley tree (with noiseless

agents), we observe a fragmentation of the network into several clusters (see Section IV), so

that the activity of the agents within each cluster is synchronized. The clusterization and

synchronization proceed along different timescales: the former is (much) quicker than the

latter. It is thus possible that at certain observation times, only clustering will be observed.

The collective activity sustaining is observed whenever the inter-agent coupling q is larger

than a certain threshold Q+. Among other parameters, Q+ depends on the amount of

activation provided initially. The structure (and number) of clusters depends not only on

this amount, but also on which agents are activated initially. For Q− < q < Q+ (where

Q− is a lower threshold), the dynamics strongly depend on initial conditions. Thus, this

model does show selectivity with respect to initial activation, i.e., some agents play a role of

effective activity sustainers. Note that these features of activity sustaining thresholds differ

from those of cascade thresholds that depend mostly on the network structure, even if the

feedback effects on cascades are accounted for [27].

The above dependencies on initial conditions are eliminated under the influence of a
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(behavioral) agent noise; see Section V. Under this noise, the network robustly fragments

into few (short-time synchronized) clusters, while the activity sustaining does not have a

threshold character. These conclusions do not depend on the model of noise.

We also studied a more realistic situation where the network is randomly weighted, i.e.,

there is a random distribution of priorities. Our results indicate that the presence of weights

does facilitate the activity sustaining, and leads to a different scenario of clusterization,

where clusters are (physically) more isolated from each other; see Section VI.

This study was confined to a model-dependent situation; in particular, we worked on the

level of the Cayley tree for the network (not a fully realistic functional network), and we

did not attempt any direct data-fitting. But the results of this model do suggest several

directions for empiric (data-driven) research. To what extent can the activity pattern in

real social media be modeled via (partially synchronized) clusters of agents? Do behavioral

noise and weighting (attention re-distribution) have to be accounted for explicitly?

We also note that in this study we assumed that all the connections are facilitating; see

Eq. (4). It is known that the inhibitory connections do play a crucial role in sustaining

and shaping the (biological) neuronal activity [16]. As future work, it will be interesting to

see the extent to which such inhibitory connections are present in the interactions in social

media, and how they affect the collective activity patterns.
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Figures
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11 12 139 10

FIG. 1: (Color online) The Cayley tree with K = 3 and two generations. The nodes 5− 13 belong

to periphery. The nodes are numbered from the root of the tree, i.e. k = 1 is the root, k = g is

the last node of the core, and k = N is the last node in the periphery; cf. Eq. (10).
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FIG. 2: (Color online) Firing frequency and activity for agents with memory in the noiseless

situation. The agents are numbered as in Fig. 1.

Parameters: u = 1, r = 0.1, κ = 0.101 and q = 0.36. This value of q is between of two thresholds

Q+ > q > Q−; see Table I. The initial condition was generated with b = 1.8; see Eq. (16).

Parameters of the Cayley tree: K = 3, N = 3× 103 + 1 (total number of nodes).

Frequency of each node versus the number of node number. The frequency is defined as the number

of firings in the time-interval [1200, 1600] divided over the interval length 400. For this specific

realization of the initial state, the cluster structure is very regular.
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FIG. 3: (Color online) The same parameters as in Fig. VII.

(a) The average activity m(t) = 1
2000

∑3000
k=1000mk(t) of the peripheric cluster versus time t+ 1200.

(b) The average activity m(t) = 1
700

∑1000
k=300mk(t) of the outer core cluster versus time t+ 1200.
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FIG. 4: The same as in Figs. VII, but for another realization of the random initial condition

generated with b = 1.8; see Eq. (16).
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FIG. 5: (Color Online) Comparison of firing frequencies with and without triangles.

(a) The Cayley tree without triangles: frequency of fairing in the interval [1200, 1600] divided over

the interval length 400. The parameters are the same as in Figs. 2, but with N = 6× 103 + 1.

(b) The same as in (a), but with randomly added 1050 links that define 1050 triangles.
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FIG. 6: (Color Online) Dynamics under behavioral noise with magnitude η = 0.01; cf. Eqs. (6, 7).

(a) Red points (upper stripes): Frequency of each agent versus the agent number: the number of

fairings in the interval [400, 800] divided over the interval length 400 for u = 1, r = 0.1, κ = 0.101,

K = 3, N = 6 × 103 + 1 (total number of nodes), q = 0.3 (subthreshold situation: q < Q−; see

Table I). The initial state is passive: wi(0) = 0. The core-periphery border is at k = 2000. The

time-average of m(t) equals 0.08. Gray points (the lowest stripe): the same as for blue points but

for q = 0 (isolated agents). The time-average of m(t) equals to the noise magnitude 0.01.

(b) The same as in (a), but the firings are counted in the interval [400, 500] and are divided over

the interval length 100.
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FIG. 7: (Color Online) (a) The same as in Fig. 6(b), but the noise is implemented via Eq. (8) with

θ = 0.01.

(b) Blue points: frequency in the time-interval [0, 100] for the same parameters as in Figs. 2. Red

points: the same initial parameters and the same initial activity as for the blue points, but with

noise η = 0.0001; cf. Eqs. (6, 7). The blue and red stripes largely overlap, but the red stripe

is more narrow, hence the blue points border from below each stripe of red points. There is an

approximate correspondence between the noisy and noiseless situations.

29



0 1000 2000 3000 4000 5000 6000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 £ k £ N

fr
eq

ue
nc

y
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FIG. 8: (Color Online) Red points (lowest bands for each stripe) are the same as in Fig. 6(a). Blue

points (upper bands for each stripe): the same situation, but with randomly added 1050 links that

define 1050 triangles. For each stripe a narrow band of red points borders from below the wider

band of blue points. The structure of clusters stays unchanged, but the activity increases after

adding triangles.
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FIG. 9: (Color Online) Frozen random weights. For all figures q = 0.32, κ = 0.101, u = 1, r = 0.1,

K = 3, N = 6×103+1 (total number of agents). The initial condition was generated with b = 1.8;

see Eq. (16). The random weights were generated with b′ = 10; see Eq. (23).

(a) Short-time frequencies: the number of firing for each agent in the time-interval [800, 900] divided

over the interval length 100.

(b) Long-time frequencies (in the same situation as (a)): the number of firing for each agent in the

time-interval [900, 1300] divided over the interval length 400.
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FIG. 10: (Color Online) Frozen random weights. For both figures q = 0.29, κ = 0.101, u = 1,

r = 0.1, K = 3, N = 12×103+1 (total number of agents). The initial condition was generated with

b = 1.8; see Eq. (16). The random weights were generated with b′ = 10; see Eq. (23). Frequencies:

the number of firing for each agent in the time-interval [800, 1600] divided over the interval length

800.
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FIG. 11: (Color Online) Annealed random weights. For all figures u = 1, κ = 0.101, r = 0.1,

K = 3, N = 6×103+1 (total number of agents). The initial condition was generated with b = 1.8;

see Eq. (16). The random weights were generated with b′ = 10; see Eq. (23).

(a) Frequency (long-time) of each agent versus the agent number for q = 0.32. Frequencies are

counted as the number of firing for each agent in the in the time-interval [400, 800] divided over

the interval length 400.

(b) The colective activity m(t) = 1
N

∑N
k=1mi(t) versus discrete time 400+t for the same parameters

as in (a).
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FIG. 12: (Color Online) The same parameters as in Figs. 11(a) and 11(b).

(a) Frequency (short-time) of each agent versus the agent number q = 0.279. Frequencies are

counted as the number of firing for each agent in the in the time-interval [300, 400] divided over

the interval length 100.

(b) The colective activity m(t) = 1
N

∑N
k=1mi(t) versus discrete time 400+t for the same parameters

as in (a).
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