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Small-world networks occur naturally throughout biological, technological, and social systems.
With their prevalence, it is particularly important to prudently identify small-world networks and
further characterize their unique connection structure with respect to network function. In this
work we develop a formalism for classifying networks and identifying small-world structure using a
decomposition of network connectivity matrices into low-rank and sparse components, correspond-
ing to connections within clusters of highly-connected nodes and sparse interconnections between
clusters, respectively. We show that the network decomposition is independent of node indexing
and define associated bounded measures of connectivity structure, which provide insight into the
clustering and regularity of network connections. While many existing network characterizations
rely on constructing benchmark networks for comparison or fail to describe the structural proper-
ties of relatively densely-connected networks, our classification relies only on the intrinsic network
structure and is quite robust with respect to changes in connection density, producing stable results
across network realizations. Using this framework, we analyze several real-world networks and reveal
new structural properties, which are often indiscernible by previously established characterizations
of network connectivity.

PACS numbers: 89.75.-k, 89.75.Fb, 89.75.Hc, 87.85.dq

I. INTRODUCTION

Network models are ubiquitous in characterizing the
topology of a wide array of real world structures that
incorporate interacting agents, including author collabo-
rations, neural circuitry, human friendships, and protein
synthesis [1–9]. Depending on their connectivity features,
these networks can fall into different classes described by
their unique graph-theoretic structures [10–12]. In par-
ticular, networks with small-world structure are naturally
found across a myriad of social, biological, and technolog-
ical systems [13, 14]. Small-world networks exhibit a high
degree of clustering and a small average path length be-
tween agents, or nodes, possessing advantageous proper-
ties of both regularly and randomly connected networks.
In light of these properties, small-world networks are par-
ticularly efficient in quickly transmitting information at
a low cost and therefore often arise in biological as well
as engineered systems [13, 15].
While simply computing the average clustering coeffi-

cient and path length in a network gives an indication
of small-worldness, these properties often cannot fairly
compare networks of different sizes or connection den-
sities [10, 12, 16]. For example, densely-connected net-
works trivially have short path lengths and high cluster-
ing coefficients, thus making small-world characteristics
unable to well distinguish among their connectivity struc-
tures and also unable to fairly compare networks of dif-
ferent sizes. Nevertheless, with the increasing prevalence
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of network models utilized across disciplines, character-
izing network connectivity structure beyond classical no-
tions may be key to understanding the relationship be-
tween network structure and function. For example, the
small-world structure has been observed on both small
and large scales in neuronal networks in the brain, and
has been demonstrated to impact the short-term mem-
ory and synchronizability of these networks [17–21]. Sim-
ilarly, in the case of social networks, the small-world ar-
chitecture facilitates rapid spread of infectious diseases
or information across time-dependent interactions, with
high tolerance even in the presence of random attacks
[10, 13, 15]. While small-world networks were originally
required to be sparsely-connected, since the average num-
ber of connections for each node was assumed far less
than the size of the network, it is also important to de-
velop tools to characterize the connectivity structure of
densely-connected networks, which often arise in natural
systems [22–26].

The network adjacency (connectivity) matrix pro-
vides an informative and computationally efficient graph-
theoretic description of both network structure and dy-
namics [27–29]. However, rather than directly consider-
ing the adjacency matrix of a given network, conventional
characterizations of small-world properties typically rely
on constructing benchmark networks for structural com-
parison, which can vary broadly in structure across re-
alizations, and thus there remains an important theoret-
ical question of whether alternative measures of small-
worldness may rely only on intrinsic network properties
[16, 30]. In this work, we introduce a novel method of
quantifying the structural properties of networks, thereby
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describing their small-worldness, using the framework of
the network adjacency matrix and its low-rank decom-
position structure. Low-rank decomposition provides a
means of separating a matrix into sparse and low-rank
components by solving a convex optimization problem
[31, 32]. Since its discovery, low-rank decomposition has
proven useful in numerous applications, such as facial
recognition, video surveillance, and matrix completion
[33–36].

We develop a method of extending low-rank matrix
decompositions to a large set of network connectivity
matrices, and then use this decomposition to charac-
terize the general structure of networks, e.g., the small-
world properties. In addition, our methodology is gen-
eralizable to networks varying in both size and connec-
tion density. We show that small-world networks may
be described by a sum of two matrix components, with
each consistently encompassing structurally distinct sets
of connections. Generally, the low-rank matrix com-
ponent captures the highly-clustered connections among
nodes within clusters, whereas the sparse matrix compo-
nent captures the relatively few interconnections among
clusters. With this intuitive structural partition, we
provide a useful technique for separating connections
within clusters of highly-connected nodes from sparse
interconnections between clusters, which holds regard-
less of node indexing. In many applications, such clus-
ters often form distinct communities, characterized by
common functional properties, which are useful for ex-
plaining network structure-function relationships [37–40].
Considering community detection is still relatively chal-
lenging for densely-connected networks using many con-
ventional techniques [41–45], our low-rank decomposition
provides a new perspective for identifying sets of com-
munity connections in both sparse and dense networks.
Unlike conventional measures of small-world properties,
the low-rank characterization solves a convex optimiza-
tion problem and does not require comparison with a
constructed benchmark network. Applying our low-rank
framework to several diverse real-world data-sets, we
show that our characterization indeed well measures the
small-worldness of classical networks and gives insight
into new structural properties not identified by alterna-
tive characterizations.

The remainder of the paper is organized as follows.
In Section II, we briefly review several pertinent aspects
of network theory, and then formulate our methodology
for classifying small-world properties. We introduce in
Section IIA the traditional notions of small-worldness
and compare several recent metrics that are commonly
used to quantify small-worldness. Moreover, we describe
the basic theory of low-rank matrix decompositions, mo-
tivating our decomposition technique for network con-
nectivity matrices. Next, in Section II B, we formulate
our network decomposition and classification framework.
We demonstrate in Section III the robustness of this new
network description, studying the scaling properties and
stability of the decomposition. In Section IV, we apply

our methodology to a diverse set of real-world networks
and compare our classification to several conventional
small-world metrics. In Section V, we discuss implica-
tions and possible extensions of this work. Finally, in the
Appendix, we show that the network low-rank decompo-
sition gives a consistent method of separating clustered
connections from sparse interconnections among clusters
regardless of node indexing. We also give details on the
augmented Lagrangian method often used in the low-
rank decomposition in the Appendix.

II. METHODS

A. Small-World Networks and Low-Rank Network

Decomposition

By considering a network, we are referring to a graph-
ical system composed of a set of nodes interconnected
through edges. In this way, the set of all edges be-
tween nodes can be represented by an adjacency matrix,
A = (Aij), with entries determined by the existence and
weight of connections between nodes. Assuming the en-
tire structure of the network connectivity is considered,
the matrix A is guaranteed square and of size n× n for
a network with n nodes. With respect to the magnitude
of adjacency matrix entries, in the case of an unweighted
network, if a directed edge connects node j to node i,
then Aij = 1, and otherwise Aij = 0. However, if the
network is instead weighted, connections between nodes
are assigned a numeric weight determined by the strength
of the connection.
Networks with small-world properties are commonly

described through several characterizations of connectiv-
ity, which are most notably the average path length and
the clustering coefficient. The average path length, l, is
the mean shortest path length over all possible pairs of
nodes, such that the distance of any path is the sum of
the weights corresponding to each edge traversed along
the path. Moreover, the clustering coefficient measures
the tendency for nodes to form closely-connected groups.
The clustering coefficient of node i in an unweighted and
undirected network is defined by Ci = (2ei)/(ki(ki − 1)),
where ei is the number of edges between the neighbors
of the node i and ki is the degree of node i. Likewise,
the network clustering coefficient, C, is the average of the
clustering coefficients of all individual nodes.
A network with a small value of l and a large value

of C allows for quick communication between nodes and
therefore rapid spread of information. Networks with
this desirable structure were first classified by Watts and
Strogatz as small-world networks [13]. In the original
definition of a small-world network, it is also required
that 1 ≪ ln(n) ≪ k ≪ n for a network with n nodes
and mean degree k. The condition that 1 ≪ ln(n) ≪ k
guarantees a randomly-connected network is almost fully
connected, with a set of edges composing a path between
any two nodes in a network. Since k ≪ n, such a small-
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world network is also sparsely-connected, with each node
making a small number of connections compared to the
size of the network.
Using the Watts and Strogatz (WS) network construc-

tion mechanism, it is possible to build a small-world net-
work by gradually adding more randomness to a regular
graph through random rewirings, effectively interpolat-
ing between a regular and random network. With a suit-
able number of rewirings, for approximately 0.01 < p <
0.1, where p is the rewiring probability for each edge,
there is a sufficient number of “shortcuts”, or edges con-
necting distant nodes in the network, such that the av-
erage path length of the network is low. In addition,
there is still a sufficient number of clusters of highly-
connected nodes remaining from the ring lattice struc-
ture of the original regular graph such that the cluster-
ing coefficient is high. Thus, the constructed network
achieves the small-world property of both small average
path length and high clustering coefficient. For ease of
later discussion, in Fig. 1 (a), we plot the average path
length and clustering coefficient for WS networks as a
function of rewiring probability p. Note that for very
small p the networks are more similar to a regular graph
with a high clustering coefficient and large average path
length, whereas for a large p the networks resemble a
random graph with a low clustering coefficient and small
average path length.
To answer the question of how small-world a network

really is, several parameters have been introduced, fo-
cusing on specific combinations of average path length
and clustering coefficient. Comparing these statistics
for a given network to those of a theoretical randomly-
connected network with the same number of nodes and
average degree, Ref. [16] proposed the measure of small-
worldness

σ =
C/Crand

l/lrand
, (1)

where Crand and lrand are the clustering coefficient and
average path length of the random network, respectively.
While networks with σ > 1 are typically considered
small-world in Ref. [16], it is important to note that
this particular classification may result in an overly loose
notion of small-worldness, especially for larger or more
densely-connected networks, and therefore a larger choice
of σ threshold may better agree with the small-world
regime, suggested for example by Fig. 1 (a). In addi-
tion, since σ is quite sensitive to changes in Crand and
is theoretically unbounded, it is difficult to fairly com-
pare small-world properties of diverse networks using σ
alone. These limitations inspired the formulation of a
new small-world characterization in Ref. [30]. This al-
ternative description, simultaneously comparing the net-
work statistics to both random and regular networks, is
defined as

ω =
lrand
l

− C

Creg

, (2)
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FIG. 1. (Color online) Small-world network characteristics.
(a) Average path length (red dots) and clustering coefficient
(blue dots) as a function of rewiring probability, p, for WS
networks of 300 nodes with mean degree 30. (b) Small-world
characterization σ as a function of p for networks of sizes
n = 300, 500, and 700 nodes with average degree 0.1n. (c)
Small-world characterization ω as a function of p for the same
networks as in (b).

where Creg is the network clustering coefficient for a reg-
ular graph with the same number of nodes and mean de-
gree as the network considered. The parameter ω exists
on a bounded interval −1 ≤ ω ≤ 1, with positive values
reflecting more randomness and negative values a more
regular graph. Hence, for a small-world network ω ≈ 0.
In Figs. 1 (b) and (c), we plot the dependence of σ and ω
respectively for WS networks of various sizes, fixing the
mean degree at n/10. We note, for a fixed value of p, a
relatively large increase in σ and only a slight variation
in ω with increasing network size.

Freeing network classifications from comparisons with
benchmark regular and random networks, we address the
issue of whether small-worldness can be directly deter-
mined from the intrinsic network structure. In addi-
tion, considering more densely-connected networks triv-
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ially exhibit short path lengths and high clustering co-
efficients, therefore making it difficult to compare their
connectivity structure, we seek to provide a characteriza-
tion of small-worldness that is able to well differentiate
among the structure of networks with diverse connec-
tion densities. To achieve this, we utilize the framework
of low-rank matrix decomposition to further understand
network properties.
We motivate our use of low-rank decomposition in an-

alyzing network structure with several observations re-
garding adjacency matrices for networks with both ran-
dom and regular characteristics. First, we note that for
an n-node unweighted network composed of m disjoint
cliques, or sets of vertices in which every possible pair
of nodes is connected, the corresponding adjacency ma-
trix, A, will have rank m. Once indexed such that all
nodes in each clique are numbered in sequential order,
each clique will contribute a block of ones along the di-
agonal of A and each block will increase the rank of A by
1. If the cliques are large, then rank(A) = m < n, and
thus A will be of low rank. Second, if adjacency matrix A
has a large set of clusters of highly connected nodes and
relatively few interconnections between distinct clusters,
as found in a small-world network, then A can be re-
expressed as a sum of two matrices, namely one compo-
nent, L, which contains the connections within clusters,
and another component, S, which contains the sparse in-
terconnections between clusters. Combining these two
observations, in a network with a small-world-like struc-
ture, L will be of relatively low rank and S will be sparse,
yielding a low-rank network connectivity matrix decom-
position with a natural topological interpretation.
In performing a low-rank decomposition, the aim is to

split a given matrix, A, into the sum of two matrices

A = L+ S, (3)

where L is of low rank and S is a sparse matrix containing
mostly entries of 0 value. In general, optimizing both
the rank of L and sparsity of S is an NP-hard problem,
but convex relaxations, such as the Principal Component
Pursuit (PCP), converge to an equivalent decomposition
while reducing the computational cost dramatically for
a large class of matrices [31, 33]. This PCP surrogate
convex optimization problem is

minimize ‖L‖∗ + λ‖S‖1 (4a)

given L+ S = A. (4b)

where the nuclear norm ‖L‖∗ =
∑

i

σi(L) is the sum of

all singular values, σi, of L, ‖S‖1 =
∑

i,j

|Sij | is the sum of

the absolute values of the elements of S [31]. Intuitively,
the number of nonzero singular values indicates the rank
of L and the number of nonzero values in S indicates
its sparsity. In addition, λ is the sparsity penalization

parameter, with values 0 ≤ λ ≤ 1, used to balance the
minimization of these two terms, such that larger λ re-
quires more sparse S. For a broad class of matrices, A,
which are not simultaneously sparse and low-rank, there
is with large probability a unique solution given that L
is not sparse and the sparsity pattern of S is sufficiently
random [31, 32]. The optimization problem (4) can be
solved using a variety of algorithms, including singular
value thresholding, augmented Lagrangian, and proximal
gradient methods [36, 46–48].

B. Low-Rank Network Decomposition Method and

Classification Procedure

In this section, we describe a general procedure for
decomposing unweighted network connectivity matrices
and then using the decomposition to understand the net-
work structure. For an n-node network with connectivity
matrix A, we first use low-rank decomposition to com-
pute the low-rank component, L̂, and the sparse com-
ponent, Ŝ, such that A = L̂ + Ŝ. In our computations,
we use the augmented Lagrangian method to compute
the decomposition. Upon determining L̂ and Ŝ, we then
process each matrix so that all entries are either 0s or 1s,
reflecting the unweighted nature of the network. To do
this, we choose a threshold Θ > 0 and define a processing
function, F : Rn×n → R

n×n, such that for each entry of
n× n matrix, B,

Fij(B) =

{

1, if Bij > Θ

0, otherwise
. (5)

To complete the processing, we choose L = F (L̂) and

S = F (Ŝ), which generally yields a very good recovery
of the original adjacency matrix, A, as will be discussed
below. Note that for a weighted network, this processing
procedure could be easily extended, such as by rounding
entries of each matrix to the nearest appropriate weight.
However, in this work, we concentrate on cases where
networks are treated as unweighted in order to compare
their structural properties with respect to WS networks.
In our simulations, we choose Θ = 0.6, and since the
majority of entries of both L̂ and Ŝ are either 0 or 1,
the results are quite insensitive to perturbations in Θ for
approximately 0.5 ≤ Θ ≤ 0.7.
In characterizing a given network, we analyze the prop-

erties of each component in the decomposition. For
the low-rank component, we compute the normalized
rank, ν(L), which we define for an n-node network as
ν(L) = Rank(L)/n. Hence, 0 ≤ ν(L) ≤ 1, with higher ν
for matrices with higher rank. Similarly, we use the den-
sity of the sparse component, namely Σ(S), to quantify
the percentage of components of S that are non-zero.
In this way, Σ(S) = 1 for a fully-connected (with self
connections included) network. Moreover, for all decom-
positions, we choose our sparsity penalization parameter
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FIG. 2. (Color online) Dependence of component structures
on the network rewiring probability. (a) Normalized rank of
low-rank component ν(L) as a function of rewiring probabil-
ity, p, for WS networks of 300 nodes with mean degree 30. (b)
Density of sparse component, Σ(S), for the same networks as
in (a). The inset in (a) depicts the density of low-rank compo-
nent, Σ(L), and the inset in (b) depicts the normalized rank
of the sparse component, ν(S). The mean of these statistics
over 20 realizations of the WS network for a given p is plot-
ted with the corresponding standard deviation depicted by
the error bars.

to be

λ =
1

√

Σ(A)n
(6)

where Σ(A) is the density of A. The proportionality of λ
to 1/

√
n was established by Candés, reflecting that as the

network size grows, the penalization of each sparse com-
ponent should decrease to avoid over-penalizing sparse
connections in larger networks [33]. We also multiply

by a factor of 1/
√

Σ(A) so that connectivity matrices
with less connections are penalized more heavily, preserv-
ing the approximate amount of penalization of S across
differing connection densities of A. In the absence of
this additional penalization factor, networks with sparse
connectivity, for example, may result in S capturing all
network connections regardless of any distinct network
topology. As discussed below, this new choice of λ al-
lows for successful separation of network connections into
components L and S, with each capturing connections
based on distinct topological features regardless of po-
tential differences in connection density.
In Fig. 2, we construct a set of networks interpolat-

ing between regular and random connectivity by using
the Watts and Strogatz network construction and vary-

ing the rewiring probability p. We plot the dependence
of both the normalized rank of L and density of S on p
for sparsely-connected networks of size 300 nodes with
mean degree 30. We observe a clear local minimum in
the normalized rank of L, ν(L), approximately in the
small-world regime. In this same regime, we also note a
slow increase in Σ(S), which is still quite small relative to
the case of random-like networks corresponding to high
p. Outside of the small-world regime, in the case of more
regularly-connected or moderately randomly-connected
networks, we observe that ν(L) saturates at a relatively
high value, near 1. For more regular connectivity, Σ(S)
is very low, near 0, since L contains almost all network
connections. In regimes where S contains nearly no con-
nections, it consequentially has low rank while L is of
high rank, contrary to the intuition of the decomposition
(see insets in Fig. 2 (a) and (b) for plots of Σ(L) and
ν(S), respectively). For networks with significantly more
random connectivity, the S component instead captures a
relatively large number of connections, even more so than
L, thereby decreasing ν(L) while the normalized rank of
S, ν(S), is very high. However, for small-world networks,
our intuition requires that the number of connections
in the low-rank component be greater than the number
of connections in the sparse component, Σ(L) > Σ(S).
Only in the small-world regime does the decomposition
well agree with the intuition of the low-rank decomposi-
tion, with L exhibiting relatively low rank and S contain-
ing a relatively small non-zero number of connections.

To classify a network as small-world, we can define
intervals [Lmin Lmax] and [Smin Smax], of ν(L) and
Σ(S) values respectively, in which a network exhibits
small-world characteristics. If both ν(L) ∈ [Lmin Lmax]
and Σ(S) ∈ [Smin Smax], then we classify the net-
work as a small-world network. In this sense, if ν(L) ∈
[Lmin Lmax], then the upper bound guarantees ν(L) is
of low rank, and the lower bound avoids the regime in
which the network connectivity is too random and there-
fore yields decompositions with a very sparse L compo-
nent. Similarly, if Σ(S) ∈ [Smin Smax], then the up-
per bound avoids the case in which S is no longer sparse
and captures a large number of connections relative to L,
and the lower bound guarantees S is not too sparse such
that L contains nearly all network connections. With
respect to Fig. 2 and our intuition for small-world net-
work structure, networks with appropriately bounded
ν(L) and Σ(S) correspond to WS networks with inter-
mediate rewiring probability, and, more generally, cor-
respond to networks with sufficiently many clusters of
highly-connected nodes such that ν(L) is low while hav-
ing a small number of interconnections between clusters
composing a relatively sparse S component. The smaller
the size of these intervals bounding ν(L) and Σ(S), the
stricter the small-world categorization. In addition, since
both ν(L) and Σ(S) remain bounded in [0 1], this char-
acterization allows for natural comparison of the connec-
tivity structure for networks with different sizes.

The values of ν(L) and Σ(S) also provide informa-
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tion regarding network connectivity features. Generally,
networks with high ν(L) and low Σ(S), relative to the
full network adjacency matrix A, are more regularly-
connected, whereas networks with low ν(L) and high
Σ(S) exhibit characteristics more analogous to randomly-
connected networks. Thus, without knowing the rewiring
probability used in constructing a WS network in Fig. 2
or even the nature of the construction of a more general
network, this characterization gives information about
the degree of randomness of a given network and also
an indication of small-world structure. Such a descrip-
tion only relies on its own properties and does not de-
pend on other constructed regular or random matrices,
as required by the existing small-world measures σ and
ω. Likewise, our methodology for classifying small-world
networks is more general than the original definition of a
small-world network in the sense that no particular net-
work size or connection density is required, and hence
our characterization may allow for a broader class of net-
works to be considered small-world. The utility and ra-
tionale of this broader classification is further addressed
in Section IV by analyzing several real-world networks of
various sizes and connection densities.

In Fig. 3, we compute the network low-rank decom-
position for a small-world network with n = 300 nodes,
mean degree 30, and rewiring probability p = 0.1. We
compare the original connectivity matrix A, components
L and S, and also the quality of the recovered connec-
tivity matrix, Ar = L + S, following the decomposition
and the thresholding process. Note that since the en-
tries of L̂ and Ŝ in the low-rank network decomposi-
tion are thresholded so that the recovered components
are unweighted, Ar is an approximation of A. Graph-
ically, it is clear that L does indeed well capture the
clustered connections among nodes near the main di-
agonal and lower left as well as upper right edges of
the connectivity matrix, as shown in Fig. 3(b). Sim-
ilarly, S primarily contains the sparse interconnections
between clusters resulting from rewirings in the WS con-
struction, as shown in Fig. 3(c). The sum L + S de-
picted in Fig. 3(d) closely resembles A, reflecting that
network connectivity is well-preserved following the de-
composition and subsequent threshold-processing of each
component. To quantify the error in the recovered con-
nectivity matrix for a given network decomposition, we
use the entry-wise Frobenius matrix norm defined by

‖B‖F =

√

√

√

√

n
∑

i=1

n
∑

j=1

|Bij |2 for an n × n matrix B. In the

case of Fig. 3, the relative error in the recovered connec-
tivity matrix, ‖Ar−A‖F/‖A‖F = 0.00089, reflecting very
small variation in the individual recovered connections.
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FIG. 3. (Color online) Example network and low-rank decom-
position. (a) Adjacency matrix A for a small-world network
with n = 300 nodes, mean degree 30, and rewiring probabil-
ity p = 0.1. (b) Low rank component L in low-rank network
decomposition of A followed by a thresholding process as in
Eq. (5). (c) Sparse component S in low-rank network de-
composition of A followed by a thresholding process as in Eq.
(5). (d) Recovered adjacency matrix Ar = L + S. In each
plot, black pixels mark connections between nodes. The rela-
tive Frobenius-norm error in the recovered network adjacency
matrix in (d) is 0.00089.

III. ROBUSTNESS OF LOW-RANK NETWORK

DECOMPOSITION

For a network characterization to be general and ro-
bust, it should hold over a range of network sizes and
connection densities, remaining invariant with respect to
the order of indexing of nodes within the network. In
Fig. 4, we plot the scaling of the normalized rank of L
and density of S for various network sizes and mean de-
grees. Regardless of network size and the average number
of connections, we observe the qualitative features of L
and S remain the same. The minimum of ν(L) appears
to slightly decrease with network size and additional con-
nections, leveling off once the network is large enough or
there is a sufficient number of connections. These scal-
ings are also quite stable across network realizations, with
a relatively small standard deviation among 20 network
realizations corresponding to each p, as depicted by the
error bars in Fig. 4. Hence, the decomposition is partic-
ularly stable for networks with a large number of nodes
or a sufficient number of connections.
It is important to emphasize that the low-rank network

decomposition is independent of the indexing of nodes,
yielding the same connections between nodes in both
the L and S components, only reindexed, regardless
of how the nodes are ordered. This independence
property demonstrates that the low-rank decomposition
characterizes the intrinsic network connectivity between
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FIG. 4. (Color online) Scaling of Low-Rank Network Decomposition. (a) Normalized rank of the thresholded low-rank compo-
nent L as a function of rewiring probability, p, for WS networks of size n = 500, 700, and 900 nodes with mean degree n/10.
(b) Density of the thresholded sparse component S for the same networks as in (a). (c) Normalized rank of the thresholded
low-rank component L as a function of rewiring probability, p, for WS networks of size n = 500 nodes with mean degree
0.05n, 0.1n, and 0.15n. (d) Density of the thresholded sparse component S for the same networks as in (c). The mean of these
statistics over 20 realizations of the WS network for a given p is plotted with the corresponding standard deviation depicted
by the error bars.

nodes regardless of how one artificially indexes nodes.
Hence, ν(L) and Σ(S) will be identical, and therefore
the network classification will remain the same, after
reindexing. We make this statement more precisely with
the reindexing property below, which we demonstrate in
the appendix.

Reindexing Property: Let the n × n adjacency
matrix A have decomposition A = L + S, where L
and S are solutions to Eq. (4). Let Ã be equivalent
to A after a sequence of v reindexings of the nodes,
{{i1, j1}, . . . , {iv, jv}}, where a relabeling, {i1, j1},
switches the indices of nodes i1 and j1. Mathematically,
for reindexing k, the corresponding adjacency matrix
Ak = RikjkAk−1Rikjk , where Rikjk is the transformation
matrix interchanging rows ik and jk and Ak−1 is the

(k − 1)th reindexing of A. If L̃ and S̃ solve Eq. (4)

corresponding to reindexed adjacency matrix Ã, then
(i) ν(L) = ν(L̃) and Σ(S) = Σ(S̃), and (ii) L can be

recovered from L̃ and S can be recovered from S̃ via v
reindexings.

IV. REAL-WORLD NETWORKS

In this section, we illustrate that the low-rank network
decomposition yields network classifications that agree
quite well with the small-worldness measures, σ and ω,
defined by Eqs. (1) and (2), respectively. However, the
nature of this novel characterization also underlines im-
portant features that may go unnoticed by computing
only σ and ω. In Table I, we compare small-world clas-
sifications using σ, ω, the normalized rank of L, and the
density of S for several real-world networks.

While the description of a network as small-world de-
pends on the classification criterion chosen for any of the
three methods described, the general relative degrees of
small-worldness suggested by the methods are similar.
For example, for the network of collaborations between
jazz musicians, the small negative ω = −0.11 value sug-
gests the network has small-world characteristics with a
more regular than random structure. At the same time,
the large σ = 3.16 value suggests a small-world structure,
and the relatively high but non-saturated ν(L) = 0.78
with relatively low Σ(S) = 0.0077 also suggests small-
world connectivity with more regularity than random-
ness.

Based on the WS networks in Fig. 2, choosing small-
world intervals corresponding to the low-rank decom-
position [Lmin Lmax] = [0.1 0.9] and [Smin Smax] =
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TABLE I. Small-World Classification of Real-World Networks

Network n k σ ω ν(L) Σ(S)
Flight Connections [49] 500 48 4.66 −0.15 0.78 0.0098

Word Adjacencies in “David Copperfield” [50] 112 7.59 2.36 0.70 0.67 0.0067
Email [51] 1133 9.62 22.35 0.57 0.51 0.0015

Brain Regions [23] 29 18.48 1.06 −0.12 0.69 0.0190
Caenorhabditis Elegans [7, 13] 277 14.46 5.23 0.48 0.59 0.0081

Jazz Musicians [52] 198 27.70 3.16 −0.11 0.78 0.0077
Network Science Coauthorship [50] 1589 3.45 303.19 0.18 0.24 0.0004

Comparison of small-world properties for several biological, social, and technological networks. For each network, n is the
number of nodes, k is the mean degree, σ is the small-world metric defined in Eq. (1) [16], ω is the small-world metric defined
in Eq. (2) [30], ν(L) is the normalized rank of component L, and Σ(S) is the density of component S. In order to compare
structural properties among different networks and constructed WS networks, for weighted networks, we construct embedded
unweighted networks for our computations, making all connections have equal strength.

[0.0001 0.03] would be a reasonable choice of bounds for
the values of the normalized rank of L and the density
of S, respectively. In Ref. [16], it is indicated that net-
works with σ > 1 are small-world. Similarly, in Ref.
[30], it is suggested that −0.5 ≤ ω ≤ 0.5 is an appro-
priate small-world regime. Choosing these bounds for
small-world classification, the three methods agree well
except in the cases of word adjacencies in “David Cop-
perfield” and university email exchanges. For these two
networks, both σ and our low-rank characterization sug-
gest small-worldness, whereas ω classifies these networks
as slightly more random than small-world. Since the ran-
dom characteristics are not too prevalent, by choosing a
looser bound for ω, the classifications would be identical
to the other two methods. Considering these two net-
works are also very sparse and the structural properties
of sparse networks, such as Crand and lrand for example,
can be quite variable across network realizations, it may
be the case that most network characterizations are also
relatively variable if a network contains too few connec-
tions.

For contrast, we consider the flight connection net-
work, which has a similar connection density as the con-
structed WS networks with k ≈ 0.1n. While the edge
densities of the real-world and WS networks are quite
similar, we see that depending on the specific structure
of the set of connections, the small-world classification
is quite different. Since ω = −0.15 in the case of the
flight connection network, the connectivity structure ap-
pears to be in the small-world regime with slightly more
regular than random connectivity. However, a network
with the same size and connection density instead ar-
ranged more randomly, through edge rewirings for ex-
ample, would have much larger positive ω and exhibit
a corresponding large increase in Σ(S), as evidenced in
Figs. 1 and 4, respectively.

Finally, we emphasize that the biological network of
connections between cortical areas in the cerebral cor-
tex provides particular insight into the unique utility
of the low-rank network decomposition. This particular
network describes connectivity between n = 29 regions

within the six main functional areas of the cortex (occip-
ital, temporal, parietal, frontal, prefrontal, and limbic).
Using retrograde tracer injections into the cerebral cor-
tex of the macaque monkey, Ref. [23] uncovered 36%
more connections than reported by previous studies due
to the relatively long length and low density of these ad-
ditional edges. This result implies that inter-regional cor-
tical connectivity may be much more dense than previ-
ously thought, yielding a network of cortical regions with
an edge density of 66% and mean degree k = 18.48 upon
unweighting the network.

Performing the low-rank network decomposition on
this network, we observe that 14 of 16 connections
present within the sparse component S are between cor-
tical regions. Since connections within cortical areas are
far more dense than inter-areal connections, we clearly
observe the role of the connections in S in linking highly-
clustered groups of nodes, which in this case are individ-
ual cortical areas. Moreover, upon removing the inter-
connections between cortical areas, identified by S, from
the network, we observe a statistical change in the net-
work clustering, with the variance of the clustering co-
efficients for the individual nodes increasing from 0.0028
to 0.0035. The increase in clustering-coefficient variance
after removing the sparse connections, for example, may
suggest that the connections in sparse component S help
to connect nodes of varying degree and thereby play a
role in equalizing clustering across the network.

Considering such densely-connected networks are not
small-world in the conventional sense, since they violate
the sparse connectivity condition, it is important to note
that densely-connected networks can also be well char-
acterized by the low-rank network decomposition [22].
Densely-connected networks typically exhibit short aver-
age path lengths and high clustering coefficients. How-
ever, since they use more connections to achieve these
statistics, they may not be viewed as small-world net-
works according to the original notion of small-worldness
[13]. Nevertheless, considering the prevalence of dense
networks in natural systems, such as cerebral cortex, pro-
tein, and gene-regulatory networks [23–25], it may be
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necessary to either extend the definition of small-world
networks to incorporate dense connectivity or instead de-
fine an appropriate new class of networks as in Ref. [22].

V. DISCUSSION

In this paper, we have identified a new link between
small-world network connectivity structure and low-rank
matrix decompositions. Formulating a methodology for
decomposing network adjacency matrices into low-rank
and sparse components, we have developed a useful
scheme for determining the small-world characteristics
and general structural properties of a network based on
the rank and connection density of the decomposition
components. This characterization is statistically reli-
able and makes use of only the intrinsic network struc-
ture embodied by the adjacency matrix, avoiding com-
parison with benchmark networks, as in the case of pre-
vious small-world measures [16, 30]. In addition, we have
shown that, independent of node-indexing, the decom-
position separates connections within highly-clustered
groups of nodes from relatively sparse interconnections
between the clusters. Applying this network decomposi-
tion to diverse real-world networks, we have made clas-
sifications that agree well with several well-known mea-
sures of small-worldness and also identified new struc-
tural properties of networks, such as in the case of the
cerebral cortex network of monkeys. While conventional
small-world descriptors, such as path length and cluster-
ing coefficient, are trivially insensitive to structural vari-
ations among densely-connected networks, the character-
ization introduced in this work is indeed able to differen-
tiate among topological differences in sparse and dense
networks alike.
The results of this work suggest several new directions

for research in both matrix decomposition and network
theory. The low-rank decomposition theory has been pri-
marily applied to relatively dense matrices using very
specific choices of connection penalization [31, 53, 54].
However, since we suggest a new choice of penalization
parameter, i.e., λ in Eq. (6), accounting for changes in
matrix connection density, it would be useful for con-
ditions to be developed for which this choice of λ, or
one that is similar, will likely yield a viable decomposi-
tion. Since different choices of connection penalization of-
ten yield diverse decomposition trends and corresponding
classifications, an interesting area of future study would
be to determine how other choices of λ impact decomposi-
tion characteristics. Likewise, it would be informative to
study how matrix or network decompositions vary with
λ and whether these changes reflect additional matrix
properties.
The presence of the same nodes in L and S regard-

less of indexing is also a particularly important prop-
erty outside of the current context of consistent network
classifications. Since the network decomposition always
separates the same clustered-connections, in L, from the
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FIG. 5. (Color online) Example network decomposition in
two dimensions. (a) Adjacency matrix A for a small-world
network with n = 600 nodes, mean degree 60, and rewiring
probability p = 0.1. In this case, the network is defined over
a two-dimensional lattice with periodic boundary conditions
and thickness of 3 nodes. (b) Low rank component L in low-
rank network decomposition of A followed by a thresholding
process as in Eq. (5). (c) Sparse component S in low-rank
network decomposition of A followed by a thresholding pro-
cess as in Eq. (5). In each plot, black pixels mark connections
between nodes.

connections between clusters, in S, this conservation of
connections implies that the low-rank network decompo-
sition gives a method of consistently discriminating be-
tween connections within clusters and interconnections
between clusters. On a similar note, this method of par-
titioning nodes may be considered a form of community
detection as well, identifying groups of nodes with par-
ticularly dense connectivity [38, 40, 43, 55].
Using the notion of edge-betweenness introduced in

Ref. [40], defined as the number of shortest paths be-
tween distinct nodes passing through a given edge, we ob-
serve that the connections in S often exhibit significantly
higher edge-betweenness than connections contained in
L. Since connections in S tend to connect different
clusters, shortest paths will typically run through these
edges, thereby yielding high edge-betweenness. Thus,
we observe a parallel between community structure and
our low-rank network characterization, which agrees well
with the intuition for the respective structure of com-
ponents L and S discussed in Section IIA. We expect
that using our framework to reveal the complete set of
clustered connections may be useful in refining commu-
nity separation algorithms since the non-clustered con-
nections in S may then be disregarded and thereby yield
a smaller appropriate set of connections to be separated.
In addition, we have verified that this structural decom-
position also holds for networks in higher dimensions.
For example, in Fig. 5, we consider the low-rank decom-
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position for a small-world network on a two-dimensional
lattice with periodic boundary conditions and rewiring
probability p = 0.1. We similarly observe the presence
of the clustered connections in L and the sparse rewired
connections in S, as in the classic one-dimensional ring
lattice case. While these properties of the decomposi-
tion components remain identical in higher dimensions,
we note that the precise dependence of ν(L) and Σ(S) on
p relies on the specific lattice properties in higher dimen-
sions, which may be of interest in future investigations.
In terms of network theory, a comparison of the

small-world properties of densely and sparsely connected
networks, especially using the terminology introduced
in this work, would be a natural direction for future
research. Since most real-world networks also evolve in
time, space, and sometimes connectivity, understanding
the contribution of substructures, such as low-rank net-
work decomposition components, to network behavior
marks another important direction for future study.
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VI. APPENDIX

A. Reindexing Property

In this section of the Appendix, we describe in more
detail the reindexing property stated in Section III. The
justification for the reindexing property can be seen as
follows.

Let Ã be equivalent to the n × n matrix A af-
ter v reindexings, {{i1, j1}, . . . , {iv, jv}}, with corre-
sponding transformation matrices {Ri1j1 , . . . , Rivjv} ≡
{R1, . . . , Rv}. Thus, Ã = Rv . . . R1AR1 . . . Rv ≡ T (A).

Further assume that sets of matrices {L, S} and {L̃, S̃}
solve Eq. (4) corresponding to A and Ã, respectively.

Likewise, define Ĺ = T (L) and Ś = T (S). Note that the
reindexings can be reversed through a reversed sequence
of reindexings, {{iv, jv}, . . . , {ii, ji}} since RikjkRikjk =

I for k ∈ Z
+, where I is an n × n identity matrix.

Thus, A = T−1Ã, L = T−1Ĺ, and S = T−1Ś where
T−1(A) = R1 . . . RvARv . . . R1. Since T and T−1 corre-
spond to sequences of elementary row or column opera-
tions, we have ν(L) = ν(Ĺ), Σ(S) = Σ(Ś), ‖L‖∗ = ‖Ĺ‖∗,
and ‖S‖1 = ‖Ś‖1 (X1).

We now argue {Ĺ, Ś} in fact solves Eq. (4) corre-

sponding to Ã. Since the operator T−1 is clearly lin-
ear, the matrix A can be decomposed into the sum
A = T−1(Ã) = T−1(L̃) + T−1(S̃). However, since matri-
ces L and S solve Eq. (4), the value of Eq. (4a) using

variables T−1(L̃) and T−1(S̃) should be greater than that
using variables L and S. From the properties of T in con-
clusion (X1), the value of Eq. (4a) using variables L̃ and

S̃ should also be greater than that using variables Ĺ and
Ś (X2).

On the other hand, Ã = T (A) = T (L)+T (S) = Ĺ+ Ś,

and thus the matrix Ã can be decomposed into the sum
between Ĺ and Ś. However, since matrices L̃ and S̃ solve
Eq. (4), the value of Eq. (4a) using variables Ĺ and Ś

should be greater than that using variables L̃ and S̃.
Combined with conclusion (X2), we have the value of

Eq. (4a) using variables L̃ and S̃ should be equal to that

using variables Ĺ and Ś. Therefore, matrices Ĺ and Ś
also solve Eq. (4), and due to the uniqueness of the low-
rank decomposition, which holds under broad conditions
[31, 32], we have L̃ = Ĺ and S̃ = Ś.

B. Augmented Lagrangian Method

In this section of the Appendix, we briefly discuss the
Augmented Lagrangian method useful for performing the
low-rank decomposition [47, 56]. This algorithm is gener-
ally applicable in solving constrained optimization prob-
lems in which f(x) is the real-valued function to be mini-
mized and ci(x) = 0 is the ith constraint on the optimiza-
tion problem. The corresponding augmented Lagrangian
function to consider in this optimization problem, using
a quadratic penalty, is

L(x, λ, µ) = f(x) +
µ

2

∑

i

ci(x)
2 +

∑

i

λici(x), (7)

where λi is the ith estimated Lagrange multiplier and µ
is a positive penalization scalar. Below is the pseudocode
for one particular implementation of the Augmented
Lagrangian updating scheme, where xk, λk and µk

denote the value of x, λ, and µ, respectively, on the kth

iteration of the algorithm.

Augmented Lagrangian Algorithm

1. Initialize x0, λ0, µ0, and penalization multiplier
ρ ≥ 1

2. Update solution to optimization problem:
xk+1 = argmin

x
L(x, λk, µk)

3. Update Lagrange multipliers: λk+1 =
λk + µkc(xk+1)
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4. Update penalization: µk+1 = ρµk

5. Repeat previous three steps until solution con-
verges

We remark that in the case of the low-rank decomposi-
tion, the constrained optimization problem to consider is

given by Eq. (4), and additional details as well as sam-
ple code can be found, for example, in Ref. [47]. For
an n × n matrix, the computational complexity for the
low-rank matrix decomposition is generally O(n3), and
we expect that the design of fast algorithms for low-rank
decomposition based on particular classes of matrices will
be further investigated in future research [31, 57, 58].
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