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Systems of many interacting components, as found in physics, biology, infrastructure, and the
social sciences, are often modeled by simple networks of nodes and edges. The real-world systems
frequently confront outside intervention or internal damage whose impact must be predicted or
minimized, and such perturbations are then mimicked in the models by altering nodes or edges.
This leads to the broad issue of how to best quantify changes in a model network after some type
of perturbation. In the case of node removal there are many centrality metrics which associate a
scalar quantity with the removed node, but it can be difficult to associate the quantities with some
intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application
of network theory: real-world utility networks are rarely altered according to theoretic principles
unless the kinetic impact on the network’s users are fully appreciated beforehand. In pursuit of a
kinetically-interpretable centrality score, we discuss the f-score, or frustration score. Each f-score
quantifies whether a selected node accelerates or inhibits global mean first passage times to a second,
independently-selected target node. We show that this is a natural way of revealing the dynamical
importance of a node in some networks. After discussing merits of the f-score metric, we combine
spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which
can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized
networks, we report f-score runtime improvements over exact brute force approaches in the range of
0 to 400% with low error (< 3%).

I. INTRODUCTION

Systems in the physical, social, and biological sciences
are composed of many interacting units which collectively
give rise to complicated, global dynamics [1–5]. Yet,
these emergent behaviors can also be modeled by ran-
dom walks over simple network models [6]. In such mod-
els direct probability flow is permitted between nodes
connected by an edge, the absence of an edge between
nodes means probability can travel between them only
indirectly, and nodes (V ) and edges (E) collectively con-
stitute the network H(V,E) as a closed-system and in-
duce its behavior. Network models have flexibly modeled
disease propagation [7], neuronal dynamics [8], router
communication [9], protein folding pathways [10], utility
grids [11], collaboration histories [12], and other phenom-
ena at wide-ranging spatial and temporal scales [13, 14].
Importantly, real-world systems like these frequently con-
front outside intervention or internal damage whose im-
pact must be predicted or minimized [15, 16]. Quantify-
ing this vulnerability in the face of targeted or random at-
tacks motivates a more general network science question
that is the principal issue of this study: Which network
nodes are important or central to the entire graph [17–
21]? This question is open because a quantitative defini-
tion of important and central is still required [22].

To illustrate this issue, consider transition network
models of protein folding, where different protein geome-
tries are modeled by distinct nodes and observed confor-
mational transitions are modeled by distinct edges. In
such a network, a node might be important if it repre-
sents the folded protein conformation which is known to
perform a biochemical function. Such a node is likewise
central in the sense of providing a connectivity hub for

many other possible geometries [23]. But, knowing in
advance about the folded conformation node, we might
then be interested in other nodes that funnel or alter-
nately block the transition to the central node [24, 25];
these nodes are called bottlenecks and traps, respectively.
An interest in these secondary nodes is natural whenever
a network contains a node of more a priori relevance
than others [26] (such a node, e.g. the folded state, is a
target node, nt). For these networks, our principal ques-
tion has changed to: Which nodes are important given
our pre-selected target node nt? I.e., what happens at
nt when perturbations are made elsewhere? It is this set
of perturbed nodes, denoted np ∈ Np, for which we de-
sire some individual quantification of importance in light
of our inherent focus on dynamic behavior at nt. An
epidemiological analogue is to ask how the infection risk
faced by a particular individual nt changes in response
to vaccination of a second individual np [13, 27]. A met-
ric that encapsulates this relationship must necessarily
consider three entities: target node nt, perturbed node
np (whose quantification of importance is desired), and
an overall network topology or structure H = H(V,E) in
which both these nodes live (Fig. 1A).

Node importance more generally can be quantified by
many spectral techniques and graph theoretic principles.
Such centrality scores may be based on the intact network
topology or, additionally, on the changes observed in net-
work characteristics after a node or edge is altered [28–
32]. Useful interpretability of these quantities in either
approach depends on the formulation of the centrality
measure chosen and the physical or social system mod-
eled by the network. For example, the subgraph central-
ity and communicability measures provide predictions of
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Figure 1: (Color online) F-scores quantify the strength of bottlenecks in an example complex network.
(A) Example network H with 49 nodes; node widths indicate total degree sn including self-loops. Target node nt is

shown in green. F-scores, fnp , are computed separately for two nodes, n1 (orange) and n2 (purple), by removing them
from H and observing changes in MFPTs to nt (green). (B) A histogram of mean first passage times (MFPTs), τn→nt ,
where the mean first passage time is time required for a random walker from each node in network H to arrive at target
node nt. Solid gray histogram, intact graph H; unmarked orange line, Hp = H \ n1; dotted purple line, Hp = H \ n2.
Dashed vertical lines indicate the average MFPTs over all nodes, the trapping time. F-scores, fnp , are computed from

the relative change in trapping time (Eq. 5). (C) A comparison of MFPTs and f-scores. In the intact graph H, n1 and n2

have identical mean first passage times to nt, but they impact graph dynamics differently when removed. Node n1

minimally impacts transit times to nt when it is removed from the graph (fn1 = −0.1). In contrast, n2 is a more
important bottleneck between the graph and nt, so removing it has a greater impact on MFPTs (fn2 = 7.6), seen in the

shift of the purple histogram (dotted line) to longer (slower) transit times (B).

protein lethality and diffusion for networks of protein in-
teractions or harmonic oscillations, respectively [33, 34].
Some other interpretable metrics, such as synchroniza-
tion [35], diffusion [36], and relaxation rates [28], measure
global quantities and have no inherent nt dependence. In
our analogy this means these metrics only tell us about
averages across all potential patients and not the par-
ticular individual, nt, whose infection risk changes when
someone else, np, is vaccinated. An additional consider-
ation is that many such metrics are strongly correlated
and provide duplicate information [37]. In light of these
issues we therefore ask: what interpretable metric can
quantify the importance of each perturbed node np vis-
a-vis the target node nt?

Our choice is called an f-score [25, 38], fnp , and is
based on the concept of trapping time, the average time
required by a Markov chain or random walk to arrive at
the target node nt from any other node (start node) in the
network [26, 39]. Trapping time is the weighted average
of mean first passage times (MFPTs, equivalent to hitting
times [40] or transit times) to nt over every node. An in-
dividual MFPT value itself, τn→m, gives the average time
required for a random walk starting at node n to arrive
at m [41]. As opposed to the shortest path distance, a
MFPT value τn→m (H) reflects the influence of all possi-
ble paths between nodes n and m in graph H. Whereas
MFPTs are necessarily a function of two specified end-
points (n and m), in this work concern is restricted to
those transition paths that terminate at the user-selected

target node nt, and trapping time is then the average

over all start nodes: τ̄nt =
1

N − 1

N∑
n 6=nt

τn→nt , where

there are N nodes in the intact network H (Fig. 1A).
We then ask how much the trapping time τ̄nt

changes
in response to individual excision of non-target nodes np
from the network (Fig. 1A). In agreement with intuition,
bottleneck nodes when removed will increase the trap-
ping time (random walkers must find detours to nt) and
kinetic traps when removed will decrease the trapping
time (random walkers don’t get ‘stuck’ far away from
nt) (Fig. 1B, dashed lines). The resulting quantity for
excised node np, denoted f(np, nt,H), therefore tells us
the mean relative change, or frustration, in all paths to nt
as a result of node np (Fig. 1C). Whereas frustration has
been defined in various synchronization contexts [42, 43],
here the word captures the propensity of a single node
to accelerate or inhibit transition paths to nt due to its
topological context (location in the network). Formally,

f (np, nt,H) = fnp = 100∗

(
1

N − 2

N∑
n 6=nt,np

τn→nt (Hp)−

1

N − 1

N∑
n 6=nt

τn→nt (H)

)/( 1

N − 1

N∑
n 6=nt

τn→nt (H)

)
,

(1)
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where Hp is identical to H except node np has been ex-
cised, i.e. Hp = H \ np; the total number of computed
MFPTs in Hp is N − 2 since τnt→nt

is ignored. Eq. 1
includes a scaling coefficient to emphasize that f-scores
convey percentages, and unless explicit dependencies are
required, we often abbreviate f (np, nt,H) as fnp or f . In
summary, an f-score tells us precisely how much all paths
to nt are inhibited (fnp < 0) or accelerated (fnp > 0) as
a result of node np in the intact graph H (Fig. 1).

The intuition behind fnp
values and their comparison

to MFPT values can be further clarified via a node re-
moval task: pruning a network such that trapping times
at nt are minimized (i.e. arrival rates at nt are maxi-
mized). This is illustrated in Fig. 2 using two model net-
works (network H as introduced in Fig. 1A and a second
synthetic network, H500, described in Table I). F-scores
are able to make better predictions in this regard than
MFPT values. This is because MFPT values do not re-
flect the topological context of the removed node [44, 45],
and so the pruning procedure cannot determine if a given
node removal will have a large impact on transit times to
nt across the remaining network. F-scores, in contrast,
inherently encode the kinetic impact of each pruning can-
didate np; node degree and local connectivity are inher-
ently reflected in each fnp

’s sign and magnitude. Kinetic
interpretability of this sort is key to a successful node
metric [20].

In the following we first connect spectral theory with
MFPTs and trapping times and then propose a proto-
col for approximating f-scores using matrix perturbation
theory that is more efficient than direct matrix inversion
methods we know of (algorithm details in appendix). Ex-
amples and tests are conducted with synthetic and real
datasets, in all cases using sparse, nonregular, and undi-
rected graphs.

Figure 2: (Color online) MFPTs and f-scores as
graph pruning criteria. Example networks H from

Fig. 1A (A) and H500 from Table I (B) are sequentially
pruned according to MFPT (τnp→nt , black, upper

curves), or f-score (fnp , magenta, lower curves), where
the trapping time (at nt) of the resulting network is
shown at each iteration. Nodes are removed in the

order resulting from initial values in the full network
(solid) or values recalculated at each iteration (dashed).

II. METHODS

For some chosen target node nt in graph H, denomina-
tor and subtrahend in Eq. 1 need be computed only once
for any desired set of perturbed nodes np ∈ Np. Because
the topology in H is mostly preserved for any single node
perturbation, we can therefore exploit spectral properties
of H in order to quickly approximate the first numera-
tor term given that we already know the second, which
has no np dependence. We begin in this direction by
introducing nomenclature relevant to mean first passage
times and perturbation theory in the context of complex
networks.

Let H = H(V,E) be a weighted, undirected graph
where V is the set of vertices and E is the set of edge
weights. The vertices or nodes are indexed by n,m ∈
{1 . . . N}. Key nodes receive special symbols: nt for the
user-selected target node; np ∈ Np for the user-selected
perturbed node (Np = {n1, n2} in Fig. 1A); ng ∈ Gn
for all neighbors of some node n (n and ng are directly
connected by an edge); and nḡ ∈ Ḡn for all foreigners
of n (n and nḡ are not directly connected by an edge).
The graph Laplacian L, an N x N matrix, is defined
as L = S − A, where A, the symmetric adjacency ma-
trix is defined such that Anm = Amn = anm ∈ E is
the nonnegative weight of the edge connecting nodes n
and m, and Amm is the weight of self-loops for node
m. Because L contains no information of node self-loops,
which are essential for modeling many complex phenom-
ena, our expressions often require matrix S, whose diag-

onal carries node degrees, i.e., Smm = sm =
∑N
n=1 Amn.

A column vector of these degrees is denoted as s, and
s = sT1 is the total edge weight in the network, some-
times denoted vol(H) [49, 50]. Perturbation of a single

Table I: Dataset summary. Six networks are
compared based on node count N , edge count nnz,

degree distribution exponent α, algebraic connectivity
λ2, and spectral radius λN . In HA edge weights denote

average total daily seat capacity between busiest US
commercial airports. In HYST edge weights denote

confidence in functional interactions based on
aggregated screening studies. In social network HUC

edges denote the symmetrized number of
communicated institutional electronic messages.

Standard deviation of estimated degree exponent α was
< 0.07 for all networks [46].

Name Description N nnz α λ2 λN

Synthetic networks:

H500 500 1896 2.46 5.02 1.41e+4

H1000 1000 4199 2.26 17.31 2.37e+4

H2000 2002 9725 2.13 34.46 8.20e+4

Real networks:

HA US airports [2] 500 5960 1.64 0.2 1.4e+05

HYST Yeast [47] 1890 9464 1.80 0.39 1.20e+03

HUC UC Irvine [48] 1893 27670 1.56 0.17 809.1
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node amounts to decreasing all the node’s edges, includ-
ing self-transitions by some relative amount ε ∈ [0 1], i.e.,
Lpnp,np

= (1− ε)× Lnpnp
with corresponding values de-

creased at nodes Gnp so that
∑N
m=1 Lpnm = 0 ∀n. Node

removal occurs when ε = 1. The matrix that encodes the
ε-weighted decrease in self-transitions and edge weights is
B such that Lp = L+εB. A perturbation impacts the ad-
jacency matrix analogously, Ap = A−(εA[np,:]+εA[:,np]),
where the colon denotes indices 1 . . . N . Subscript brack-
ets denote index ranges.

A. Mean first passage times, trapping times, and
f-scores

With these and a few additional definitions we can
compute the pairwise MFPT matrix for all nodes in a
weighted, symmetric network H. First, the fundamental
matrix Z from Markov chain literature is defined as

Z = (I− (P−P∗))
−1
, (2)

where P = S−1A is the row-stochastic transition proba-
bility matrix, I is the identity matrix, and P∗ is a matrix
whose columns are the stationary distribution ~α (i.e. ~α
is the dominant eigenvector of P). The traditional ex-
pression for computing all pairwise MFPT values then
is

M (H) = {τn→m (H)} = (I− Z + EZdiag)D, (3)

where Zdiag is equivalent to Z but with vanished off-
diagonals, E is a constant matrix of all 1’s, and D is also
diagonal and carries in its diagonal the inverse of the
stationary distribution (or limiting probability): Dnn =
1
αn

[41]. Trapping times τ̄nt
for some target node nt are

then computed by averaging over the appropriate column
of M:

τ̄nt
=

1

N − 1

N∑
m=16=nt

Mm,nt
, (4)

such that our exact f-score definition (1) becomes

f(np, nt,H) = 100 ∗ τ̄nt (Hp)− τ̄nt (H)

τ̄nt
(H)

. (5)

Even though A is generally sparse and S, being diag-
onal, is cheaply invertible, the matrix which is inverted
in (2) to produce Z is dense. As a result, each exact fnp

value desired requires an expensive matrix inversion, and
no dynamic or topological information about H is recy-
cled when iterating over user-selected {np}. We note,
however, that the fundamental matrix for the perturbed
network Zp can be estimated from the intact graph’s Z
matrix using the Sherman-Morrison-Woodbury formula:

Zp ≈ Z + ZU (I−VZU)
−1

VZ,

where UV is some low-rank approximation of P∗ −P +
Pp − P∗p [51]. This is worth exploring as an alternative
to our Laplacian-based approach, though the rank of the
perturbation will generally be equal to or larger than the
number of edges at the perturbed node, potentially quite
large.

One additional alternative formulation for τ̄nt
that

flexibly allows nt to be comprised of an arbitrary set of
target nodes is presented in Ref. 24, but efficiency is an
issue because matrix exponents must be evaluated mul-
tiple times for each np of interest. Thankfully, trapping
times τ̄nt

can be computed without explicitly calculating
individual transit times τn→nt and averaging over n as
in (4). Specifically, a spectral formulation presented in
Ref. 52 permits τ̄nt to be expressed via Laplacian eigen-
vectors u1...N and eigenvalues λ1...N :

τ̄nt =
N

N − 1

N∑
k=2

1

λk

(
su2
ntk − untks

Tuk
)
, (6)

where the first eigenpair is excluded because λ1 = 0. A
related treatment with adjacency matrix spectra is also
possible [39]. Eq. 6 invokes all non-dominant eigenpairs,
where an eigenpair is defined as the associated quantities
{uk, λk} such that Luk = λkuk. Eigenpairs are indexed
by eigenindices j, k ∈ {1 . . . N} and sorted: λ1 = 0 ≤
λ1 ≤ λ2 . . . ≤ λN . The dominant eigenvector u1 = 1/N .
Eigenvectors together form the columns of a matrix U ∈
RN×N , where Uk or uk indicates the kth column and
Uij or uij indicates the ith element of the jth column of
U.

Across many disciplines, these Laplacian eigenvectors
(U) are used to map the topology encoded in L to an
alternate or lower-dimensionality basis, often to facili-
tate coarse-graining [53, 54] or clustering [50, 55], and
many dynamic measures have naturally been formulated
from them [56]. For example, one may ask which link
or node removals maximally or minimally impact the
algebraic connectivity λ2 or the eigenratio λ2/λN [57],
both being summary measures of dynamic synchroniza-
tion [5, 58, 59]. One may also examine an individual row
of the eigenvector matrix, i.e. U[np,1:N ], whose elements
convey the dynamical importance of node np within each
eigenfrequency [22]. Critically, most such interpretations
of U and λ relate to global behavior over the entire graph.

Part of the appeal of synchronization- and eigenratio-
based centrality measures is that only dominant and/or
extreme eigenpairs are required, meaning these central-
ity values even for very large graphs are feasible with
sparse eigensolvers. Formally, Eq. 6 requires the entire
spectrum and cannot take advantage of these numerical
methods. However, Eq. 6 favorably permits us to con-
sider each eigenpair separately, and so we associate a
symbol τ̄knt

with the trapping time contribution of each

distinct eigenpair k: τ̄knt
= N

N−1

(
su2
ntk
− untks

Tuk
)

such

that total trapping time is their sum: τ̄nt
=

N∑
k=2

τ̄knt
. The
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central concept is that the spectra of L and Lp are closely
related and therefore many τ̄knt

values will be unchanged
upon network perturbation. That is, given trapping time
contributions τ̄knp

∀k 6= 1 for the intact graph H, we can

selectively estimate only those eigenpairs inHp (and thus
only those τ̄knp

values) that non-negligibly impact a node’s

associated f-score (the other variables in Eq. 6, s and s,
are known observables of Hp). In summary, instead of an

exact fnp we compute an estimate f̃np by (1) identifying
free eigenindices kF that substantially alter total trap-

ping time
∑N
k=2 τ̄

k
nt

, and then (2) efficiently estimating
quantities uk and λk necessary for Eq. 6.

B. Estimating λp

In the case of networks with very controlled or reg-
ular structure, convenient analytic expressions for the
perturbed eigenvalues λp are known; brute force eigen-
decomposition is not required [26, 52]. With complex
networks, however, alternatives other than dense eigen-
solvers include perturbation theory or eigenvalue bounds
from interlacing formulas. In the latter, one can bound
the maximum shift of the eigenvalues |λ−λp| given the lo-
cal topology of the perturbed node np [60–62], but in our
experience these bounds are not adequately tight and,
besides, eigenvalue perturbation is more accurate and
almost as fast. Regardless, it is the estimation of the
eigenvectors Ũ that represents the largest computational
expense.

For notational clarity, tildes are assigned to approx-
imate/estimated quantities of the perturbed spectrum,
subscript or superscript p’s indicate exact quantities or
indices, and, when necessary, subscript 0’s indicate un-
perturbed variables. A matrix of estimated Laplacian
eigenvectors is therefore denoted Ũ, while dense eigende-
composition would yield Up given Lp.

Using classical first order perturbation theory, for some
eigenpair k:

λ̃k − λk =
uTk εBuk
uTk uk

, (7)

where Lp = L + εB is the Laplacian of Hp [63]. How-
ever, in the case that the perturbation impacts a single
node np, meaning all connected edges (and self-loops)
are proportionally decreased by ε, the expression can be
simplified (subscript k implied after first line):

∆λk
ε

=
λ̃k − λk

ε
= uTkBuk

=
∑

n∈Gnp

un
(
uTBn

)
+ unpu

TBnp

=
∑

n∈Gnp

Bnnu
2
n + unp

(
uTBnp

− unp
Bnpnp

)
+ unp

(
uTBnp

)
=
(
−uT diag(Bnp)u + u2

np
Bnpnp

)
+ u2

npnp

(
−λ−Bnpnp

)
+ u2

npnp
(−λ)

= uT diag(Lnp
)u + u2

np

(
−Lnpnp

− λ+ Lnpnp
− λ
)

=
(
u.2
)T

Lnp
− 2λu2

np

⇒ λ̃k − λk = ε ∗
((

uk.
2
)T

Lnp − 2λku
2
npk

)
(8)

where the notation
(
.2
)

signifies the element-wise expo-
nent, diag(x) is a zero matrix with x along its diagonal,
Bnp is the npth column vector of B, Lnp denotes the
npth column of the intact Laplacian, and a matrix with
two subscripts denotes a single element, as in Bnpnp

.

C. Estimating Up

Likewise, we can also update the eigenvectors using
standard perturbation approaches [64, 65]:

ũk = uk +

N∑
j=16=k

uTj

(
Lp − Iλ̃k

)
uk

λ̃k − λ̃j
uj . (9)

This update step has complexity O(n2), and updating N
eigenvectors of the spectrum costs O(n3). Naively imple-
mented, this would constitute a profligate linear estimate
to the eigenbasis when exact, direct eigensolvers have the
same approximate cost, sparse solvers being cheaper still.
In practice, however, the perturbations here require only
the subset kF of the spectrum to be updated for accurate
estimates, and the corrections themselves are small and
vanish rapidly. As we will show, the set of selected eigen-
pairs are often non-extreme and non-adjacent, and most
efficient eigensolvers are not traditionally amenable to
updating simultaneously non-contiguous eigenpairs [66].

It is for this reason that we choose to iteratively update Ũ
using the method least efficient in traditional implemen-
tation but well-suited to the specific perturbation struc-
ture B and stopping criterion |∆f̃np

| < f∗.

D. A heuristic for kF

As mentioned, we accelerate Eq. 9 by limiting the
summation to selected eigenindices kF . We identify this
set of indices by observing that when a local perturba-
tion is made in a network, some Laplacian eigenpairs
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Figure 3: (Color online) The number of free
eigenindices |kF | decreases each iteration. (A)

Free eigenindices per iteration are shown for
representative perturbed np and target nt nodes in
H500 (left) and H2000 (right). (B) Convergence of kF

shown for large set of test target nodes Np.
Convergence for target node np from row (A) shown in
red (print version, gray). Vertical axis gives proportion

of total spectrum. (C) Absolute accuracy of f̃ at each
iteration. Dashed lines show accuracy change with only

the eigenvalue update λ̃ (Eq. 8), which is performed
only once and only before the first eigenvector update
which occurs at Iteration 0 (see Appendix pseudocode

line 11). Red (gray) curves as in (B). Algorithm

terminates when f̃ changes by less than f∗.

are impacted more than others. Efficient computation of
the perturbed spectrum should ignore unimpacted eigen-
pairs, and we can discriminate between eigenpairs further
by considering only those whose contributions to trap-
ping time at nt change substantially upon the perturba-
tion, that is |∆τknt

| > τ∗0 . In order to effectively classify
eigenpairs into a free class, kF and a locked class, kL, we

need a heuristic for |∆̃τknt
| that avoids direct eigendecom-

position. Our choice is

|∆̃τ̄knt
| = ˜̄τknt

(Hp)− τ̄knt
(H) (10)

where

˜̄τknt
=

1

λ̃k

(
N

N − 1

)(
spũ

2
ntk − sTp ũkũnt,k

)
. (11)

Vector ũk is a column of Ũ, itself equal to U with the
exception of rows corresponding to the perturbed node
np and its neighbors Gnp

. Specifically,

Ũ[npg,:] = U[npg,:]−2
(
Lp[npg,:]

∗U−U[npg,:] ∗ I
~̃
λ
)

(12)

where npg = {np ∪ Gnp
}, ~̃λ is a vector of currently esti-

mated eigenvalues, and the colon denotes indices 1 . . . N .
Changes in the elements of the approximation vectors Ũ
correspond to the gradient of the Rayleigh quotient [67]
evaluated only at np and Gnp

since the gradient at all
other nodes will be negligible. Tildes over returned val-
ues emphasize that (11) and (12) are not exact but still
provide a convenient heuristic for selecting the initial free
eigenindices:

kF = find
k

(
|∆̃τ̄knt

| > τ̄∗iter

)
. (13)

Intuitively, Eq. 12 tells us about the impact of the per-
turbation given (i) the network H and (ii) the perturbed
node np, whereas Eq. 11 tells us about the impact of the
perturbation given all three involved entities: graph H,
node np, and target node nt. Together, the expressions
reveal which k eigenindices give rise to large predicted
|∆τ̄k| values. We only employ this routine at iter = 0,
before vectors UkF have been updated with linear esti-

mate Eq. 9. Subsequently, provided with Ũiter>0, we can
utilize the observed changes in trapping time contribu-
tions |τ̄knt

| to select kF for the next iteration (Fig. 3).

E. Algorithm thresholds

There are two user-selected parameters that control
the trade-off between speed and accuracy within the pro-
cedure. The first, τ̄∗iter, controls whether a given eigenvec-
tor Uk∈kF remains free and in kF after an iterative up-
date or gets locked and moved into the set kL. Presently,
τ̄∗iter is set so that kF after each iteration includes those
eigenvectors that contribute 99.5% percent of the total
change in τ̄ . Iteration histories of |kF | with this thresh-
old are shown for two synthesized networks in Fig. 3.

The second user parameter, f∗, determines when the
algorithm terminates. Once f̃np

proportionally changes
less than f∗ per iteration, the algorithm terminates. A
threshold of f∗ = 0.01 in our experience produces good
accuracy correlations.
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F. Methods Summary

Our protocol works by perturbing node np by a small
amount ε ∼ 10e−4 and iteratively correcting eigenvec-
tors U from the intact graph H to approximate the basis
of the altered graph, Hp. However, we choose to up-
date only vectors that make significant (> τ̄∗) contri-
bution to the trapping time, τ̄nt

, given the user-chosen
target node nt. That is, we choose to permit small non-
orthogonalities in the updated spectrum as long as the
estimated frustration score f̃np

stabilizes. Specifically,
at each iteration the set of vectors that gets updated is
denoted kF ⊂ {2 . . . N}, and this set is non-increasing
with each iteration. Those eigenvectors that are already
converged are called locked and denoted kL such that
kL ∩ kF = ∅. (Moreover, when iter = 0, most eigenvector
elements do not change, so we can restrict the update
to elements corresponding to nF , that is, free elements
row-wise of the current eigenvectors U. In subsequent
iterations, when iter > 0, nF = {1 . . . N}. See appendix
pseudocode lines 14 and 23). Boxed pseudocode is given
in the appendix: Fast f-score estimation. All compu-
tations were performed with Matlab [68]. Network visu-
alizations were produced with Gephi [69].

III. NUMERICAL RESULTS

We tested our algorithm on six small to medium net-
works, both synthesized and naturally occurring (Ta-
ble I). Symmetric synthesized networks H500, H1000, and
H2000 were first generated with Complex Networks [70]
and then self and non-self weights were assigned ran-
domly but symmetrically to existing edges. Visualiza-
tions for H1000 and HA are provided in Fig. 4. To illus-
trate the relationship between (i) the free eigenspectrum
kF and (ii) f-score predictions as the algorithm progresses
for the synthetic networks, we randomly chose a nt in
each synthetic network and charted algorithm execution
for multiple representative nodes {np} (Fig. 3). Specif-
ically, convergence properties for one example node np
are shown in red while other selected np are shown with
black curves (Fig. 3B and C).

Convergence for a single representative np is illustrated
in Fig. 5. Qualitatively, convergence behavior was con-
sistent among all tested networks. We observed that
the size of the free eigenspectrum |kF | decreases quasi-
linearly each iteration (Fig. 3B) given a selection thresh-

old τ∗ = 0.995, and that f̃ convergence is attained within
three iterations for H500 and four iterations for H2000

(Fig. 3C). The free eigenpairs were distributed through-
out the spectra, consistent with our claim that changes in
trapping time cannot be fully recovered by extreme eigen-
pairs alone (Fig. 5C). Some pairs remain free through sev-
eral iterations, but only free eigenpairs can remain free
and once locked an eigenpair will not be updated further.

Even though |kF | apparently decreases, it is not the
case that estimated f-scores likewise converge monotoni-
cally toward the true fnp

, and in fact they often get worse
during the first iteration, iter = 0 (Figs. 3C and 5B). That

is, a single iteration of eigenvector update (Eq. 9) often
produces worse f predictions than scores estimated with
only approximated eigenvalues (Fig. 3C, dashed lines).
This illustrates that transit/trapping times are many-to-
one indirect functions of the spectrum; the objective for-
mally being minimized in Eq. 9 (and pseudocode line

16) is not f̃ but the gradient of the Rayleigh quotient (at
nodes nF ). Consequently, as free eigenpairs adjust to the

graph structure in Hp our estimates f̃ can temporarily
suffer. However, as kF diminishes and trapping time con-
tributions (τ̄k) stabilize the predicted f-score f̃ generally
approaches the true value (Fig. 3C). A final prediction

error |f − f̃iter>0| worse than starting prediction error

|f − f̃iter=0| suggests either a failed kF selection heuristic
(pseudocode lines 4-8) or overly permissive convergence
thresholds f∗ and τ∗.

When altering a physical network such that nt trap-
ping times are impacted, f-score accuracy rather than
eigenvector convergence is the more relevant statistic.
While f-scores are often close to zero for nodes distant
from nt, nodes that are first and second degree neighbors
of nt often have appreciable fnp

values, up to 10% for the
networks tested (Fig. 4). Figure 6 compares predicted
and exact fnp

values for neighbor nodes and randomly-
selected non-neighbor nodes of nt = 498 ∈ H500. In
the upper panels, direct neighbors of nt are designated
with diamonds while foreigners are filled circles. F-
scores predicted using the full procedure are denoted

Figure 4: (Color online) F-scores for H1000 and
HA. A representative target node (nt, green) for each
network was selected and f-scores for all other nodes

were computed and shown by colorscale. Node widths
reflect total edge weight including self-loops for each
node, and the spatial arrangement results from the

Gephi Force Atlas algorithm [69] (left), or geographical
location (right). Edge weights are not depicted. (Right)
Most major airports are densely connected throughout

the network and by their presence retard average
transit times of a random walk to nt, Denver

International Airport. One major airport, Miami’s
(white arrow), however, has a substantial positive

f-score, meaning average MFPTs to Denver would in
fact drop by 10.3% if MIA were removed from the

network (c.f. Ref. 71). F-score ranges were −3.8 to 12.3
(H1000) and −8.0 to 10.3 (HA).
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Figure 5: (Color online) Procedure visualization for nt = 498, np = 438 ∈ H500 over three iterations. (A)

Pre-procedure eigenvalue error, λp − λ0. (B) F-score estimate f̃ , black (open circles). True value, f , shown as dashed
blue line. (C) Eigenvector update ∆U (Eq. 9 and appendix line 16); rows are nodes (n), columns are eigenindices (k).
Black squares positioned along the top horizontal axis of ∆U indicate free eigenindices kF (Eq. 13). (D) Magnitudes of

eigenvector update displayed at each node n, ‖∆U[n,1:N ]‖2. Only a subset of H500 is shown to illustrate changes in
relative update magnitude. Target node nt = 498, green; perturbed node np = 438, black (indicated by arrow). The
magnitude of the updates decreases approximately two orders of magnitude each iteration. (E) Error of predicted

eigenvalues (λ̃− λp) after one iteration, shown using the same axes as in (A). Eigenvalue predictions are only updated
once (Eq. 8). (F) Aggregate runtime.



9

Figure 6: (Color online) Both perturbed
eigenvalues and eigenvectors must be estimated
for accurate f-score prediction. (A) F-score scatter
plot for representative target node nt = 492 in network
H500. Vertical axis is the exact f-score f , horizontal

axis is the predicted f-score f̃ , for all nodes
np 6= 492 ∈ H500. Diamonds denote neighbors of nt

(np ∈ Gnt), dots foreigners (np ∈ Ḡnt). (B) Estimated

f-scores f̃ computed from unperturbed eigenvectors U0

and estimated eigenvalues λ̃; axes as in (A). (C) and
(D) The distribution of prediction accuracy for all

target nodes in H500; f-scores are computed using both
perturbed (C) and unperturbed (D) eigenvectors U. A

correlation of ρ = 1.0 means perfect prediction
accuracy. Accuracy over only neighbors of each nt is

labeled ρG, accuracy for foreigners of each nt is labeled
ρḠ, and correlation over all perturbed nodes is labeled

as ρ. Box limits indicate upper and lower quartiles;
whiskers show complete data range.

f̃ λ̃,Ũ (Fig. 6A), whereas those predicted using only up-

dated eigenvalues are denoted f̃ λ̃,U0 (Fig. 6B). As is ap-
parent from the low correlation in panel B, both λ and
U must be estimated in response to node removal if we
want to accurately model f-scores for neighbors of nt.
This point should be emphasized because many centrality
metrics are based only on perturbing eigenvalues and not
eigenvectors [59, 72]. Panels A and B illustrate this point
specifically for a single chosen nt, but panel C shows that
this discrepancy is consistent across many target nodes:
correlation ρ suffers unless both λ̃ and Ũ are estimated
with perturbation theory.

Figure 7 illustrates f-score accuracy and efficiency
across the six tested networks. In all panels the hori-
zontal axis gives the relative degree of nt; this allows us
to observe that high correlations (ρ), low normalized root
mean squared error (NRMSE), and modest speedup val-
ues are all consistent for highly-to-lowly connected target

nodes. Each datapoint in Fig. 7B specifically is defined:

NRMSE =

√
1
|Np|

∑
np∈Np

(f̃np − fnp)2

|max fnp
−min fnp

|
. (14)

Regarding efficiency, our procedure is about as fast as
using brute force matrix inversion for networks with
N < 500, but for larger networks we see a consistent
algorithmic advantage (Fig. 7C).

A summary of efficiency and accuracy statistics is pro-

Figure 7: (Color online) F-score accuracy and
efficiency for synthetic and real networks.

Synthetic networks left, real networks right. Horizontal
axis in all panels denotes the weighted degree of nt as a
percentage of the maximally-weighted node, max

nt

snt∈H.

Target nodes nt were selected by binning all nodes into
20 equal bins according to degree and then randomly

selecting 10 target nodes equally spaced across
nonempty bins. (A) Accuracy as determined by

correlation of predicted f-scores, f̃ , with ground truth
f-scores, f , denoted ρ. (B) Normalized root mean

squared error (Eq. 14). (C) Run-time improvement
against direct method, where whiskers show maximum

and minimum values. (D) Weighted degree
distributions for all nodes n. Colors indicate network
selection. See Table II for a summary of these results.
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Table II: Accuracy and efficiency of predicted f-scores. Algorithm accuracy evaluated with correlation ρ,
Spearman rank correlation ρs, and root mean squared error normalized by the range of exact scores, NRMSE. As
controls we also show accuracies for f-score estimates derived without eigenvector updates, NRMSEλ̃,U0

and those

derived from the intact spectrum, NRMSEλ0,U0 (which equates to f̃np = 0). The overline indicates weighted average over
all tested nt’s, i.e., over all NRMSE values in Fig. 7B. Some np nodes are tested more than once with different target

nodes nt, so total np count can exceed the network size.

Total nt Total np ρ ρs NRMSEλ̃,Ũ NRMSEλ̃,U0
NRMSEλ0,U0

Avg. speedup

H500 10 607 0.99 0.98 0.027 0.181 0.192 1.05

H1000 10 837 0.99 0.98 0.026 0.173 0.200 1.82

H2000 10 1880 0.99 0.99 0.021 0.108 0.144 3.38

HA 10 880 0.99 0.99 0.012 0.102 0.109 1.28

HY ST 10 550 1.00 0.99 0.009 0.174 0.234 4.27

HUC 10 1117 0.99 0.97 0.016 0.096 0.127 2.83

vided in Table II. Because ground truth fnp
values are

often near zero, we ask as a control what accuracy is ob-
tainable if λ or U are not updated. Table II therefore
provides the average normalized room mean squared er-
ror when U is not updated but λ is (NRMSEλ̃,U0

), and

the same statistic is given for when all f̃np ’s are assumed

to be zero (NRMSEλ0,U0
). Again it is clear that both λ

and U must be updated to ensure good fnp
accuracy.

IV. CONCLUSIONS

Graph-spectra-derived centrality measures have
proven useful for many network modeling tasks [73–76].
At least for Markov-type networks that evolve tempo-
rally, we think a concrete interpretation of centrality
is provided by the spectral formulation of mean first
passage times. Indeed, Eq. 6 formulates squared row
vectors of U into a convenient quantity τ̄nt

where we do
not need to inspect individual eigenfrequencies in order
to assess the topological importance of np [22]. That
is, individual elements of U[np,1:N ] may ambiguously
increase or decrease upon network perturbation, but we
can always interpret an f-score to signify that node np
helps (fnp

> 0) or hinders (fnp
< 0) graph transitions

to nt. Interestingly, these small changes in transit times
manifest themselves in various and discontiguous regions
of the Laplacian spectrum (Figs. 3A and 5C), precluding
use of many traditional sparse eigensolvers.

However, our primary focus has been to show that, al-
gorithmically, careful selection of eigenpairs kF can pro-
duce a less expensive approximation f̃ that avoids the
fundamental matrix Z. This selection cannot be made
by comparing the intact and perturbed spectra (since it
would require directly computing the latter), but we can
guess that nodes with large Rayleigh quotient gradients
(Appendix line 5) will reveal eigenpairs that either (1)
will move substantially upon node perturbation (kF ) or
that (2) will remain stationary (kL). Iterative applica-

tion of first-order perturbation theory to both λ̃ and Ũ
for only this selected subspace (kF ) then provides an ap-

proximate perturbed spectrum faster than dense eigen-
decomposition (Fig. 7C).

Because f-scores are usually linear functions of the per-
turbation magnitude ε ∈ [0, 1], it is not necessary to com-
pletely remove node np from the graph and problemati-
cally decrement the rank of U. Instead, we chose a very
small ε so that the eigenvector shifts are small and linear
estimates are accurate. This approach has the additional
advantage that nodes are never disconnected from the
primary graph component when a strict bottleneck node
is perturbed. In these situations the f-score cannot fairly
be viewed as the change in transit times were np to be
removed since some paths to nt would become impossi-
ble. The interpretation in these cases should be that fnp

represents changes in transit times were np to be almost
completely removed from the network.

There are many ways of describing what happens to a
network when it is damaged or altered [57, 77, 78]. F-
scores contribute to this discussion as well because it is
sometimes robustness at some target node that is more
important than global network stability, and f-scores re-
veal exactly that. Though many networks in the biolog-
ical and social sciences surpass in size those considered
here, coarse-graining methods [53] can be applied so that
the resultant network is amenable to our method.
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APPENDIX: Fast f-score estimation

INPUT: Laplacians L and Lp of network H, target node index nt, and perturbed node indices Np
OUTPUT: f̃ (np, nt,H) ∀np ∈ Np.
1: (U0, λ)← eig (L) . Direct eigendecomposition

2: U← U0

3: τ̄knt
←
(

N
N−1

)(
su2

knt
−(sTuk)uknt

λk

)
∀k 6= 1

Predict free/locked modes, kF , kL, by estimating ∆τ̄knt

4: for np ∈ Np do

5: U[np∪Gnp ,2:N ] ← U[np∪Gnp ,2:N ] −∇r
(
U[np∪Gnp ,2:N ]

)
. see main text Eq. 12

6: Uk = Uk/‖Uk‖ . Normalize all columns of U

7: ∆̃τ̄knt
←
(

N

N − 1

)(
spu

2
knt
−
(
sTp uk

)
uknt

λk

)
− τ̄knt

, ∀k 6= 1

8: kF ← find
k

(
|∆̃τ̄knt

| > τ̄∗
)
, kL ← {2 . . . N} \ kF . Select free/locked eigenpairs

Estimate perturbed eigenvalues

9: Select ε ∼ 10−4

10: U← U0

11: λ̃k ← k + ε ∗
((

Uk.
2
)T

Lnp
− 2λku

2
kk

)
∀k 6= 1

12: Generate matrix of update weights: Λij =
(
λ̃i − λ̃j

)−1

, Λii = 0, i, j ∈ {2 . . . N}

Update U iteratively until f̃(np, nt,H) converges

13: iter← 0

14: Store free node indices: nF = {np ∪ ng} . only np and neighborhood eligible for update

15: while converged == 0 do . Begin iteration for f̃np

16: ∆U[1:N,kF ] ← U[1:N,kF ]

{
UT

[nF ,kF ]

(
Lp[nF ,1:N ]U[1:N,kF ] −U[nF ,kF ] ∗ Iλ̃kF

)
. ∗ Λ[kF ,kF ]

}
. see Eq. 9

17: Ũ← U + ∆U

18: ˜̄τknt
←
(

N

N − 1

)(
spũ

2
knt
−
(
sTp ũk

)
ũknt

λ̃k

)
, ∀k ∈ kF . Compute updated ˜̄τknt

19: f̃iter(np, nt)← (1/ε) ∗
∑N
k=2

˜̄τk −
∑N
k=2 τ̄

k∑N
k=2 τ̄

k
. Estimate new fnp

20: converged←
∣∣∣f̃iter − f̃iter−1∣∣∣ / ∣∣∣f̃iter−1

∣∣∣ < f∗

21: if !converged then

22: kF ← find
(
|∆̃τ̄kFnt

| > τ̄∗
)

23: nF ← {1 . . . N} . All nodes now eligible for update

24: U← Ũ

25: iter← iter + 1

26: end if

27: end while

28: end for
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