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Modularity is a key organizing principle in real-world large-scale complex networks. The relatively
sparse interactions between modules are critical to the functionality of the system, and are often
the first to fail. We model such failures as site percolation targeting interconnected nodes, those
connecting between modules. We find, using percolation theory and simulations, that they lead to
a “tipping point” between two distinct regimes. In one regime, removal of interconnected nodes
fragments the modules internally and causes the system to collapse. In contrast, in the other
regime, while only attacking a small fraction of nodes, the modules remain but become disconnected,
breaking the entire system. We show that networks with broader degree distribution might be highly
vulnerable to such attacks since only few nodes are needed to interconnect the modules, consequently
putting the entire system at high risk. Our model has the potential to shed light on many real-
world phenomena, and we briefly consider its implications on recent advances in the understanding
of several neurocognitive processes and diseases.

I. INTRODUCTION

Network science has become a leading approach to the
study of emergent collective phenomena in complex sys-
tems, with a wide range of applications to fundamen-
tal real world systems [1–4]. Many real world systems
have been shown to exhibit a modular structure, where
nodes in smaller groups (called modules or communities)
are connected more to each other than to the network
at large, which is key to their behavior and function-
ing [5]. The modular organization of the Internet, and
other large-scale infrastructures, tremendously enhances
scalability and diffusion processes [6, 7]. Modules of pro-
tein complexes and dynamic functional units constitute
the building blocks of molecular networks [8]. Social and
geographical regions with strong local ties promote the
development of socio-economic systems [9]. Finally, the
non-random modular architecture of neural networks is
considered crucial for the brain’s functional demands of
segregation and integration of information [10–12].

Detecting modules in networks has been an active re-
search branch for many years, resulting in an extensive
set of algorithms ubiquitously used to analyze and vi-
sualize large-scale data [13, 14]. However, far less at-
tention has been given to the implication of modular-
ity to the function of networks and the physical mecha-
nisms underlying such a structure. For example, modular
structure has been suggested to arise in natural systems
through the optimization of stability [15], efficiency [12]
and evolvability [16] among others. The division of net-
works into modules has been suggested to enhance their
robustness to certain cascading dynamics [17, 18], as well
as diffusion properties [19]. Several analytical frame-
works have been developed to study networks with as-

sortativity structure, where group of nodes with similar
properties constitutes homogenous modules [20–22].

In the current study, we are interested in the impli-
cation of modularity to the resilience of networks. In
a recent work, Bagrow et al. [23] showed that modular
networks exhibit surprising percolation properties, such
as the decoupling of modules (i.e. modules become non-
overlapping) as a result of random failure of nodes well
before the network falls apart. Here we address analyti-
cally and by simulations the effect of failures of intercon-
nected nodes, those connecting different modules.

Interconnected nodes play a key role in modular struc-
tures and their removal can have a deleterious effect
on the network integrity [24], efficiency [25], and sta-
bility [26]. A recent study by da Cunha et al. em-
pirically shows that module-based attacks targeting in-
terconnected nodes ordered by betweenness centrality
can be highly damaging, even more than attacks based
solely on betweenness [27]. Masuda developed an ef-
ficient method to identify “globally important” nodes
(quantified by their contribution to the connectivity in a
coarse-grained network among modules) whose removal
can fragment networks into small parts, thus providing
an efficient immunization strategy [28]. In cases where
transmissibility is high and/or when communities are
dense, it has been shown that vaccinating interconnected
nodes can be more efficient in controlling the spread of
an epidemic than vaccinating high-degree nodes [29, 30].
Moreover, the interconnected nodes are often the first
to fail, as for example the case in the disruptive effect
neurodegenerative diseases, such as schizophrenia and
Alzheimer’s disease, have on inter-modular connectiv-
ity [31, 32]. Also, changes in the concentration of inter-
connected nodes can be associated with functional tran-
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sitions, for example between physiological states [33]. Fi-
nally, it is often the case that interconnected nodes are
considered to be important; for example, the New York
City and London airports interconnect modules of cities
in these countries and provide an attractive target for
attacks [7].
Utilizing recent advances in the understanding of inter-

dependent networks [34–37], we introduce an analytical
framework for studying the robustness of modular net-
works under attacks on interconnected nodes. We study
a percolation process on networks consisting of a vary-
ing number of modules, m, and a varying degree of in-
terconnected nodes. The analytical solution reveals two
distinct percolation regimes separated by a critical num-
ber of modules m∗: for m < m∗ the system collapses
abruptly as a result of the modules becoming discon-
nected from each another, while their internal structure
is almost unaffected. In contrast, for m > m∗, the inter-
connected nodes play an important role also in the inter-
nal structure of modules. Therefore, the attack causes
the modules themselves to collapse which in turn breaks
continuously the entire system. Put another way, m∗

represents the threshold above which modular structure
itself becomes diffuse and the network returns to behav-
ing as a single system.

II. MODEL

We consider a modular network with N nodes divided
into m modules and we define pintra and pinter as the
intra- and inter-links probabilities respectively. Let βi

denote the fraction of nodes in module i, the average
number of intra-module (inter-module) links connected
to a node in module i is then given by

kintra = pintra(Nβi − 1) (1)

kinter = pinterN(1− βi). (2)

We define α to be the ratio between the probabilities for
an intra- and inter-module link

α =
pintra

pinter
. (3)

In Fig. 1(a)-(c) we present examples of modular networks
consisting of m = 5 equal size modules and different val-
ues of α. Note that the ratio between the number of
inter-modules links and intra-module links depends not
only on α, but also on the number of modules, in this
case βi =

1
m

yielding

kintra

kinter
=

pintra(
N
m

− 1)

pinterN(1− 1
m
)
∼ α

m− 1
. (4)

Thus, our model considers systems comprised of more
modules to have more inter-links, as illustrated in
Fig. 1(d).

FIG. 1. (Color online) Visualization of the model for gen-
erating random modular networks. (a)-(c) Illustration of the
effect of α on the obtained modular network using Gephi [38],
on a Erdős-Rényi (ER) network of size N = 10 000 with mean
degree k = 8 divided into m = 5 modules. (d) Illustration
of the effect of the number of modules m on the obtained
network with a number of inter-module links increasing with
the number of modules. Inter-connected nodes and links are
shown in red (light gray).

III. FORMALISM

Given the model for generating random modular net-
works described above, we proceed to study their per-
colation properties. In particular, we use the multi-
variate generating functions formalism [36] to derive the
percolation threshold and the size of the giant compo-
nent. The formalism assumes a system of interconnected
modules described by a set of multi-degree distributions,
{pik1k2...km

}, where pik1k2...km
is the fraction of all nodes

in the module i that have k1 links to nodes in module
1, k2 links to nodes in module 2, etc. The multi-degree
distribution for each module may be written in the form
of a generating function

Gi(x1x2 . . . xm) =

∞
∑

k1k2...km=0

pik1k2...km
x1

k1x2
k2 . . . xm

km .

(5)
Note that this function is simply an extension of the
single-network generating function presented in Ref. [39].
The partition of a node’s degree into m degrees, corre-
sponding to its number of connections in each module,
allows a finer analysis of heterogeneous systems, which is
essentially the objective of studying modular or interact-
ing networks.
Following Leicht and D’Souza [36], the distribution of

the sizes of components reached by following a randomly
chosen link between modules j and i to a node in module
i is generated by

Hij(x) = xiGij(H1i(x), H2i(x), . . . , Hmi(x)) (6)
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and the distribution of the sizes of components of a ran-
domly chosen i node is generated by

Hi(x) = xiGi[H1i, H2i, . . . , Hmi] (7)

where x = (x1, x2, . . . , xm), 1 = (1, 1, . . . , 1), and Gij(x)
is the generating function for the branching process de-
fined as

Gij(x) =
(∂Gi

∂xj

(1)
)−1 ∂Gi

∂xj

(x). (8)

Finally, using the generating functions given in Eqs. 6-
7, the average number of nodes from module j in the
component of a randomly chosen node in module i is
given by

〈si〉j =
∂Hi

∂xj

(x)
∣

∣

x=1
= δij +

m
∑

l=1

∂Gi

∂xl

(1)
∂Hli

∂xj

(1) (9)

where δij denotes the Kronecker delta.

In the case of a modular Erdős-Rényi (ER) net-
work [40, 41] consisting of equal size modules where both
the intra- and inter-connectivity are Poisson distributed
with means kintra and kinter respectively, we can derive an
exact solution for the critical percolation. In particular,
we obtain

Gi(x) = Gij(x) = ekintra(xi−1)e

kinter
m−1

∑

l 6=i

(xl−1)

(10)

for any 1 ≥ j ≥ m. Thus, Eq. 9 can be written as

〈si〉j = δij + kintra
∂Hi

∂xj

(1) +
kinter

m− 1

m
∑

l=1
l 6=i

∂Hl

∂xj

(1) (11)

where

∂Hi

∂xj

(1) = δij + kintra
∂Hi

∂xj

(1)+
kinter

m− 1

m
∑

l=1
l 6=i

∂Hl

∂xj

(1). (12)

Solving the system for 〈s1〉1 we obtain

∂H1

∂x1
(1) = 1 + kintra

∂H1

∂x1
(1) +

kinter

m− 1
(
∂H2

∂x1
(1) + · · ·+ ∂Hm

∂x1
(1))

= 1 + kintra
∂H1

∂x1
(1) +

kinter

m− 1
(

kinter
∂H1

∂x1
(1)

1− kintra − m−2
m−1kinter

)

⇒ ∂H1

∂x1
(1)(1− kintra −

k2
inter

m−1

1− kintra − m−2
m−1kinter

) = 1

⇒ ∂H1

∂x1
(1) =

1− kintra − m−2
m−1kinter

(1− kintra)(1 − kintra − m−2
m−1kinter)− kinter

2

m−1

.

(13)
Thus, ∂H1

∂x1
(1) diverges when (1 − kintra)(1 − kintra −

(m−2)kinter

m−1 )− kinter
2

m−1 = 0. This is also where all ∂Hi

∂x1
(1) di-

verges, and therefore the giant component emerges when
the following equation is satisfied

(1−kintra)

(

1−kintra−
(m− 2)kinter

m− 1

)

−kinter
2

m− 1
= 0. (14)

This condition yields k = kintra + kinter = 1 for every m,
recovering the standard result for single networks without
modules. Thus, in the case of random node failures, the
percolation threshold as well as the size of the giant com-
ponent only depends on the average degree, k, and the
modular structure has no effect on the percolation tran-
sition. The same result holds for scale-free networks [42],
as shown by Leicht and D’Souza [36]; however, a closed
form equation using the generating function approach is
not available.
A more realistic case of attacks on the network is the

preferential removal of interconnected nodes. This type
of attacks can be studied using Callaway et al.’s [43] ap-
proach developed for studying the robustness of single
networks to intentional attacks. Here, we extend the
formalism from single to multiple networks in a similar
manner that was done by Leicht and D’Souza [36]. In
this approach, the occupation probability of nodes is not
constant as before, but is a function of the node’s degree.
Let q denote the probability that a randomly chosen in-
terconnected node is occupied, and 1− q the probability
that it is removed. For ER networks with average intra-
and inter-degree kintra, kinter respectively, this probabil-
ity is related to the general occupation probability, p,
according to

q =
p− e−kinter

1− e−kinter
. (15)

In this case, the degree distribution of occupied nodes in
module i is given by

Fi(x) = e−kinterekintra(xi−1) + q
(

Gi(x)− e−kinterekintra(xi−1)
)

=ekintra(xi−1)−kinter(1− q) + qGi(x) (16)

and the average number of occupant nodes from mod-
ule j in the component of a randomly chosen node from
module i is given by

〈si〉j = δijFi(1)+kintraFi(1)
∂Jii

∂xj

(1)+q
kinter

1− βi

m
∑

l=1
l 6=i

βj

∂Jli

∂xj

(1).
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∂J11

∂x1
(1) + · · ·+ ∂Jmm

∂x1
(1) = F1(1) + kintraF1(1) +

q2 kinter

1− q kinter
+

q2 kintra kinter(
∂J11

∂x1
(1) + · · ·+ jmm)

1− q kinter

⇒ ∂J11

∂x1
(1) + · · ·+ ∂Jmm

∂x1
(1) =

F1(1)(1 − q kinter) + q2 kinter

(1− kintraF1(1))(1− q kinter)− q2 kintra kinter

(18)

Thus, the critical occupation probability of intercon-
nected nodes, qc, above which a giant component emerges
is given by

qc =











0 m < m∗(kinter)

−b+
√
b2 − 4ac

2a
m > m∗(kinter)

(19a)

(19b)

where a = kintrakintere
−kinter , b = kintra + kinter −

kintrae
−kinter−kintrakintere

−kinter , and c = kintrae
−kinter−1.

Note that two possible solutions emerge, one from Eq. 19
and one trivial solution qc = 0, corresponding to the re-
moval of all the interconnected nodes. Each solution cor-
responds to a distinct percolation regime, separated by a
critical number of modules, m∗, defined as the crossing
of the two solution curves and is a function of the de-
gree of interconnections, see Eq. 4. From these solutions,
we obtain the critical occupation probability pc, using
Eq. 15.
The value of m∗ is obtained when qc = 0 is a solution

of Eq. 19b. In other words, by setting q = 0 in the
denominator of Eq. 18, which yields

(k − k∗inter)e
−k∗

inter = 1 (20)

where k∗inter is the mean inter-degree at the point m∗.
From Eq. 4 , k∗inter is related to m∗ according to

k − k∗inter

k∗inter
=

α

m− 1

⇒ k∗inter =
k(m∗ − 1)

α+m∗ − 1
(21)

Replacing Eq. 21 in Eq. 20, we obtain the implicit equa-
tion

k

(

1− m∗ − 1

α+ 1−m∗

)

e−k m∗−1

α+1−m∗ = 1 (22)

from which we can derive m∗ as a function of k and α.
Once the giant component emerges (p > pc), the frac-

tion of occupied nodes from module i in the giant com-
ponent, Si is given by

Si = e−kinter(1 − q)(1− e−kintraSi)+ (23)

+ q
(

1− e
−(kintraSi+

kinter
1−βi

∑

j 6=i

βjSj))

.

Substituting βi =
1
m

in Eq. 23, yields

S = e−kinter(1−q)(1−e−kintraS)+q(1−e−(kintraS+kinterS)).
(24)

For kintra = 0, only a fraction q of the nodes in the net-
work are connected, and one obtains S = q(1 − e−kS),
and for kinter = 0, S = (1−e−kS), recovering the standard
results for percolation in single ER networks [40, 41].

For non-equal modules size, we can solve Eq. 23 nu-
merically. We obtain the same qc in this case, and in
particular that S = Si for every 1 ≥ i ≥ m, i.e. modules
of different sizes percolate at the same p. This result can
be explained by noting that the average inter- and inter-
degrees of nodes are independent of modules size. Thus,
the number of interlinks connecting to a module (as well
as the number of interlinks connecting nodes inside the
module) is proportional to its size, see Eq. 23. Therefore,
the fraction of nodes in the giant component from each
module is equal to the total fraction of nodes in the giant
component.

In the case of scale-free networks [1], the giant com-
ponent and qc can be obtained numerically from the an-
alytical results. In particular, we consider the case of
scale-free networks with average intra- and inter-degree
kintra, kinter respectively, generated by [44]

G(x) =

K
∑

k=sintra

(k + 2)
1−λ − (k + 1)

1−λ

(K + 2)
1−λ − (sintra + 1)

1−λ
xk (25)

+

K
∑

k=sinter

(k + 2)
1−λ − (k + 1)

1−λ

(K + 2)
1−λ − (sinter + 1)

1−λ
xk

where sintra and sinter are the minimal degree cutoff (cho-
sen such that the desired mean degree is obtained), and
K = 1000 is the maximal degree cutoff. The degree dis-
tribution of occupied nodes is then generated by

F (x) = pnot(1−q)

K
∑

k=sintra

(k + 2)
1−λ − (k + 1)

1−λ

(K + 2)
1−λ − (sintra + 1)

1−λ
xk+qG(x)

(26)
where pnot is fraction of nodes with no interconnections.
From the Eqs. 25-26, we obtain and the size of the giant
component

S = F (1)− F (u), where u = 1− F ′(1) + F ′(u). (27)

By solving numerically the set of analytic Eqs. 25-27, we
obtain a critical occupation probability of interconnected
nodes, qc, for which u is smaller than 1. Comparing with
the trivial occupation probability qc = 0 for which the
modules are disconnected, we obtain the critical number
of modules, m∗.
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FIG. 2. (Color online) Two percolation regimes when attack-
ing interconnected nodes. (a) pc as a function of m calculated
for ER networks with k = 4, α = 100. Simulation points ob-
tained from at least 1000 simulation runs of networks of size
N = 600 000. Solid lines represent the analytical result ob-
tained in Eqs. 15 and 19. (b) Two-parameter (α, m) phase
diagram for a fixed mean degree k = 4. The black line corre-
sponds to the critical number of modules m∗ obtained from
Eq. 22. (c)-(d) Fraction of nodes in the largest cluster S and
second largest cluster Ssecond respectively, with solid lines rep-
resenting the analytical result obtained in Eq. 24 and symbols
are from simulations.

IV. RESULTS

In Fig. 2, we provide support to the analytical solution
given in Eqs. 15-25 by extensive numerical simulations of
ER modular networks of size N = 600 000 nodes. First,
we show the percolation threshold as a function of the
number of modules m for ER networks where the mean
degree is kept fixed k = 4 and α = 100, see Fig. 2(a). In
the regime m < m∗ the attack on interconnected nodes
mainly breaks the connectivity between the modules leav-
ing their internal structure intact. Therefore, only the
removal of all the interconnected nodes (qc = 0) breaks
down the giant component. Note that, as demonstrated
in Fig. 2(c) and 2(d), for m < m∗ the percolation transi-
tion is abrupt, while for m > m∗ it is continuous. Note
that for m < m∗, pc is defined as the point where the dis-
continuous jump occurs, i.e. where the modules become
separated.

In order to demonstrate this phenomena, in Fig. 3 we
visualize the giant component at S = 0.1 (close to full col-
lapse) with interconnected nodes shown in black and all
other nodes colored according to the module they belong
to. For a network with m = 4 < m∗, random node failure
destroys the internal structure of the modules evenly, see
Fig. 3(a). In this random failure case, all the modules al-
ways appear in the giant component (i.e. there is always
at least one node from each module in the giant compo-
nent) as shown in Fig. 3(e), and the size of modules is
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FIG. 3. (Color online) Size of modules in the giant com-
ponent at S = 0.1. Visualization is shown for networks of
size N = 2000 with mean degree k = 4 and α = 10, at the
point where the giant component contains 10% of the nodes
(S = 0.1) (a),(c) for random node removal, (b),(d) for attack
on interconnected nodes. (e)-(f) Distribution of the number
of modules in the giant component and second largest com-
ponent at S = 0.1. A module is considered to be part of a
component if at least one of its nodes are part of the com-
ponent. (g) Distribution of the size of modules in the giant
component at S = 0.1, normalized by the initial module size.
Note that in (g), the size of modules is measured by recon-
structing the graph of each module in the giant component,
and counting its number of nodes in this graph. In other
words, interconnected nodes that have been detached from
their original module are not considered. Results obtained by
at least 1000 simulation runs of networks of size N = 600 000
with mean degree k = 4.

very narrowly distributed, see Fig. 3(g). In contrast to
random failure, when attacking the interconnected nodes
(at S = 0.1), see Fig. 3(b), not all the modules remain in
the giant component (for example, in Fig. 3(b) there are
only two of them). However, the modules that do remain,
are almost intact, containing 14.6% of their initial nodes,
significantly more than in the random case (10%). Thus
for m < m∗ the network collapses by the breakdown of
internally connected modules from the network.
In contrast, for m > m∗, the interconnected nodes

play an important role also in the internal structure of
modules and therefore their removal breaks down both
the internal and external connectivity. Nevertheless, the
attack still leaves them slightly more complete than in
the case of random removal, see Fig. 3(c)-(d). Further-
more, in the case of attack, almost all modules appear
in the giant component (see Fig. 3(f)), and thus their
relative size is smaller compared to the m < m∗ case
(see Fig. 3(g)). As m increases, the difference between
attack and random case becomes smaller since the net-
work becomes more homogeneous and in the very large
m limit, the modules stop being a factor at all, result-
ing in the convergence of the percolation threshold to the
one obtained for random failures. When compared with
degree-based attacks, studies suggest a phase transition
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(a)-(b) pc as a function of m calculated for scale-free networks
with mean degree k = 4, α = 100, and scaling exponents λ =
2.5 and λ = 2.9 respectively. Simulation points obtained from
at least 1000 simulation runs of networks of size N = 600 000.
Solid lines represent the numerical solution for Eqs. 25-27.
Two-parameter (α, m) phase diagram for a fixed mean degree
k = 4. The black line in (d) corresponds to the critical number
of modules, m∗ obtained by solving Eqs. 25-27 numerically
and finding the point where the two possible solutions for pc
cross. Note that in (c) there is no black line sincem∗ approach
to infinite for λ = 2.5.

at which removing interconnected nodes is more efficient
when failure probability is low and/or when modules are
dense, but targeting high-degree nodes is more efficient
otherwise [29, 30].

In Fig. 2(c)-(d) we show the size of the giant com-
ponent, S and the second giant component, Ssecond as
a function of p, observing an abrupt decrease in S due
to failures of entire modules for m < m∗. In addition,
while for m = 100 > m∗ we observe a regular second
order percolation transition characterized by the contin-
uous decrease of S and the sharp peak in Ssecond, the
case of m < m∗ demonstrates an abrupt transition char-
acterized by the sudden collapse of Ssecond. Note that in
this case, pc is considered as the point where the discon-
tinuous jump occurs.

Figure 2(b) shows the two-parameter (α, m) phase di-
agram for a fixed mean degree k = 4. The black line cor-
responds to m∗ as a function of α obtained from Eq. 22.
Below the black line, the percolation threshold is con-
siderably higher indicating that systems with number of
modules below m∗ can be very fragile. As the number
of modules increase, the system becomes more balanced,
and pc values are decreasing until converging to the per-
colation threshold of single ER networks for large m.

In Fig. 4, we show analytical and numerical results for
scale-free networks with scaling exponent λ and α = 100,
for both intra- and inter- degree distributions. Here the
critical point, m∗ is significantly larger compared to ER
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FIG. 5. (Color online) Critical concentration of intercon-
nected nodes (a)-(c) pc as a function of kinter calculated for (a)
ER and (b)-(c) SF networks with m = 10 and kintra = 2. Sim-
ulation points obtained from at least 1000 simulation runs of
networks of size N = 600 000. Solid lines represent the analyt-
ical result obtained in Eqs. 19,25-27. (d)-(f) Two-parameter
(kintra, kinter) phase diagram for a fixed number of modules
m = 10. The black line corresponds to the critical mean
inter-degree k∗

inter at which the two pc solutions cross.

networks, with m∗ = 169 for λ = 2.9 and m∗ goes to
infinity for λ = 2.5, see Fig. 4(a)-(b). In other words,
for λ = 2.5, the system always collapses as a result of
the modules becoming disconnected. This is due to the
resilience of scale-free networks, which makes them very
hard to fragment the modules internally. However, while
the modules themselves are robust, in scale-free networks,
only few nodes are needed to interconnect the modules,
consequently putting the entire system at high risk, see
Fig. 4(a)-(d).
Finally, it is possible to investigate pc as a function of

kinter for fixed m and kintra. A similar transition in pc is
observed (see Fig. 5(a)-(c)), but the critical point is now
a function of the concentration of interconnected nodes,
k∗inter. In order to find k∗inter we compare the value of pc
when kinter = 0 to the pc for a single-module network
with mean degree k = kintra. Fo ER networks we obtain

kintrae
−k∗

inter = 1 (28)

In other words, k∗inter is the point where it is equally easy
to disconnected the modules (by removing all intercon-
nected nodes) and to break the modules internally. For
scale-free networks, k∗inter obtained by solving Eqs. 25-27
numerically and finding the point where the two pos-
sible solutions for pc cross. In addition, we show the
two-parameter (kintra, kinter) phase diagram for a fixed
number of modules m = 10, see Fig. 5(d)-(f). For ER
networks, we obtain k∗inter(1) = 0 meaning that modules
with mean intra-degree 1 become fragmented as soon as
kinter is positive in agreement with the known percola-
tion threshold for ER networks. Scale-free networks ex-
hibit a high-risk area depending almost solely on kinter
and independent of kintra. While broader degree distri-
butions result in more robust single-module networks, in
this case, the opposite is true. The scale-free network
with λ = 2.5 has a very large high-risk area compared
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with the other more homogenous networks. The reason
is that a broader distribution with the same average de-
gree implies that there are more low-degree nodes. Thus
although the modules themselves remain robust, there
are less interconnected nodes, which make it easier to
break the network.

V. DISCUSSION

In summary, motivated by examples from real-world
modular networks, we consider attack on interconnected
nodes, those connecting between modules. Unlike the
case of random failure, in such attacks we find that for
each α there exists a critical point m∗ below which the
system first separates abruptly into modules before be-
ing completely destroyed. Our analysis reveals rich phase
transition phenomena that could be applied to a wide
variety of systems, from the optimal design of infrastruc-
ture, efficient immunization approach in modular net-
works (where epidemic spreading can be prevented at a
low cost by immunizing interconnected nodes), and new
insights and understandings of brain disorders. In par-
ticular, the modular architecture of neural structural and
functional networks is considered a fundamental principle
of the brain [11], and disrupted brain modular organiza-
tion is related to neuropathology [31, 32]. For example,

while schizophrenia has been related to a break down
in brain modules, Alzheimers disease has been related
to disrupted connectivity between modules [31]. Sim-
ilarly, recent studies have empirically uncovered differ-
ences in the modular structure of semantic networks of
high versus low creative individuals,suggesting a new per-
spective on the effect of modularity on memory and lan-
guage [45, 46]. Thus, our findings of the two different
regimes may shed further light on the role modularity
plays in neurocognitive processes.
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S. Gonçalves, arXiv:1502.00353 (2015).

[28] N. Masuda, New Journal of Physics 11, 123018 (2009).
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