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Abstract 

The fragilities of over 150 different network-forming glass melts are shown to conform to 

a common dependence on just one parameter: the connectivity of the weakest network 

structure present in the associated glass solid.  This includes both non-oxide network-

forming chalcogenide melts as well as a variety of alkali oxide glasses and spans a broad 

range of connectivity, φ, from polymeric structures (φ = 2) to over-constrained random 

networks with connectivities well in excess of the rigidity threshold (φC = 2.4).  A 

theoretical framework for the origin of this universal pattern is offered within the context 

of entropic models of the glass transition. 
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I. Introduction 

 

 Advanced uses for amorphous solids include metallic glasses[1], semiconductor 

devices[2], solid state electrolytes[3], nuclear waste encapsulation[4], and bone 

replacement therapy[5].  Yet, in spite of a century of investigation, the glass transition 

through which most of these materials are formed remains an unsolved problem of 

condensed matter physics[6-8].  According to many[7-9], the key challenge of the glass 

transition lies in understanding the mechanism by which a supercooled liquid (SCL) 

solidifies without ordering - a mechanism in which both thermodynamics and kinetics 

appear to be intertwined.  Unlike crystallization in which a fixed amount of entropy is 

removed in a first order transition, the SCL avoids ordering by virtue of an enormous 

increase in viscosity, η, whilst a comparable amount of entropy is lost gradually with 

cooling.   This gradual loss of excess entropy ( Sex , the entropy in excess of the 

vibrational content present in the crystal) represents a steady decrease in accessibility of 

phase space that is limited by the viscosity. 

 In the potential energy landscape (PEL) picture that has become popular for 

describing protein folding[10-12] as well as the thermodynamics of SCLs[13-17], this 

inaccessibility is readily understood.  The potential energy landscape is a representation 

of the potential energy surface as a function of the 3N coordinates of the N atoms that is 

characterized by hills and valleys separated by saddle points.  As the system is cooled 

toward the glass transition point, it becomes trapped into ever smaller basins of the PEL 

and becomes unable to explore the configurations of neighboring basins owing to the 

intervening energy barrier[16,17].  The accessibility of phase space is, thus, also limited 
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by the molecular relaxation time of the SCL that limits the likelihood for transitions over 

these barriers.   The relaxation time scales with the viscosity and, in the Adam-Gibbs 

model[18], can be expressed in terms of the excess entropy as  

 η =ηo exp B /TSex( ) ,         (1) 

where ηo and B are constants.  Although other models[19-21] have been proposed for the 

temperature dependence of the viscosity, the Adam-Gibbs model is most often cited and 

is supported by experiment[22,23].  In this model the kinetic slow down of the SCL is 

effectively driven by the decreasing entropy[24] and the divergence of the relaxation time 

is choreographed to coincide with the final loss of excess entropy, narrowly averting a 

potential "entropy catastrophe"[25] (where Sex < 0) by enforcing a loss of ergodicity for 

all observers.   In actual practice, the loss of ergodicity occurs when the relaxation time 

exceeds common laboratory timescales (≈ minutes) at the glass transition temperature Tg 

where one observes a step-like decrease in specific heat arising from the abrupt change in 

dSex / dT [26,27]. 

 For more than 40 years, fragility[26] has served as the dominant means of 

classifying different glass-forming materials and has guided most theoretical efforts to 

connect glass-forming properties to structural bonding.  The fragility is commonly 

quantified by the fragility index defined by the steepness of the viscosity in a scaled 

Arrhenius plot[26], 

  m =
d log10η
d Tg /T( )

T→Tg

.         (2) 

Fragile glasses (60 < m < 150) are largely populated by molecular liquids and polymers 

that owe their cohesive strength to van der Waal or ionic interactions that are long range 
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and non-directional[28].  By contrast, strong glasses (17 < m < 30) are typically network-

forming oxides (e.g., SiO2) that develop as a result of highly directional covalent or 

hydrogen[29] bonds that obey strict rules[30] regarding the numbers of bonds per atom 

(r).  Fragility is an important metric of a SCL's glass-forming tendency that 

simultaneously characterizes the rate of viscosity increase and the rate of entropy 

decrease on approach to the glass transition temperature, Tg, from above[27].  This dual 

nature of the index m readily appears when Eq. (1) and Eq. (2) above are combined to 

obtain a reduced fragility[31]:  

 

m∗ = m−mo( ) /mo =
d Sex T( ) / Sex Tg( )#$ %&

d T /Tg( )
T→Tg

=
dSex

∗

dT ∗
T∗→1

,    (3) 

where mo = B log10 e /TgSex Tg( )  ≈ 17 is the lower limit of fragility[28].  This relationship 

neatly captures the deep connection between kinetics and thermodynamics and explains 

why the fragility is so well correlated with the step increase in specific heat that 

accompanies the transition[27].   

 Because the bonds in network forming glasses (NFGs) are discrete and result in a 

well-defined network of covalent linkages between atoms, these materials provide an 

excellent platform for exploring inherent connections between fragility and the excess 

entropy of the SCL.  The NFG structure can be pictured as a collection of balls connected 

by rods and discussed within the context of rigidity theory[32-34] and constraint 

counting[35,36] approaches which consider the competition between degrees of freedom 

(of the balls) and the growing number of linear and angular constraints posed by the rods.  

Rigidity is said to percolate[33] into existence when the degrees of freedom are balanced 

by an equal number of constraints and this occurs when the average number of bonds per 
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atom, r , reaches 2.4.  To date, many studies[37-40] of chalcogenide solids have 

reported extrema in both mechanical and thermal properties near this threshold, including 

a vanishing non-reversing heat flow measured by temperature-modulated differential 

scanning calorimetry (TMDSC) argued as evidence for an "intermediate phase"[39] of 

so-called isostatic (rigid but stress-free) networks that form over a narrow window of 

compositions near r = 2.4.  More importantly, thermodynamics can be easily 

incorporated into these structural models through the addition of thermally activated bond 

breaking or bond "excitation"[41]. These excitations can be introduced using a simple 

two state (intact or broken) model[41] or by employing more elaborate methods[36]. 

 In this paper, we examine the fragility of over 150 network-forming glasses, 

including both oxide and non-oxide networks built from discrete covalent bonding.  We 

demonstrate that the fragilities of these network-forming glasses are universally 

determined by a single mean field parameter: the connectivity of the weakest network.  

This weakest network is identified by coarse-graining over any rigid structural units that 

are present and is key to observing the universal pattern.  A simple two state bond 

excitation model that incorporates both configurational and vibrational contributions to 

the excess entropy is shown to provide a theoretical framework for understanding this 

universal pattern. 

 

II. Background 

 In Fig. 1 the reduced fragility for a series of chalcogenide glasses[37,38] of the 

form GexAsxSe1-2x is plotted as a function of φ = r , the average atomic bond number.  

With the addition of Ge and As, the average bond number increases from r  = 2 while 
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the fragility drops from m* ≈ 4 to a plateau of roughly m* = 1 beyond the rigidity 

threshold at r  = 2.4.  Quite remarkably, the fragility of a series of sodium phosphate 

glasses[42] exhibit precisely the same decrease but as a function of φ = n , where n  is 

the average bridging oxygen per network-forming cation (here, the phosphor atom).  As 

alkali are reduced from the metaphosphate (NaPO3), n  increases from n  = 2 to 3 and 

the fragility decreases from m* ≈ 4 to the same plateau and finally to m* ≈ 0 in P2O5.  

This pattern is repeated again for a series of aluminophophate glasses[43] as n  is 

increased from n  = 2 by the introduction of aluminum oxide which enters the oxide 

network structure mainly in the form 6-fold coordinated AlO6. 

 To understand the rationale for adopting n  as an alternative measure of 

connectivity for the oxides, we highlight several important differences between 

chalcogenide and oxide networks.  The O2- anion may share a common chemistry with its 

companions (S2- and Se2-) in column six in the period table, but the manner in which it 

interacts with various network-forming cations (e.g., Si4+, B3+, P5+, etc.) is markedly 

different and results in quite different physical properties of the glasses that are 

formed[6,29,43].  Oxide glasses, for example, have a larger bandgap than the 

chalcogenides and are transparent at visible wavelengths while many chalcognides are 

opaque and exhibit semiconducting properties.  Chalcogenide networks are also more 

loosely bound than their oxide counterparts[44].  Owing to its smaller size, the O2- anion 

has 50% greater "field strength" (ratio of the valence charge to ion radius) than either S2- 

or Se2- and is able to form stronger bonds with the network-forming cation.  This stronger 

bonding is evident in Raman scattering where the vibrational modes of the oxides appear 
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at energies roughly twice that of the corresponding modes in the S and Se chalcogenides.  

The enhanced bonding of the O2- anion to the cation restricts glass-forming oxides to 

form only at well-defined[30] stochiometric ratios (e.g., SiO2, GeO2, B2O3, etc.) unlike 

the chalcogenides that form glasses over a wide range of atomic compositions that permit 

the formation of homopolar bonds (e.g., Se-Se).   

 Thus, we believe the coincidence between the fragility of chalcogenides described 

by φ = r  and that of oxides described by connectivity φ = n  is not fortuitous, but 

indicates a structural equivalence with respect to how these two classes of NFGs deform 

under the sort of low frequency stress that defines the viscosity (and in turn determines 

the fragility).   This equivalence is most apparent for the case of φ = 2 where both 

systems are, topologically speaking, equivalent polymeric materials: Se is a glass of long 

chains of Se atoms and NaPO3 is a glass of long chains of PO4 tetrahedra.  Both systems 

undergo an increasing connectivity as a result of crosslinking or "polymerization".  For 

the chalcogenide, it is the addition of Ge and As that increases the mean connectivity via 

the introduction of more "rods" between the atomic "balls".  But for the phosphates, the 

short-range order (SRO) is strictly preserved[30]: homopolar bonding (e.g., P-P or O-O) 

is absent and the stronger bonding of the O2- anion with the network-forming cation 

promotes a stiffening of the PO4 tetrahedral unit relative to the interconnecting bridging 

oxygen bonds[30].  Degrees of freedom inside the tetrahedral unit are internalized and 

cease to participate in the sort of low frequency deformations that define the viscosity.  

This causes the tetrahedral units to assume the role of "balls" interconnected by a network 

of bridging oxygen "rods".   In effect, we have argued[43-46] that the common pattern in 

Fig. 1 reflects an important coarse graining of the network wherein rigid structural units 
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(RSUs), like the oxide tetrahedron, are treated as autonomous objects inter-connected 

together by relatively weaker linkages. 

 A rationale for the specific shape of the master curve in Fig. 1 is lacking, but the 

curve does lend itself well to division into two separate contributions illustrated by the 

dashed lines in the figure.  The rapid decrease at small φ is best captured using a 

quadratic function, mC
∗ ≈ φC −φ( )2 , that vanishes near φC = 2.4.  In light of how m* is 

directly related to dSex
* / dT *  in Eq. (3), we suspect this contribution is dominated by the 

configurational part of the excess entropy since it appears to vanish beyond the rigidity 

threshold when the degrees of freedom are exceeded by the bonding constraints.  The 

second contribution, that remains active above φC = 2.4 in those over-constrained NFGs 

that are populated by redundant constraints, is adequately described by a Gaussian 

centered around φo = 2.6, mV
∗ ≈ exp − φ −φo( )2 /σ 2( )  and is presumably dominated by the 

vibrational contribution[27,47] to the excess entropy.  

 Included in Fig. 1 are the fragilities of several alkali borate glasses plotted as a 

function of the average bridging oxygen per B atom, φ = n .  In B2O3, all B are 3-

coordinated and this coordination increases with addition of alkali oxide over the range of 

compositions shown[48].  Clearly the fragility now increases with increasing n  in 

contradiction to all the other systems shown in the figure.  The decrease of fragility with 

crosslinking of the polymeric glasses discussed previously is anticipated on approach 

toward the rigidity threshold since excess entropy should diminish as constraints begin to 

overtake degrees of freedom.  But the increase of fragility in the borates suggests this 

same entropy can somehow be returned by adding more, redundant, bonds to an already 
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highly over-constrained network whose degrees of freedom have long since been 

vanquished.   The resolution to this contradiction resides in the peculiar intermediate 

range order (IRO) of the alkali borate system[45] that contains RSUs at length scales 

beyond that of the SRO[48,49].  In amorphous boron oxide, some 65 to 75% of the boron 

atoms participate in 3-membered "boroxol" rings[49] illustrated in Fig. 1.  A sharply 

defined Raman mode identifies the ring as a RSU and an additional level of coarse 

graining must be applied to determine the mean connectivity of the lattice of weakest 

links (the φ-network) relevant to the fragility.  Although an isolated BO3 unit has n = 3 

connecting vertices, one of the two vertices of a BO3 unit participating in a boroxol ring 

is (topologically) redundant and this reduces the effective connectivity of the BO3 unit to 

n = 2.  Treating the BO3 units in these rings (and other RSUs that form at higher alkali 

content[49]) in this way, coarse graining was applied[45] to arrive at φ = nIRO  

describing the network of weakest links whose fragility (see Fig. 1) is seen to again 

conform to the master curve.   

 

III. Analysis 

 In the present work, we return to the chalcogenides to consider a wider range of 

compositions of the form GexAsy(S,Se)1-x-y formed by crosslinking either Se or S with Ge 

and As.   Published data[37,38,50-52] for some 74 chalcogenide glasses have been 

collected for analysis and the compositional range is shown in the ternary diagram in Fig. 

2.   These include glasses on either side of the stoichiometric ratio (indicated by the join 

between Ge(S,Se)2 and As2(S,Se)3) whose chalcogen contents are characterized[52] by 

the deviation from the stoichiometric join, z =1−3x − 2.5y .  Glasses with z > 0 are rich in 
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chalcogen element while glasses with z < 0 are deficient.  Starting from the chalcogenide 

corner of the ternary diagram, the network structure evolves from one of long -Se- chains 

that are infrequently crosslinked to compositions near the stoichiometric join (z = 0) 

where these chains have shortened substantially.  Here, homopolar bonds of the form Se-

Se are rare[53] and heteropolar bonds (Se-Ge, Se-As) are common while beyond the join 

(z < 0), the deficiency of Se atoms forces the appearance of unfavorable metal-metal 

bonds (Ge-Ge, As-As, Ge-As).   

 For all these glasses, the average number of bonds per atom can be calculated as 

r = 4x +3y+ 2 1− x − y( ) and the fragility is plotted as a function of φ = r in the inset 

of Fig. 3 together with the master curve developed by the oxide glasses discussed above.  

For compositions between r = 2 and r ≈ 2.5, the fragility agrees favorably with the 

master curve.  However, in every instance for r > 2.5, the fragility begins to increase 

with increasing r in already over-constrained networks mimicking the same 

contradiction that plagued the alkali borates.  Intermediate range order has been 

reported[53-58] in these chalcogen-deficient (z < 0) glasses and the two forms of RSUs 

that develop (illustrated in Fig. 2) are the likely culprit for the contradictory increase in 

fragility with increasing r .  In the As-rich regions, Raman spectroscopy has identified 

the formation of As4Se3 and As4Se4 molecules in roughly equal abundance[54,56].  These 

molecules are fully detached from the network and, as Aitken rightly noted[59], provide 

no connectivity for it.  In the Ge-rich regions, Se deficiency leads to an evolution of 

GeSe4/2 tetrahedra from corner sharing to edge-sharing (ES) configurations as evidenced 

by the growth of a discernable Raman mode associated with vibrations of the 2-

membered ring that is created[57,58].   Much like the boroxol rings discussed earlier, the 
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ES GeSe4/2 units form RSUs in which each Ge has a redundant bond (r is thus reduced 

from 4 to 3) and each Se provides no connectivity to the external network (r = 0).   

 Both of these RSUs produce a reduction in the coarse-grained connectivity and 

could potentially resolve the conundrum if the fractions of Se in molecules, fSe
M x, y( ) , 

and in ES units, fSe
ES x, y( ) , were accurately known.  A glass of N atoms contains 

NGe = xN Ge atoms, NAs = yN  As atoms, and NSe = 1− x − y( )N  Se atoms.  An equal 

number of Ge and Se atoms, NGe
ES = NSe

ES = fSe
ES x, y( )NSe , would occur in ES units while 

free molecules would consume NSe
M = fSe

M x, y( )NSe  Se atoms and NAs
M =

8
7
fSe
M x, y( )NSe  

arsenic atoms (given the equal abundance of As4Se3 and As4Se4).  Combining these 

distributions with the reduced bond numbers described above, the coarse-grained φ-

network would be given would be: 

φ = rIRO =
1
N
4 NGe − NGe

ES( )+3 NAs − NAs
M( )+ NGe

ES"
#

$
%+ 2 NSe − NSe

ES − NSe
M( ){ }

=
1
N

4 NGe − fSe
ESNSe( )+3 NAs −

8
7
fSe
MNSe + fSe

ESNSe
&

'
(

)

*
++ 2 NSe − fSe

ESNSe − fSe
MNSe( )

,
-
.

/
0
1

= 4x +3y+ 2 1− x − y( )− 3 fSe
ES x, y( )+ 38

7
fSe
M x, y( )

,
-
.

/
0
1
1− x − y( )

= r − 3 fSe
ES x, y( )+ 38

7
fSe
M x, y( )

,
-
.

/
0
1
1− x − y( )

  (4) 

 Raman studies[54-57] provide mainly qualitative evidence for the growth in 

numbers of RSUs along either of the two binaries.  Along the As-Se binary, a linear 

increase in the Raman mode corresponding molecule formation is indicated and the value 

of fSe
M x, y( )  is reported[54] to be as high as 40% in As3Se2.   Similarly, the Raman mode 

associated with ES units increases in a linear manner[57] along the Ge-Se binary.  
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Otherwise, accurate values for the fractions fSe
M x, y( )  and fSe

ES x, y( )  throughout the 

ternary region are not known and so the coarse graining cannot be unambiguously 

applied.  Instead, what we can do is test whether the coarse graining described in Eq. (4) 

is capable of transposing the errant fragility back onto the master curve using a 

reasonable model that can capture the linear increase in the numbers of RSUs seen 

experimentally with the least intervention.  For the molecules, we adopt a simple linear 

dependence that involves only a single adjustable parameter: 

 
fSe
M z, y( ) =

0 z > 0
BSe
M y / ymax z( )( ) z = BSeM 2.5y / (1− z)( ) z z < 0

"
#
$

%$
  (5) 

This linear dependence on z is augmented by an additional (linear) weighing that operates 

along any given join of fixed z to force molecule formation to be maximized at the As 

binary, ymax z, x = 0( ) = (1− z) / 2.5y , while vanishing at the Ge binary.  An identical 

strategy is adopted for the fraction of Se in ES units: 

 
fSe
ES z, x( ) =

0 z > 0

BSe
ES x / xmax z( )( ) z = BSeES 3x / (1− z)( ) z z < 0

"
#
$

%$
   (6) 

Together with Eq. (4), the model is limited by just one parameter for each of the two 

RSU species (BSe
M  and BSe

ES ) and these have been independently adjusted to obtain a 

viable rIRO  that could transpose the errant fragility onto the master curve.  

 

IV. Results 

 The result of coarse graining using values of BSe
M  = -0.4 and BSe

ES  = -0.7 is shown 

in Fig. 3.  Despite the wide compositional range of the Se glasses, spanning from the As 

binary to very near the Ge binary, this single set of parameters is remarkably successful at 
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transposing the fragility back onto the master curve.  Moreover, the values of fSe
M x, y( )  

and fSe
ES x, y( )  produced by the model compare favorably with literature estimates.  As an 

example, along the As-Se binary where Lucas[54] has reported fSe
M z = −0.5, y = 0.6( )  ≈ 

40%, the model favors a value of 20%.  The agreement is not perfect, but the model 

prediction is considered reasonable as it is of a similar order of magnitude.  Applied to 

the sulfide data, the same model requires values (BS
M  = -0.8 and BS

ES  = -1.3) that are 

roughly double those of the selenides, consistent with Aitken's qualitative assessment[59] 

that molecule formation is the "dominant structural component" in the sulfides near the 

As-S binary (i.e, implying that fS
M z ≈ −0.3, x ≈ 0.1( ) ≥ 50% ). 

 Of the 74 compositions, just three data points (two open squares and one filled 

triangle in Fig. 3 at m* ≥ 2.5) deviate noticeably from the master curve.  This deviation is 

expected and deserves a few brief comments. The last two compositions at the extremes 

of Se-deficiency in the As-Se binary are known[54] to contain As4 molecules in addition 

to the As4Se3 and As4Se4 molecules discussed above.  These As4 molecules are not 

present at y < 0.55 and were omitted in formulating our single parameter model.  

Including the As4 molecules would shift the rIRO  of these last two compositions only to 

lower values and, indeed, just 10% of As in As4 is sufficient to achieve the needed 

adjustment for the datum corresponding to As3Se2.  As for the other two errant data 

points in the sulphide system (open squares), it is reported that As4S4 and As4S3 

molecules increase in numbers below z = 0 but, unlike the selenide system, these 

molecules abruptly vanish beyond z < -0.3[50,56].  If this cutoff of the molecule 
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formation were included, it produces precisely the needed shift of these two data points to 

larger rIRO  placing them onto the master curve. 

 

V. Discussion 

 One finds in Fig. 3 a remarkably common pattern that develops for the fragility of 

over 150 oxide and non-oxide NFGs as a function of the mean field connectivity of 

weakest linkages obtained through coarse graining over rigid structural units.  This 

includes most of the major oxides (borates, germanates and phosphates) and over 70 

chalcogenide compositions.  The universal curve indicates that it is the network of 

weakest links, the φ-network, that is relevant for the liquid's viscosity as this is the 

network that dictates the fragility.  But how might we understand the origin of such a 

universal dependence given the relation of fragility to changing excess entropy found in 

Eq. (3)?  In the following sections, we explore possible explanations. 

 We begin by applying the chain rule to Eq. (3): 

 
m* =

dSex
*

dT * T→Tg

=
dSex

*

dφ
dφ
dT * T→Tg

.      (7) 

The first term represents a measure of how much entropy gain is produced in the φ-

network whenever φ increases by some small amount, regardless of whether the 

connectivity change is produced thermally or chemically.  That is, dSex
* / dφ  is inherent to 

the chemical structure of the NFG at a given composition.  By contrast, the second term 

represents the action of thermal energy as a catalyst for disrupting the φ-network through 

the breaking and reformation of bonds.  For this term, we appeal to a simple classical 

thermodynamic model for insight.  
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Two Level System Thermodynamics 

 Since the φ-network represents a structure of weakest level connections, it is not 

unreasonable to develop dφ / dT *  using the same two-level system approach[41,47] that 

was first advocated by Angell and Rao[41] over 40 years ago.  All the φ-level bonds 

would then be treated as energetically equivalent and randomly "excited" by the thermal 

field.   Every bond that is excited from its intact ground state to an excited broken state 

incurs a corresponding change in the Gibbs free energy, ΔG = ΔH - TΔS.  The partition 

function contains just two terms and the (molar) fraction of intact (un-excited) bonds is 

given as PI = 1+ exp −ΔG / RT( )( )
−1

.  This probability is plotted in Fig. 4 for the fixed 

enthalpy ΔH = 2 kcal/mol at a series of ΔS between 1 to 7 cal/mol K and illustrates many 

of the points that were previously emphasized[41,47].  Firstly, the transition point (near 

200 K, in this example) is determined by ΔH while ΔS largely influences the rate (i.e., 

dφ / dT * ) at which the intact bond probability decreases at temperatures above the 

transition.   Secondly, the bond probability varies in a linear fashion over some region 

just above the transition and, as highlighted in the inset, the slope of this linear region is 

roughly proportional to the value of ΔS which, by definition, equals dSex
* / dφ .  Since this 

slope is also proportional to the dφ / dT * , we draw from Eq. (7) the significant 

conclusion that the fragility depends entirely on the inherent sensitivity of excess entropy 

to changes in the connectivity of the network: 

 
m*∝

dSex
*

dφ
"

#
$

%

&
'

2

.         (8) 



 16 

Thus, at least a conceptual framework is established for understanding the existence of a 

fragility master curve.   

 But what additional evidence might we provide to support this relation between 

m* and dSex
* / dφ ?  In the next section we explore the configurational entropy of a self-

avoiding walk (SAW) polymer as it becomes progressively constrained by the sequential 

addition of crosslinks.  This is a poor model for an actual NFG melt as it ignores the 

additional restrictions of inter-polymer entanglements present in the bulk.  Nevertheless, 

it is an exactly solvable model that can be readily evaluated to demonstrate how 

dSex
* / dφ( )

2
 might reasonably be expected to decrease with increasing φ in a fashion 

similar to the initial decrease in m* seen experimentally.  

 

Self-Avoiding Walk Model 

 The enumeration of the possible conformations for a 3D self-avoiding walk is 

well documented[60-62] and numerical studies have shown that the number of possible 

conformations of a chain of N monomers, having a given end-to-end separation, follows a 

scaling law of the form: 

 W N( ) = AµNN −δ ,        (9) 

where A is an arbitrary constant while µ ≈ 4.7 and δ ≈ 1.76 in 3D.  W(N) represents all the 

possible microstates for the chain consistent with its given end-to-end macrostate and the 

logarithm of this number is a precise measure of the configurational entropy of the chain.  

Now imagine that i-1 crosslinks are added the chain in such a way that the chain is 

equally subdivided by the crosslinks into i segments (as illustrated in Fig. 5).  As far as 

the polymer is concerned, each crosslink imposes a constraint by fixing the location of 
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the corresponding monomer in the chain, thus reducing its possible conformations.  

Provided the resulting chain segments remain sufficiently long for the scaling law to 

apply to each individually, the total number of conformations of the entire chain with i-1 

crosslinks would be: 

 
W

i
Ni( ) = AµNi Ni

−δ"# $%
i
= Aµ N1/i( ) N1 / i( )−δ"
#

$
%
i
 ,     (10) 

while the connectivity of the system would grow as 

 
φ = 3 i−1

N1

"

#
$

%

&
'+ 2 1−

i−1
N1

"

#
$

%

&
' .       (11) 

This connectivity changes by a small amount when i is incremented and the 

corresponding change in the configurational entropy can be directly evaluated as  

 

dSC
dφ

= ΔSSAW ∝ ln
W

i+1
Ni+1( )

W
i
Ni( )

#
$
%

&%

'
(
%

)%
= lnA− iδ ln i

i+1
+

,
-

.

/
0−δ ln

N1
i+1
+

,
-

.

/
0  .  (12) 

In Fig. 5, we have plotted ΔSSAW against φ for the case of N = 100.  The curve can be 

shifted vertically by the arbitrary parameter A (here chosen to be A = 1) but is otherwise 

largely independent of the actual value of N used.  When crosslinks are initially added, 

the entropy decreases (ΔSSAW < 0).  This decrease does not remain fixed with increasing 

connectivity, but becomes ever smaller in magnitude as the polymer chain is increasingly 

constrained.  The change in the entropy becomes vanishingly small near φ = 2.3 (in the 

instance where A = 1), but at this point (i ≈ 30) the chain segments are less than about 3 

monomers in size and the scaling relationship of Eq. (9) has likely become invalid.   The 

square of the entropy change, corresponding to m*, is included in Fig. 5 and compares 

favorably with the rapidly descending curve fit in Fig. 1 proposed to describe the 

configurational portion of the master curve.  Again, the SAW model is a poor 
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approximation for the bulk polymer and the purpose of examining this simplistic model is 

rather to illustrate how the configurational entropy change dSex
* / dφ  could readily 

develop a decrease with increasing connectivity in qualitative accord with the observation 

for m*.   

 

Excess Vibrational Entropy 

 While it seems intuitive that the configurational entropy would vanish in the 

vicinity of the rigidity threshold since this marks (in a mean field sense) the connectivity 

at which the degrees of freedom are first exceeded by an equal number of bonding 

constraints, it is clear that the reduced fragility does not similarly vanish at this location, 

but languishes near a value of m* = 1 before appearing to vanish near φ = 3.  Thus an 

additional contribution to Sex
*  must be active in these over-constrained networks that is 

non-configurational in origin.  Many have alluded to a vibrational contribution[9,27,47] 

to the excess entropy of the SCL present in addition to the configurational one.  Again, 

this vibrational contribution is one in excess of the crystal's vibrational entropy and is 

often described as an entropy change associated with a change in the vibrational density 

of states (DOS) that results when a bonding constraint is removed to produce a local 

floppy mode at the expense of a higher frequency mode[47].  The vibrational contribution 

is also thought to be related to the presence of the so-called boson peak[47] - a low 

energy addition to the DOS beyond that of the Debye manifold that appears to be 

endemic to amorphous solids.  Studies of the boson peak suggest that it is most prominent 

in strong glassformers[63,64] and, indeed, these are the glass compositions (i.e., φ > 2.6) 

where the second contribution to m* is most dominant.  Admittedly, this second 
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contribution is poorly understood at the present time, but the fact that it vanishes for φ-

networks at φ = 3 is consistent with the expectation that excessively constrained 

networks, containing a vast number of redundant bonds are less likely to produce a local 

floppy mode when a bond is randomly removed.  

 

Intermediate Phase 

 Lastly, we entertain one more experimental finding that supports our proposition 

that the universal fragility master curve is a consequence of the inherent dSex
* / dφ  of the 

φ-network of weakest linkages.  As mentioned in the introduction, studies using 

temperature-modulated DSC (TMDSC) have revealed a narrow range of NFG 

compositions near the rigidity threshold whose so-called "non-reversing" heat flow 

becomes vanishingly small.   This non-dissipative feature has lead some to propose that 

glasses in this compositional range represent an "intermediate phase" comprised of 

isostatic (rigid but stress-free) networks.  

 In ordinary DSC experiments, the sample temperature is scanned in a controlled 

manner while heat flow into or out from the sample is measured.  In TMDSC, a 

temperature modulation is added to the temperature ramp and the heat flow can be 

separated into reversible and non-reversible contributions[65].  This modulation of 

temperature drives minor changes in the connectivity that in turn generate changes in the 

excess entropy that can be approximated by the Taylor expansion: 

 dSex =
∂Sex
∂φ

"

#
$

%

&
'
φ

dφ + 1
2
∂2Sex
∂φ 2

"

#
$

%

&
'
φ

dφ( )2 +!.     (13) 
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The first term in the series vanishes over a cycle and represents the reversing part of the 

heat flow.  By contrast, the second term in the series is non-vanishing and represents the 

non-reversing heat flow that produces a net transfer of heat during the cycle.  This non-

reversing heat flow would only vanish when the curvature, d 2Sex
* / dφ 2 , vanishes or, 

equivalently, at those compositions for which the slope of the fragility mastercurve is 

nearly zero.  As seen in Fig. 3, this flattening of the mastercurve corresponds closely with 

those compositional ranges for which the intermediate phase has been identified.  

 

VI. Conclusion 

 In summary, we have found a universal dependence of glass fragility on the 

coarse-grained network connectivity obeyed by over 150 different oxide and non-oxide 

glass melts.  The key to this universality is a broadened definition of the network 

connectivity that incorporates a coarse-graining of rigid structural units that are present.  

These rigid units include the short-range ordering endemic to the oxides as well as larger 

units that reflect the intermediate-range order in some materials.  Fragility, which is 

derived from the temperature dependent viscosity, is a reflection of how the network 

responds to low frequency deformations and the resulting universality implies that it is 

only the connectivity of the lattice of weakest linkages that matter to this particular glass-

forming metric.  From a pragmatic standpoint, the result promises to simplify the 

processing of glass items from the melt since fragility (together with Tg) defines the 

viscous response of the melt and can now be determined, in principle, from an intimate 

knowledge of the glass structure alone.  From a broader perspective, the finding 

underscores the importance of coarse graining when assessing the role of hierarchical 
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structures in physics.  Without the coarse graining, this important tie between melt 

dynamics and glass structure would otherwise remain hidden.  
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Figure 1: The reduced fragility of GexAsxSe1-2x (diamonds with φ = r ), (Na2O)x(P2O5)1-

x (squares with φ = n ), (Al(PO3)3)x(NaPO3)1-x (triangles with φ = n ) and 

(M2O)x(B2O3)1-x (solid circles with φ = n  and open circles with φ = nIRO ) plotted 

against the connectivity, φ.  Here the fragility has been reduced using mo = 17.  Two 

dashed lines indicate a curve fit combining a quadratic function that vanishes at 2.4 and a 

Gaussian centered near 2.5.  The inset shows a snippet of the boron glass structure 

illustrating the boroxol ring and its reduced connectivity. 
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Figure 2: A truncated ternary phase diagram showing all the chalcogenide compositions 

under investigation.  Solid symbols are GexAsySe1-x-y.  Open squares are GexAsyS1-x-y.  

Data are taken from reference [51] (triangles), reference [37,38] (diamonds), reference 

[52] (circles) and reference [50] (squares).  The solid line connecting between the two 

binaries marks the location of compositions with z = 0.  Two dashed lines parallel to this 

mark the location of compositions with z = -0.2 and -0.4, respectively.  The remaining 

dashed line in the region z > 0 locates compositions with r = 2.4.  The inset in the upper 

left depicts edge-sharing tetrahedral units found in the Ge-rich region at z < 0.  The inset 

in the upper right depicts an As4(S,Se)3 molecule trapped in a network void. 
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Figure 3: The reduced fragility (mo = 17) of 153 different oxide and non-oxide glasses 

combined to form a mastercurve as a function of the coarse-grained connectivity of the 

network.  Open circles are various oxide glasses reported previously[46].  Other symbols 

are as defined for Figure 2.  Inset shows the same reduced fragility of the chalcogenide 

glasses when plotted using the average bond per atom, φ = r .  The intermediate phase 

(IP) is typically found in a range between r = 2.3 and 2.5. 
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Figure 4: The intact bond probability for a two state model using fixed ΔH = 2 kcal/mol 

and a selection of ΔS = 1 to 7 cal/mol K.  Regions of linear temperature dependence are 

highlighted by the dashed lines.  Inset shows the slope of the dashed lines and its rough 

proportionality with the value of ΔS.  
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Figure 5: The change in configurational entropy, ΔSSAW, obtained from Eq. (12) for the 

constrained SAW polymer coil discussed in the text, is plotted against the connectivity 

given by Eq. (11).  Inset shows the same quantity squared as well as illustrations of how 

the initial polymer coil is sequentially constrained by added crosslinks. 

 

 


