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Stochastic switching between alternative phenotypic states is a common cellular survival strategy during

unforeseen environmental fluctuations. Cells in different subpopulations proliferate at different rates in different

environments. Optimal population growth is typically assumed to occur when phenotypic switching rates match

environmental switching rates. However, it is not well understood how this optimum behaves as a function of

the growth rates of phenotypically different cells. In this study, we use mathematical and computational models

to test how the actual parameters associated with optimal population growth differ from those assumed to be

optimal. We find that the predicted optimum is practically always valid if the environmental durations are long.

However, the regime of validity narrows as environmental durations shorten, especially if subpopulation growth

rate differences differ from each other (are asymmetric) in two environments. Furthermore, we study the fate

of mutants with switching rates previously predicted to be optimal. We find that mutants which match their

phenotypic switching rates with the environmental ones can only sweep the population if the assumed optimum

is valid, but not otherwise.

Keywords: cellular fitness, phenotypic switching, stochasticity, fitness landscape, mutant, Constant-Number Monte Carlo

simulation.

I. Introduction

Cell populations experience countless environmental changes, from

simple periodic day-night cycles to unpredictable exposures to nu-

trients, antibiotics, pH or temperature shifts. One possible way to

survive in such unpredictable environmental fluctuations is to gen-

erate phenotypic heterogeneity in the cell population [1–7]. Gen-

eration of heterogeneity is a broadly observed bet-hedging strategy

of various systems operating in unpredictable environments, rang-

ing from financial markets [8] to bacteria and viruses, including

the lysis-lysogeny switch of phage lambda [9, 10], lactose utiliza-

tion [11] and chemotaxis in Escherichia coli [12], phase variation

in a number of pathogens [13, 14], cellular differentiation in Bacil-

lus subtilis [15, 16], bacterial persistence [1], among many other

examples.

Cells in phenotypically heterogeneous populations can switch from

one phenotype to another [6, 17]. Previous theoretical studies have

shown that a phenotypically heterogeneous population can achieve

maximal growth rate if its phenotype switching rates match the en-

vironmental switching rates. These earlier studies assumed that

environmental durations are long compared to phenotypic switch-

ing times, and that each environment favors a particular pheno-

type [18, 19], such that cells with the given phenotype grow fastest

in that environment. Although widely accepted, it is unclear

whether cellular and environmental switching rates must always

match for the population growth rate to be optimal. Indeed, re-

cent theoretical work introduced corrections to the assumed opti-

mum [20]. In particular, how the existence of the assumed optimum

depends on each phenotype’s growth rates in each environmental

condition has not been investigated. Likewise, it is unclear how the

validity of the assumed optimum depends on the rates of environ-

mental fluctuations.
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In this paper, we mathematically explore the parameter space of

each phenotype’s growth rates to determine how the assumed op-

timum differs from the actual optimum. We find many parameter

combinations where the computed optimum differs from the as-

sumed optimum. As expected considering the assumptions of the

earlier models, the actual and assumed optima are practically iden-

tical for a wide parameter range if the environmental durations are

long compared to the growth rates, but not otherwise. Specifically,

we find that the validity of the computed optimum depends on the

growth rates of individual phenotypes in each environment. Finally,

we study the fate of mutants with phenotypic switching rates as-

sumed to be optimal (i.e., matching the environmental switching

rates) in populations with nonoptimal phenotype switching rates.

We find that such mutants can sweep the population only if the as-

sumed optimum is valid. In other cases, when the assumed optimum

is invalid, the mutant does not sweep the population even though

its phenotypic switching rates match the environmental switching

rates.

The paper is structured as follows. First, we present a determin-

istic and stochastic mathematical model to address the question of

growth optimality in fluctuating environments. Second, we derive a

general analytic solution for the population growth rate. We then use

these models to study the optimum in the parameter space of each

phentoype’s growth rates in each environment. Next, we introduce

a mutant with switching rates matching those of the environment in

populations with different phenotype switching rates, and study its

evolutionary dynamics. Finally, we present our conclusions.

II. Models of phenotypically heterogeneous populations

For simplicity, we consider a clonal population where individual

cells can switch between two distinct phenotypic states (type I and

type II) as shown in Figure 1(A & B). Likewise, we consider that

the environment can be in two different states that alternate periodi-

cally in time (Figure 1(C)). This simplification can be generalized to

any number of phenotypes and environmental states as it was done
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previously [19].

A. Deterministic mathematical model

In the mathematical model, we allow cells to switch randomly from

type j to type i with switching rate ωi j independent of the envi-

ronments, εm. Moreover, the environment switches from state m to

state n with switching rates εnm. The growth rates, gi(εm), depend

on the environment as shown in Figure 1. The equation dictating

the dynamics of the population is given by the time derivative of the

population state vector, X(t), in Equation (1).

dXi

dt
= si j(ε)X j , (1)

where si j(ε) are elements of the matrix,

S(ε) =

[

g1(ε)−ω21 ω12

ω21 g2(ε)−ω12

]

.

Since the growth rates depend on environments, the diagonal ele-

ments si j also depend on the environment. The above linear system

of ordinary differential equations has a simple solution of the form

X(ε, t) = c1V1(ε)exp(λ1(ε)t)+ c2V2(ε)exp(λ2(ε)t), (2)

where c1 and c2 are constants determined by the initial conditions

(see Appendix), while λ1(ε) and λ2(ε) are the eigenvalues corre-

sponding to the eigenvectors V1(ε) and V2(ε) of S(ε), respectively.

We solve Equation (1) for periodically alternating environments for

either normal cells or 1 mutant cell among N0 − 1 normal cells. We

initiate the simulations with N0 = 104 cells distributed equally be-

tween the two phenotypes. We maintain the population size constant

throughout the simulations. The cells grow in environment i for a

duration of τi and then the environment switches its state, impos-

ing different growth rates for each phenotype for a duration of τ j .

We consider the phenotypic switching rates of mutants to be equal

to the environmental switching rates, (ωi j =
1
τ j

). That is, the mu-

tant cell matches its switching rates to the environmental switching

rates. We then calculate the population fitness, G(t), as a weighted

average of cellular fitness values, gi(ε), by determining the fraction

of cells, fi(ε), in each subpopulation in the given environment as

shown in Equation (3).

G(ε, t) =
2

∑
i=1

fi(ε, t)gi(ε). (3)

We averaged G(ε, t) over one period, (τ1 + τ2), once it stabilized

(changed identically through two environmental periods) as shown

in Figure 1(D).

B. Stochastic simulations

Stochastic simulations were based on Equation (1), which we con-

sidered as a stochastic processes, and simulated using a Constant-

Number Monte Carlo approach [21–24]. Initially, we assigned

N0 = 104 cells equally distributed in the two states from a two-

valued distribution. We maintained the population size constant

throughout the simulations. Then, we allowed cells to randomly

divide with growth rates gi(εm), and to switch with rates ωi j corre-

sponding to the given environment for a duration of τm. Then we

repeated these steps after the environment switched to its other state

for a duration of τn in εn. We continued the simulation by changing

environments until the overall population growth looked practically

identical within two successive environmental periods (τm + τn).

The population fitness is defined by the exponential growth rate, cal-

culated as the average increment in the number of cells in a given

generation time divided by the total number of cells entering the

generation time.

C. Identifying the fitness optimum

We mapped the population fitness landscape as function of the phe-

notypic switching rates for both models (stochastic and determin-

istic). We searched the fitness landscape for the optimum fitness

while varying the environmental durations. If the assumed opti-

mum value exists, it must be inside the landscape either match-

ing the environmental switching rates or shifted from the predicted

value (hypothesis). We defined this relative shift in position as

R =

√
(ωs

12−ω
p
12)

2+(ωs
21−ω

p
21)

2

√
(ω

p
12)

2+(ω
p
21)

2
, where ωs

i j and ω
p
i j =

1
τ j

are the op-

timal switching rates for the simulation and theoretical assump-

tion [19], respectively. If the optimum fell on the edge of the land-

scape (where at least one phenotypic switching rate is zero), we con-

sidered the assumed optimum to be invalid. We scanned the growth

rates for each phenotype in each environment by setting g1(ε1) to be

the maximum fitness for the first environment, and keeping it con-

stant. Then we looked for the fitness optimum while varying each

other growth rate as described above.
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(D)

Figure 1. (Color), A two-state Markov chain model of phenotypic switching in an environment fluctuating between two different states, ε1 and ε2. Cells

switch phenotypes between Type I and Type II. (A) Environment ε1 favors the grey Type I cells, and (B) environment ε2 favours the green Type II cells.

(C) The cells grow with growth rates gi(ε1) and switch from phenotype j to phenotype i with rate ωi j in environment ε1 that lasts for a time τ1. Then the

cells grow with growth rate gi(ε2) in environment ε2 that has a time duration τ2. (D) Averaging the time dynamics of the population fitness in fluctuating

environments. The cells grow in environment 1 for duration τ1 and then the environment switches to environment 2, imposing different growth rates for

each phenotype for a duration τ2. The switching of environments were carried out for sufficiently long time so that the distribution of the number of cells

in each state is identical for two consecutive periods. One period lasts for τ1 + τ2 duration of time. The time varying population fitness, G(ε, t), is averaged

over one such period after the distribution is stabilized.

III. Results

A. Testing the validity of the assumed optimum

It has been shown previously and it is widely accepted that the

growth rate of phentypically switching cell populations is opti-

mal when the phenotypic switching rates match the environmental

switching rates. However, the conditions for the existence of this

optimum are not well understood. Specifically, it is unclear if the

assumed optimum occurs independently of each phenotype’s prolif-

eration rate in different environments. We tested this for various sets

of growth rates. For symmetric growth rate combinations, where

each environment enhances the fitness of a corresponding pheno-

type and suppresses the other equally (Figure 2 panel (A)), both the

stochastic (upper row) and deterministic (lower row) models pro-

duced population fitness optima that was only slightly shifted from

the assumed optimum. This small shift might arise from ignoring

the higher-order terms in the theoretical prediction for short envi-

ronmental durations [20]. However, for a more asymmetric choice

of growth rates (where one of the environments suppresses the fit-

nesses of both phenotypes) the position of the population growth

optimum shifted substantially away from its assumed optimum, at

matching phenotypic and environmental switching rates (Figure 2

panel (B)). For even more asymmetric growth rate combinations,

the actual optimum moved to the edge of the fitness landscape (Fig-

ure 2 panel (C)) with ω12 = 0. We will refer to this situation (when

the optimum is on the edge of the fitness landscape) as “invalid as-

sumption”. On the other hand, we will refer to the situation when

the optimum shifts, but still occurs inside the fitness landscape as

“inaccurate assumption”.

We keep fixed the growth rate of phenotype I in environment 1 at

(g1(ε1) = 0.50) and vary the other growth rates (g2(ε1), g1(ε2), and

g2(ε2)).
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(A) (B) (C)

Figure 2. (Color), Optimal switching rates do not always match the environmental switching rates for τ1 = τ2 = 10 (· and +++ indicate optimum points for the

assumed and actual fitness optima, respectively). Panel (A) corresponds to symmetric growth rates [(g1(ε1),g2(ε1)) = (0.50,0.0001),(g1(ε2),g2(ε2)) =
(0.0001,0.50)]. Panel (B) corresponds to asymmetric growth rates with parameter values [(g1(ε1),g2(ε1)) = (0.50,0.0001),(g1(ε2),g2(ε2)) =
(0.0001,0.3250)], where the actual optimum shifts away from the assumed one, as indicated by both stochastic (upper row) and deterministic

(lower row) models. We refer to this situation as “inaccurate assumption”. Finally, Panel (C) shows “invalid assumption” [(g1(ε1),g2(ε1)) =
(0.50,0.0001),(g1(ε2),g2(ε2)) = (0.0001,0.1251)], where the actual optimum is on the edge of the fitness landscape. The color bar indicates the population

growth rate (fitness). We observed that if N0 < 100, the optimum is not precisely localized due to genetic drift.

The difference between the stochastic and the determinis-

tic models in Figure 2, especially at small growth rates,

such as [(g1(ε1),g2(ε1)) = (0.50,0.0001),(g1(ε2),g2(ε2)) =
(0.0001,0.50)], compared to the switching rates arises because

in the stochastic model, the population size is kept constant

(N0 = 104), which is implemented adding at most 1 cell at each

time step in the simulation. By contrast, in the deterministic model

we can have infinitely large population sizes accurately capturing

slow growth in the population.

B. Exploring the parameter space: testing the validity of the

assumed fitness optimum

As we have shown in Figure 2, a population can be closer or farther

from the assumed fitness optimum by reversibly switching between

phenotypic states. However, it is unclear how the lengths of

environmental durations (long or short compared to the inverse of

growth rates) affect this shift away from the assumption. Moreover,

it is unknown how the growth rates of each phenotype affect the

shift of the actual optimum relative to the assumed one. To address

these questions, we studied the location of the maximum population

fitness in the (ω12,ω21) space while scanning the growth rates of

each phenotype in each environment (except for g1(ε1), which we

kept fixed). We studied systematically whether the actual fitness

maximum was on the edge (invalid assumption) or substantially

shifted (inaccurate assumption). To illustrate this, we plotted the

shift as the relative distance, R of the actual optimum from the

assumed optimum versus the growth rates, g1(ε2) and g2(ε2) for

several choices of g2(ε1) and environmental durations. For long

environmental durations there was a wide parameter regime where

the optimum fitness occurred (Figure 3(C)) almost as assumed [19].

As the environmental durations decreased (Figure 3A & B), the

shift became more pronounced, and the parameter regime where

the assumed optimum fitness was valid narrowed. Moreover, the

validity of the assumed optimum also depended on the choices of

growth rates for each phenotype.

We observed that if the relative cellular growth rate differences

(∆1 = g1(ε1) - g2(ε1) & ∆2 = g2(ε2) - g1(ε2)) differ substantially

from each other (are asymmetric), the actual optimum moves away

from the assumed optimum and eventually reaches the edge of the

landscape (invalid assumption). This is especially true if growth

rates are highly asymmetric in the two environments (for example,

if one of the environments lowers both growth rates, while the other

lowers only one). As shown in Figure 3(D), if the relative cellular

growth rate differences are comparable, the existence of non-zero

optimal switching rates depends crucially on both the symmetry

of the growth rates and the length of the environmental durations.

Specifically, if relative cellular growth rate differences do not differ

much and the environmental durations are long, the optimal phe-

notypic switching rates match the environmental switching rates.

However, for similar relative cellular growth rate differences, the



5

optimal regime shrinks and eventually it extends only along the di-

agonal where growth rates are symmetric. Even for the special case

of symmetric environments (∆1 = ∆2), the actual optimum position

shifts farther from the assumed one as the relative growth rate dif-

ferences become smaller. These results are shown in Figure 3(D).

(A)

(B)

(C)

(D)

(E)

Figure 3. (Color), Validity and accuracy of assumed optimum in the parameter space. The smooth white region indicates that the assumption is invalid.

The hashed region indicates that the optimum occurs for switching rates equal to zero. The rows of panels (A, B, C) correspond to different environmental

durations with growth rates g1(ε1) = 0.50 and g2(ε1) = [0.0001 0.375 0.425], respectively. (A) Validity of the assumed optimum for environmental duration

τ1 = τ2 = 10. The point marked "P" corresponds to panels (A) in Figure 2 and Figure 4(A) where the assumed optimum occurs practically as predicted.

The point marked by "S" corresponds to panels (B) in Figure 2 and (B) in Figure 4 where the optimum is shifted. Finally, point "N" corresponds to panels

(C) in Figure 2 and (C) in Figure 4 where the assumed optimum is invalid. (B) Validity of the assumed optimum for environmental durations τ1 = τ2 = 25.

(C) Validity of the assumed optimum for environmental durations τ1 = τ2 = 100. We keep fixed the growth rate of phenotype I in environment 1 at

(g1(ε1) = 0.50) and vary the other growth rates (g2(ε1), g1(ε2), and g2(ε2)). The color indicates the relative shift in the position of the optimum relative to

the assumed position. (D) The phase space where the optimum exists for [g1(ε1) = 0.5,g1(ε2) = 0.0001] for environmental durations of τ1 = τ2 = 5, 10

& 20, respectively. (E) The g2(ε2) intercepts where the optimum becomes invalid in panel D. The intercepts correspond to the point where the optimality

assumption becomes invalid. The first intercept decreases approximately linearly whereas the second intercepts decays exponentially with the parameter

values given in table I. The solid lines are least-squares fits and the dots are the actual points extracted from the phase space in panel D.

C. Evolutionary dynamics of phenotypic Sswitching rate mutants

Phenotypic switching rates could be subject to change due to mu-

tations. Phenotypic switching rate mutants whose fitness is higher

than that of the ancestral cell type should take over the population.
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Here we consider a mutant that matches its phenotypic switching

rates to environmental fluctuations. This mutant arises among cells

that do not match their phenotypic switching rates to the fluctuat-

ing environment. In Figure 4 we plot the fraction of mutant cells

having growth rates corresponding to points (N, S, P) on Figure 3

and switching rate 1
τ

. Then in subsequent figures we plot the frac-

tion of such phenotypic switching rate mutants in ancestral popu-

lations with various phenotypic switching rates over time. We find

that the fraction of phenotypic switching rate mutants increases over

time, indicating that the mutant can sweep almost all ancestral pop-

ulations (Figure 4 (panel A)) when the assumed optimum is nearly

valid (Figure 3(A), point P). However, when the predicted optimum

is inaccurate or invalid (Figure 3(A), point S & N), mutants with

the same switching rates do not sweep the ancestral population, as

shown in Figure 4(B & C).

In small, reproductively isolated populations, rapid changes can oc-

cur in population structure. These changes are totally independent

of natural selection. These changes are due solely to random cell

division imposed on a constant-number population size over many

generations. The smaller the population size, the more susceptible

it becomes to random changes [25] 4(E). We found that a mutant,

which matches its switching rates with the environmental switching

rates still has higher chance of taking over the population despite

random genetic drift, as shown in Figure 4(D).

(A)

(B)

(C)

(D) (E)

Figure 4. (Color), The fate of mutants that match their phenotypic switching rates with the rates of environmental fluctuations. We initiate a mutant whose

switching rates are equal to the environmental switching rates, that is, (ωi j =
1
τ j

) in ancestral populations with various phenotypic switching rates. Points

"N", "S" and "P" in Figure 3(A) are the conditions of the growth rates where mutant propagation was tested. (A B C) The snapshot of fraction of mutant

population with growth rates located at point "P", "S" and "N" in Figure 3(A), respectively, at time period of T = 25, T = 30 & T = 35. As time progresses,

the fraction of phenotype switching rate mutants expands to sweep almost all ancestral populations if the optimum occurs as assumed (A). (C, B) The same

is not true if the assumed optimum is inadequate or invalid assumption. Here the mutants cannot always sweep the ancestral population. (D) The probability

that a mutant invades the ancestral population relative to 1/N, the probability of invasion for neutral genetic drift, where N=100 is the population size. (E)

Probability of invading the ancestral population for a neutral mutant as a function of the population size [25].
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IV. Discussion

The idea that stochastic phenotypic switching can maximize the

overall population fitness in temporally changing environments has

been examined previously. Experimental and theoretical studies

have proposed that the population fitness is maximal when the en-

vironmental switching rates match with the phenotypic switching

rates [19]. However, all previous work assumed that the growth

rate of each phenotype is much higher than the phenotypic switch-

ing rates. Here, we investigated the validity of the predicted optimal

population growth rate using both deterministic and stochastic mod-

els of cellular growth. Our findings indicate that previously assumed

optima are valid for low environmental switching rates (longer en-

vironmental durations and large growth rate difference in each envi-

ronment). However, we also found broad parameter regimes where

the assumed optimum was invalid. This was the case not only for

shorter environmental durations (which was expected, since earlier

models assumed slowly switching environments), but also when one

of the environments suppressed the growth rates of both phenotypes.

This is important, because stressful environments have exactly such

an effect: they suppress growth of all cells in general, with some

cells being suppressed less or perhaps being unaffected (but not en-

hanced). For example, antibiotic treatment strongly suppresses or

kills fast-growing cells, while it suppresses minimally or does not

affect the slow-growing persister cells. On the other hand, stress

does not typically increase the division rates of slow-growing cells,

which was the assumption for the original assumptions [19]. Fi-

nally, we also showed that a mutant which randomly hits the as-

sumed fitness peak (matches its phenotypic switching rates with the

environmental switching rates) can or cannot sweep the ancestral

population depending on the validity of the fitness optimum as-

sumption.

Further questions to explore include whether the optimal population

growth rate is affected by cellular memory of the previous environ-

ment (meaning that cellular growth rates will take time to adjust to

new values in new environments). Cellular growth rates in a given

environment depend on various protein levels, which may take some

time to adjust after an environmental shift. The effect of such delays

may be more pronounced if the environmental durations are compa-

rable to this type of cellular memory. Another open area is to make

switching rates environment-dependent, as the growth rates are in

the models discussed. This is justified, because cellular switching

rates and growth rates may depend on the levels of the same protein,

coupling both rates to the external environment [17].
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VI. Appendix

A. Derivations

The population dynamics is governed by the equation

dXi

dt
= si j(ε)X j , (A1)

where si j(ε) are elements of the matrix,

S(ε) =

[

g1(ε)−ω21 ω12

ω21 g2(ε)−ω12

]

.

The general solutions of such first order systems of ordinary differ-

ential equation are:

X(ε, t) = c1V1(ε)exp(λ1(ε)t)+ c2V2(ε)exp(λ2(ε)t), (A2)

where λi(ε) and Vi(ε) are eigenvalues and eigenvectors of S(ε),
respectively.

Our goal is to determine c1 and c2 from initial conditions, when the

population has N1 and N2 of type I and type II cells, respectively at

t = τ1:

[

X1(t = τ1)
X2(t = τ1)

]

=

[

N1

N2

]

.

The eigenvalues λ1(ε) and λ2(ε) are given by,

λ1,2(ε) =
Tr(S)±

√

(Tr(S))2 − 4det(S)

2
, (A3)

where Tr(S) and det(S) the trace and the determinant of S, respec-

tively.

Mathematically,

Tr(S) = s11 + s22 = (g1(ε)+ g2(ε))− (ω21 +ω12) and

det(S) = s11s22 − s12s21 = (g1(ε)−ω21)(g2(ε)−ω12)−ω21ω12 =
g1(ε)g2(ε)− g1(ε)ω12 − g2(ε)ω21.

The corresponding eigenvectors are given by

V1(ε) =

[

v11

v21

]

=













1
√

1+
(

λ1−(g1(ε)−ω21)
ω12

)2

λ1−(g1(ε)−ω21)
ω12

√

1+
(

λ1−(g1(ε)−ω21)
ω12

)2













and

V2(ε) =

[

v12

v22

]

=













1
√

1+
(

λ2−(g1(ε)−ω21)
ω12

)2

λ2−(g1(ε)−ω21)
ω12

√

1+
(

λ2−(g1(ε)−ω21)
ω12

)2













.

The time-dependent population state vectors can be written as

X1(ε, t) = c1v11(ε)exp(λ1(ε)t)+ c2v12(ε)exp(λ2(ε)t)

X2(ε, t) = c1v21(ε)exp(λ1(ε)t)+ c2v22(ε)exp(λ2(ε)t).

Solving at t = τ1 and setting X1(τ) = N1, X2(τ) = N2, yields,
[

N1

N2

]

= M∗
[

c1

c2

]

, (A4)

where

M =

[

v11(ε)exp(λ1(ε)τ1) v12(ε)exp(λ2(ε)τ1)
v21(ε)exp(λ1(ε)τ1) v22(ε)exp(λ2(ε)τ1)

]

.

Finally, since M is non-singular matrix, its inverse exists. Therefore,
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we can invert equation (A4), results in the constants,
[

c1

c2

]

= M−1 ∗
[

N1

N2

]

. (A5)

We solve the same system with different initial conditions deter-

mined by the number of cells in each subpopulation every time

when the environment switches from ε1 to ε2 or vice versa.

B. Curve fitting

The plots in Figure 3(E) were fitted with a linear function,

p1g2(ε1)+ p2, and exponential function, aebg2(ε1), respectively. The

parameters are then extracted and shown in table I.

parameter τ1 = τ2 = 5 τ1 = τ2 = 10 τ1 = τ2 = 15 τ1 = τ2 = 20

p1 -0.3039 -0.5100 -0.5208 -0.4333

p2 0.3307 0.2857 0.2805 0.2551

a 3 53 1332 23480

b -9.82 -14.98 -23.73 -28.54

Table I. Parameter values extracted from curve fitting.
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