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Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising
from the small number of molecules involved in gene regulation. One of the strongest sources of
stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in
the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration
and repressor titration to understand the key parameters that are important for oscillations and for
overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally
being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions.
The addition of multiple, independent DNA binding sites further expands the oscillatory parameter
space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is
a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and
increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation
to show that multiple binding sites increase the coherence of oscillations by mitigating the binary
noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to
the increased distance from the bifurcation point. Our work demonstrates how the number of DNA
binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene
circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

I. INTRODUCTION

Genetic oscillatory networks are ubiquitous in nature
and perform important functions. For example, the
cell cycle oscillator regulates cell growth and division,
whereas the circadian clock regulates the behavior of or-
ganisms with respect to daily changes in light. These
genetic oscillators are used by living systems to reliably
coordinate various periodic internal processes with each
other as well as with their rhythmic environment. How-
ever, this presents a challenge at the cellular level because
oscillators have to maintain proper timing (temporal co-
herence of oscillation) in the presence of stochastic noise
that arises from the small number of regulatory molecules
in cells [1].

A simple mechanism to mitigate the effect of molecu-
lar noise would be to increase the number of molecules of
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FIG. 1. (a) In the Activator-Titration Circuit (ATC), the ac-
tivator is constitutively produced at a constant rate and acti-
vates the expression of the inhibitor, which, in turn, titrates
the activator into inactive complex. (b) In the Repressor-
Titration Circuit (RTC) the constitutively expressed inhibitor
titrates the self-repressing repressor.

each species [2—4]. While the number of RNAs and pro-
teins made per gene can be large, most cells are funda-
mentally constrained to 1-2 gene copies and are subject to
binary noise in the first step of gene regulation (i.e., tran-
scription factor binding to DNA) [5, 6]. This binary gene
regulation noise manifests itself as a stochastic temporal
pattern of all-or-none gene activity depending on whether
the promoter is bound by the regulatory protein or not.
Recent work shows that slow DNA binding/unbinding
kinetics (also called the non-adiabatic limit) can exacer-
bate the binary noise and have profound consequences
on gene expression [7], epigenetic switching [8], and os-
cillation [3, 4, 9, 10]. Faster kinetic rates and complex
gene promoter architectures have been proposed as a way
to suppress the effect of this binary noise. For example,
increasing the DNA binding/unbinding rate can increase
temporal coherence of oscillations via more precise sam-
pling of the concentration of transcription factors [3, 9-
11] or by increasing the distance from a bifurcation point
[4, 12]. However, transcription factors often have slow
DNA unbinding rates [13-17], which suggests that these
mechanisms are not generally applicable. The coopera-
tive binding of a transcription factor to multiple binding
sites has also been shown to increase temporal coherence
of oscillations [18]. However, multiple binding sites do
not always lead to cooperativity and transcription fac-
tor binding to a single DNA site may often be enough to
effectively activate or repress transcription.

To better understand the potential mechanisms that
suppress the binary gene regulation noise, in particular
the influence of slow DNA unbinding rates and multi-
ple binding sites, we study an Activator-Titration Cir-
cuit (ATC) that has been theoretically shown to oscil-
late [19]. The ATC consists of a constitutively-expressed



activator that promotes the expression of the inhibitor,
which then titrates the activator into an inactive het-
erodimer complex (Fig. 1). Studying the ATC has two
advantages. First, it lies at the core of animal circa-
dian clocks [20] and oscillatory NF-xB signaling [21, 22]
and has served as a model of natural genetic oscillators
[10, 19, 23-26]. Second, the ATC generates the necessary
nonlinearities through protein titration [27] and does not
require cooperative binding of activator to the inhibitor
promoter. Thus, by studying a titration-based oscilla-
tor, we can better explore the kinetic effects of multiple
binding sites on coherence independently of the effects
that might arise from cooperativity. To obtain general
insights that are not specific to activation, we also study
a Repressor-Titration Circuit (RTC), which consists of
a self-repressor and a constitutively-expressed inhibitor
(Fig. 1). This novel titration-based oscillator is analo-
gous to the AT'C but uses repression instead of activation
for the transcriptional regulation.

We first characterize these oscillators and how they
depend on several key parameters in Section II. We de-
liberately constrain ourselves to physiological parame-
ters found in a simple eukaryote S. cerevisiae, commonly
known as budding yeast. We show that, in addition
to slow mRNA degradation, slow DNA unbinding rates
of transcription factors are important for providing the
necessary delay in the negative feedback loop for oscilla-
tory solutions. Thus, both the DNA unbinding rate and
mRNA degradation rate can set the period of oscillation.
We then demonstrate that the addition of multiple, inde-
pendent binding sites has nontrivial effects on the ATC
and the RTC. While multiple binding sites lengthen the
period of both oscillators due to an effective increase in
the delay of negative feedback, they dramatically increase
the oscillatory solution space of the RTC only. This is
because multiple, independent binding sites generate ul-
trasensitivity (i.e. strong nonlinear response to changes
in regulatory protein concentration) in repression-based
promoters only, and thus only RTC can benefit from this
effect. In section III, we use stochastic Gillespie simula-
tions to understand the extent to which DNA unbinding
rates and numbers of binding sites suppress the molec-
ular noise in ATC and RTC oscillators. We show that
multiple binding sites increase the temporal coherence of
oscillations by alleviating the binary noise resulting from
discrete gene states. We also show that slower values of
DNA unbinding rates are best for coherent oscillations in
simple titration-based oscillations. Last, we compare and
contrast our results on temporal coherence with those of
previous models of genetic oscillators in Section IV.

II. BIOPHYSICAL MODEL OF ATC AND RTC

Oscillators require negative feedback with nonlinearity
and time delays [28]. Mechanistically, negative feedback
on gene expression can occur transcriptionally via repres-
sors [29-31] or post-transcriptionally via phosphorylation

[32-34], degradation [32, 34, 35], or titration of activa-
tors into inactive complexes by inhibitors [10, 19, 23-26].
The ATC is a minimal two-gene circuit that can oscillate
through the use of protein titration both as a source of
nonlinearity and indirect negative feedback. In the first
phase of oscillation, high levels of free activator homo-
dimerize, bind the promoter, and overproduce inhibitor
until all free activator has been titrated into inactive het-
erodimer. In the second phase of oscillation, the remain-
ing activator will unbind from the inhibitor promoter and
be sequestered by inhibitor, thus causing the promoter to
return to low levels of expression of inhibitor. The levels
of inhibitor will eventually decline to a point where free
activator can re-accumulate and restart the cycle.

In the RTC, protein titration is used exclusively as
a source of nonlinearity and the negative feedback is
directly achieved through auto-repression. In the first
phase of oscillation, high levels of free repressor will
homo-dimerize, bind directly to its own promoter, and re-
press its transcription. The free repressor will be titrated
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FIG. 2. A biophysical model for ATC (a) and RTC (b)
with explicit transcription, translation, protein-protein and
protein-DNA interactions. Each arrow corresponds to a reac-
tion rate in Egs. 1-3. Neither of these titration-based oscilla-
tors have been built or studied by synthetic biologists.



second phase of oscillation when free repressor levels are
low, the remaining repressor will unbind from the pro-
moter, returning to high levels of transcription and the
rapid over-production of free repressor. As we will show
below, the indirect versus direct nature of negative feed-
back in ATC and RTC is responsible for many of the
differences between these two titration-based oscillators.

A. ATC and RTC oscillators with a single DNA
binding site

Even simple genetic circuits such as the ATC and RTC
include many reactions and parameters (Fig. 2). An ex-
haustive search over all the parameter space was not fea-
sible, and we decided to constrain our parameter space
by studying synthetic gene circuits that could be built
in budding yeast. Synthetic genetic oscillators have been
useful tools to understand the properties of natural oscil-
lators. For example, a synthetic oscillator built in bacte-
ria [36] was useful in understanding entrainment capabili-
ties of genetic oscillators, as well as elucidating sources of
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stochasticity that affected entrainment. Surprisingly, all
synthetic genetic oscillators built to date have neglected
protein titration, a common mechanism in natural os-
cillators. To this end, we built a mathematical model
of ATC and RTC oscillators using a basic leucine zip-
per (bZIP) transcription factor that dimerizes and binds
DNA, and a rationally-designed inhibitor that binds free
bZIP into an inactive heterodimer. These synthetic com-
ponents have been successfully used in yeast [37] and,
importantly, many of the protein-protein and protein-
DNA binding affinities of this bZIP and inhibitor pair
are known [38, 39]; see Table I. We fixed these param-
eters and scanned through a range of other biophysical
parameters to understand which ones affect oscillation.
Our results should help guide future experimental im-
plementation of synthetic ATC and RTC oscillators in
yeast.

The biophysical model of our ATC and RTC circuits
is based on chemical mass-action kinetics where the dy-
namic variables are the mean concentrations of all molec-
ular species. The ODEs that correspond to the reactions
in Fig. 2 are the following:

Aol _ _ja)ixe) + oicn] (12)
Al _ afeolix) - o] (1b)
U _ Bies) 41X + ealx) - 5,01 (1c)
% = Blrx] — MXI] + e1[XT] — 29[X]? + 262 Xa] — 6,[X] (1d)
W X)) - aan] - a,0x1 (1e)
db’?] = 1[X]?2 — &3 Xa] — 6,[X2] — a[Gol[X2] + 0[G4 (1)

With [rx] and [r;] described by:

d[;f] = po[Gr]| — 6m[rx] (2a)
dZ"tI] = ptGol + po([GT] = [Gol) = Omri] (2b)

for the ATC, where X=A (activator), and

d[;f] = ps[Gol + po([GT] — [Go]) — dm[rx]  (3a)
dgtl] = po[Gr] — 6m[r1] (3b)

for the RTC, where X=R (repressor). The first two
equations represent the dynamics of promoter DNA

(

where [Go] and [G1] are the mean concentrations of free
and bound promoter, respectively. The molar concentra-
tion of total DNA [Gr] = [Go]+[G1] =1/(Na-V) =1/24
nM where N4 is the Avogadro constant and V is the
yeast cell volume; see Table 1. Here, we consider only
a single DNA binding site, but we will later expand our
analysis to include multiple binding sites. At any in-
stant, the promoter is either free or bound. The proba-
bility of free or bound promoters is equal to the ratio of
concentrations [Go]/[Gr] or [G1]/[GT], respectively. The
other equations describe the mean concentration dynam-
ics of the respective molecular species such as mRNA
(rr, x), monomeric protein (I or X), and dimeric pro-
teins (Xo, XT), where X stands for the activator A or
repressor R, respectively. The regulatory homodimer Xo
associates with G at a rate a to form G7, which disso-
ciates at the rate #. The r; and rx are the inhibitor and
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FIG. 3. (Color online) Parameter space of oscillatory solutions on a logarithmic scale for RT'C (top) and ATC (bottom) with
increasing DNA binding sites. The colormap shows the number of p; values that exhibited oscillations for each combination
of f, 6m, and 0. (a) and (b), single DNA binding site for RT'C and ATC, (c) and (d) three independent binding sites for RTC
and ATC, (e) and (f), three synergistic binding sites for RT'C and ATC, where activation/repression strength is f> when more

than one activator/repressor is bound.

activator/repressor mRNAs. For the ATC, the activa-
tor mRNA [rx] is transcribed constitutively at the rate
po, where as the inhibitor mRNA is transcribed at rates
ps and py from free and bound DNA, respectively (Egs.
2a,b). In contrast, for the RTC, the repressor mRNA is
transcribed at rates py and p, (Egs. 3a,b) while inhibitor
mRNA r; is constitutively transcribed at the rate pg. We
assume that all mRNA species are degraded at the same
rate d,, and translated into proteins with the same rate
B. The activator/repressor X protein dimerizes into ac-
tive homodimer X, and forms inactive heterodimer XTI
with the inhibitor protein I at the same rate . The ho-
modimer and heterodimer dissociation rates are €; and
€2, respectively. We assume that all protein species are
stable and diluted by cell growth at rate ¢,.

B. DNA unbinding kinetics influence oscillation

Our parameters were restricted to physiological val-
ues from yeast (see Table I). Most parameters were kept
fixed, but we varied four key parameters. The first pa-
rameter was the mRNA production rate (py) of free, un-
bound promoter because a desired expression level can
easily be selected from existing promoter libraries [40].
Second, we varied the activation/repression strength (f),
which is the ratio of the larger p divided by the smaller
p. Thus, f = py/py for the ATC and f = py/ps for the
RTC. The ratio f can be tuned by appropriate choice of

activation or repression domains fused to our bZIP tran-
scription factor [41-43]. The third parameter was the
mRNA degradation rate (J,,), which is known to set the
time scale of the ATC oscillator [19]. Last, we varied the
DNA unbinding rate () because it is our point of focus
and this parameter can vary between different transcrip-
tion factors. The DNA dissociation constant (K ;) fixes
the DNA binding rate o = Kid; see Appendix for details.

We divided the physiological range of each variable pa-
rameter into 30 values (on a logarithmic scale) and evalu-
ated the long-term dynamics of a total of (30)* parameter
sets per circuit. We solved the ODEs over time for each
set of (pf, f, Om, 0). A solution was classified as oscil-
latory if the trough of activator or repressor homodimer
concentration was below the Ky of DNA-binding and if
the peak was above 2K 4; see Appendix for justification.
We noticed that py had the smallest effect on the number
of oscillatory solutions and, thus, we plot the marginal
frequency distribution of oscillatory solutions over f, d,,,
and 6 in Fig. 3. We see that strong activators (large f for
the ATC), stable mRNAs (small d,,), and slow DNA un-
binding rates (small 0) generally favor oscillation. The
last two parameters dictate the timescale of the delay
in the negative feedback loop. Increased delay supports
oscillation and, thus, the largest number of oscillatory so-
lutions occur at the smallest 6 and 4,,, for both RTC (Fig.
3a) and ATC (Fig. 3b). The parameter space of stable
oscillations is larger in ATC relative to RTC for a single
binding site because of the additional step and delay in
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FIG. 4. The DNA unbinding rate 6 sets the period of the
oscillations for RT'C (a) and ATC (b) at slow unbinding rates.
The mean period of oscillatory solutions for a given 6 is shown
(solid black line) with the shaded area representing the range
of periods.

the negative feedback loop: negative feedback through
the activator in the ATC is indirect (i.e. activator regu-
lates the expression of inhibitor, which then inhibits its
activity), where as the self-repressor in the RTC is direct
(i.e. repressor regulates its own expression).

The period of oscillation 7 should be set by the
timescale of the slowest parameters in the delay. The
negative feedback in our circuits is dominated by DNA
unbinding rate # and mRNA degradation rate d,, [19].
This relationship can be seen in Figure 4 where the DNA
unbinding rate sets the oscillation period at low 6. An
increase in 6 leads to mRNA degradation rate (d,,) be-
coming the slower timescale at which point 7 becomes
flatter and less dependent on 6. Eventually, a bifurca-
tion occurs at a critical, maximum value of 6, which
leads to loss of the stable limit cycle. A similar relation-
ship exists for the mRNA degradation rate d,,; see Figure
S2.

C. Multiple DNA binding sites affect ATC and
RTC oscillators differently

This role of DNA unbinding rate in generating de-
lays led us to hypothesize that multiple DNA binding
sites should increase the parameter space of oscillations
and lengthen the period of the oscillators. We reasoned
that if the occupancy of any binding site by a transcrip-

Same Transcription Rate

FIG. 5. Transitions between promoter states for multiple
DNA binding sites (n=3). G; denotes the set of promoter
states with ¢ out of total n binding sites occupied by activa-
tor (X=A) or repressor (X=R) dimers. There are n—i ways of
switching from G; to [G;41] via the binding of X5, and there
are ¢ ways of switching from G; to G;—1 by the unbinding of
X5. Our model conservatively assumes that the binding of
X5 does not affect the binding or unbinding of the next tran-
scription factor to an adjacent site (no cooperativity). We
also assume that the transcription rate is equal to pp for G1,
Ga, ...G, promoter states.

tion factor activates or represses transcription, then the
effective unbinding rate (6,) from a state of saturated
DNA binding to the unbound DNA state (G, where the
transcription rate changes) should decrease with the in-
creasing number of binding sites (n). We can show that
0, = 0/H,, where H,, is the n-th harmonic number (see
Supplement [44]).

The addition of multiple DNA binding sites to our
model will modify Eqs. (la-b, 1f) by increasing the num-
ber of promoter states that can be bound by Xs; see Fig-
ure 5 and Supplement [44]. For three binding sites (n=3),
our new Eqgs (la-b) are:

d[;o] = —3a - [Go][X2] + 0[G1]

% = 3a - [Go][Xa] — (6 + 20 - [X2])[G1] + 20 - [Go)
d[;ﬂ =2 [G1][X2] — (20 + o - [X2])[Ga] + 30 - [G3]
d[zi‘*] = o [Ga][Xs] — 30 - [G] (4)

where the total concentration of DNA [Gr] = [Go] +
[G1] + ... + [G)] is fixed to 1/(N4 - V) = 1/24 nM. For
three binding sites (n=3), the term —«a[Go][X2] + 0[G1]
in Eq. (1f) is replaced with:

3 3

=Y B-i)a-[GiXa]+ Y i-0[G] (5)

i=0 =0

(; denotes the promoter states with ¢ out of total n
binding sites occupied by activator (X=A) or repressor
(X=R) dimers. The factors in front of each term repre-
sents the amount of degeneracy of each state, i.e [G;] has



i bound sites, thus ¢ ways of switching to [G;_1]. There-
fore, we have the term i-0[G;]. At the same time, [G;] has
n — ¢ vacant sites, so it has n — i ways of switching to the
state [G;+1]. Thus, we have the term (n —i)a - [G;][X2].

The addition of two more independent DNA binding
sites dramatically increased the oscillatory space of the
RTC (Fig. 3c), while slightly decreasing the oscillatory
space of the ATC (Fig. 3d). These opposite results arise
from a compound effect. First, two extra binding sites
decreased the effective unbinding rate for the promoter
to be fully vacated by half (§/Hs ~ 6/2). This decrease
in effective @ increased the delay and resulted in some im-
provement in oscillations for both RTC and ATC. This
effect is best observed in the increased period of both
oscillators (Fig. 4). The second, more dominant ef-
fect is the fundamental difference in how the promoter
sensitivity changes with multiple, independent binding
sites. It is well established that nonlinear promoter re-
sponses facilitate oscillation [28]. We use the logarithmic
sensitivity () to quantify the nonlinearity in the pro-
moter response, where S = dlogP/dlog[Xs] [45]. P is
the synthesis rate of the promoter and [X5] is the acti-
vator /repressor homodimer concentration that regulates
the promoter. As shown previously [45, 46], an increase
in the number of independent repressive binding sites will
increase the magnitude of S and create an ultrasensi-
tive promoter response, (i.e. |S| > 1, see Supplement
[44]). However, increasing the number of independent
activating binding sites cannot generate an ultrasensi-
tive promoter response (|.S| < 1); see Discussion in [45].
In fact, the logarithmic sensitivity for activation actu-
ally decreased with the number of binding sites at our
physiological concentrations (see Supplement [44]). This
difference is the reason why the RTC and ATC oscillators
exhibited fundamental differences to increased number of
binding sites. Our work shows that synthetic repression-
based oscillators are preferable designs because the RTC
gets an effective boost in promoter ultrasensitivity simply
by adding multiple, independent binding sites.

We also tested whether synergistic repression or acti-
vation might change our results. Synergistic activation
or repression occurs when the states that have more than
one binding site occupied (i.e. [G3] and [G3]) are acti-
vated/repressed f2-fold instead of f-fold because they
can interact with RNA polymerase at several interfaces
[45]. Although this synergy increased the activation or
repression strength, it did not significantly change the
oscillatory parameter space (Fig. 3e,f).

III. STOCHASTIC SIMULATIONS

Deterministic simulations were useful for understand-
ing how DNA unbinding rate and the number of bind-
ing sites affect the phase space and period of oscillation.
However, they cannot provide insights into the loss of
temporal coherence that arises from stochastic gene ex-
pression. To this end, we used the Gillespie algorithm
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FIG. 6. Sample stochastic trajectories for one and three bind-
ing sites for RTC (a) and ATC (c), and their autocorrelation
functions (b,d). The variable parameter values (0, 0., ps, f)
were fixed to (0.02 min~", 0.0159 min~", 0.8928 min~!, 3.63)
for the RTC and (0.02 min™*, 0.0186 min~"', 0.1781 min™!,
30) for the ATC. We chose parameters that produced oscilla-
tion over the largest range of DNA unbinding rates. The rest
of the parameters are given in Table 1.

[47] to simulate stochastic chemical reaction kinetics and
investigate how DNA binding/ unbinding dynamics and
the addition of binding sites affect the temporal coher-
ence of ATC and RTC oscillators.

For each ATC and RTC, we quantified temporal co-
herence by calculating the autocorrelation function of
mRNA transcripts levels (repressor mRNA for the RTC
and inhibitor mRNA for the ATC); see Fig. 6. In the ab-
sence of noise, an undamped oscillatory signal will have
an undamped, periodic autocorrelation function. The
presence of noise will stochastically perturb period and
phase, such that the autocorrelation now exhibits damp-
ening or loss of temporal coherence. We quantified the
loss of coherence by measuring the rate of exponential
decay (e*/7) of the envelope of a periodic (cos(2mt/T))
autocorrelation function (see Appendix for details). Sim-
ilar to other studies [4, 18], our metric for temporal co-
herence is the normalized autocorrelation function decay
rate, which is the ratio of timescales 7o/7. A larger ra-
tio indicates better temporal coherence. We varied the
DNA unbinding rate (6) and number of binding sites (n)
to understand the role of each feature in resisting molec-
ular noise.

A. DNA Unbinding Rate

Our results show that ATC and RTC oscillators with
smaller DNA unbinding rates exhibit better temporal co-
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FIG. 7. The normalized autocorrelation function decay rate
for the RTC (a) and ATC (b) for varying 6 and number of
binding sites. All parameters, except 6, are the same as in
Fig. 6. Boxed, outlined regions are parameters past the
bifurcation point (fmax) where deterministic oscillations are
unsustainable and damped, yet exhibit stochastic excitable
oscillations.

herence (Fig. 7). Lower 6 increases the temporal co-
herence of the oscillations because of the increased dis-
tance of the dynamical system from the bifurcation point
(0max); see Figure 8. Eventually there is another bifur-
cation at small 6,;,, but these unbinding rates are un-
physiological and do not affect our conclusions regard-
ing biophysical ATC and RTC oscillators. Strikingly,
some 0 > 6., which do not show deterministic oscil-
lation, exhibit oscillation in the presence of noise. This
phenomenon is consistent with coherence resonance [48]
which has been observed in other excitable, genetic cir-
cuits near oscillatory bifurcation points [12, 24].

B. Multiple DNA Binding Sites

Increasing the number of binding sites (n) also in-
creased the temporal coherence of ATC and RTC oscil-
lators over all DNA unbinding rates (Fig. 7). To bet-
ter understand this result, we must consider the effect
of stochastic binding and unbinding of regulators on the
variance of gene expression. In the phase of changing ac-
tivator/repressor concentrations, the binding sites start
being occupied or vacated. Each additional binding site
introduces an additional DNA binding state. Because
we treat the expression level of all bound DNA states as
equivalent (pp), the spontaneous binding and unbinding
events that occur between states that have at least one
binding site occupied have no effect on transcription; see
Fig. 5. These “protected” states act as a buffering mech-
anism to mitigate the effects of binary noise on temporal
coherence.

IV. DISCUSSION

We analyzed the properties of two titration based ge-
netic oscillators, the activator-titration circuit (ATC)
and the repressor-titration circuit (RTC). The focus of
our study was to understand how the number of DNA
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FIG. 8. Bifurcation diagram of the RTC (a) and ATC (b)
oscillators as a function of DNA unbinding rate (6). All pa-
rameters, except 0, are the same as in Fig. 6. There are two
bifurcation points (fmax, Omin) and the amplitude of mRNA
oscillation is shown by the upper and lower branches. Phys-
iological values of 0 are to the right of the dashed vertical
line.

binding sites and slow unbinding kinetics in promoters
mitigate or exacerbate the binary gene regulation noise.
First, we showed that multiple DNA binding sites and
slow unbinding kinetics were important for providing the
necessary delay in the negative feedback loop for oscilla-
tory solutions. The role of slow DNA binding/unbinding
in providing delay for oscillations is consistent with prior
work on a small negative feedback oscillator [9]. Sec-
ond, we used stochastic simulation to show that slower
DNA unbinding rates exhibited better temporal coher-
ence, a result which appears at odds with previous work
on circadian clocks and NF-«B oscillators [3, 10, 12] and
which is more in line with the results obtained for a small
negative feedback oscillator model [9]. This previous
work showed that slower DNA unbinding kinetics neg-
atively affected the temporal coherence for two reasons.
First, slow DNA unbinding increased the stochasticity of
gene expression due to imprecise concentration sampling,
which decreased the temporal coherence of oscillations
[3, 10]. Second, slower DNA unbinding () pushed the
dynamical system towards y,;, bifurcation point, which
made it less robust to noise [12]. These results are differ-
ent from ours because the delays in the circadian clock
and NF-xB models rely on slow intermediate steps (e.g.
phosphorylation and/or nuclear transport) in the nega-
tive feedback loop. Unlike our titration-based oscillators
in Fig. 8, these models do not have 0,,x and still oscil-
late at infinitely fast unbinding rates where the promoter
dynamics are in steady-state.

We observed the opposite effect for our titration-based



oscillators because physiological 6 overlaps the 6.5 bi-
furcation point for ATC/RTC. Thus, lowering 6 always
increases the robustness in ATC/RTC because the dy-
namical system is moving away from 6,,.x and deeper into
oscillatory parameter space. This phenomenon likely ex-
plains the similar results presented in [9]. The influence
of DNA unbinding rate on temporal coherence depends
on the structure of the underlying bifurcation diagram of
each oscillator as a function of . Changes in topology,
mechanism, and parameters can change the bifurcation
diagram and, thus, the influence of DNA unbinding rate
on temporal coherence of oscillation may also change.

Last, we demonstrate that multiple independent bind-
ing sites consistently increased the temporal coherence
of oscillations by alleviating the binary noise result-
ing from binary gene states. Our results agree with
previous work, which showed that multiple, coopera-
tive DNA binding sites increased the coherence of cir-
cadian clocks [18]. However, in contrast to our results,
the temporal coherence of circadian clocks peaked at 3
binding sites and then decreased with additional sites.
The difference likely arises from our slower DNA bind-
ing/unbinding rates, where the ATC and RTC oscilla-
tors spend significant time in protected states that are
buffered against molecular noise. In contrast, the circa-
dian clock model spends very little time in the interme-
diate protected states between fully free or fully bound
promoters and, therefore, the increased coherence is only
due to cooperativity [18]. The idea of buffering to re-
duce noise in gene circuits has been discussed in the con-
text of decoy binding sites [49]. However, this requires
fast DNA binding/unbinding, where as buffering through
promoter states requires slow DNA binding/unbinding.
We note that increased temporal coherence due to pro-
tected states is a stochastic effect because the addition
of binding sites consistently increased the coherence of
ATC oscillators, despite occasionally pushing it past the
bifurcation point at 0.« (Fig. 6b).

Appendix A: Parameter Values

To constrain the physiological parameters of our mod-
els, we used data from large-scale studies of the yeast
transcriptome and proteome; see Table I. These data pro-
vide typical ranges and values for our parameters. First,
we converted numbers of molecules into nanomolar (nM)
concentrations using the cell volume V = 40 fL for hap-
loid yeast. For the ATC, we assumed that the basal
mRNA transcription would be low. Thus, p; for the ATC
was constrained to values from the bottom 5th percentile
to the median of all mRNA synthesis rates [50]. Simi-
larly, p¢ for the RTC was constrained to values from the
median to top 95th percentile. In the case of the ATC,
the constraint py < pg < pp ensured that the inhibitor
can completely titrate the constitutively-expressed acti-
vator when the inhibitor is maximally produced at pp, but
not when it is expressed at the basal rate py. Similarly,

for the RTC, the constraint py < pg < p; ensures that
constitutively-expressed inhibitor can completely titrate
the repressor when the repressor is produced at the re-
pressed rate py, but not py. We set po = |/pypy to satisfy
both conditions. mRNA degradation rate ranged from
the bottom 5th percentile to top 95th percentile values
for all genes [50]. To obtain a rough approximation for
the translation rates, we assumed a constitutive gene ex-
pression model for all genes:

st (A1)

a[p] _

o Blr] — 6p[P] (A2)
P)6y,0m )

At steady state, f = [ , Protein concentrations

and degradation rates were taken from [51, 52]. We cal-
culated § for all genes and used the median value in our
model. We also assumed that our activators, repressors,
and inhibitors are not actively degraded and are diluted
by growth. Thus, 0, = In(2)/T, where T' = 90 mins is
the duration of the yeast cell cycle. The proteins in our
models were based on a mammalian transcription fac-
tor basic leucine zipper (bZIP) protein C/EBP« and its
dominant-negative inhibitor (3HF) [37]. We used previ-
ously measured rates for protein-protein interaction ki-
netics [37]. Since we did not know the DNA unbind-
ing rate for C/EBPq«, we considered the range for the
known DNA unbinding rates for other bZIP proteins
[13-16]. The thermodynamic dissociation constant ()
of CEBP/a to its specific DNA binding site is known
[39]. We set the DNA association rate to a = 0/Kj.
Finally, we varied the activation/repression strength f
from 1 to 30, to consider both strong and weak activa-
tion/repression.

Appendix B: Methods

We scanned the parameter space for oscillations by
running simulations on MATLAB (Mathworks) using
odel5s for 2000 min and recording the minima and max-
ima of the activator/repressor homodimer during the last
1000 min. We imposed the following restrictions: 1) the
last minimum should be below K4 so that DNA-binding
is not saturated, 2) the last maximum should be greater
than 2K so that the change in transcription is noticeably
altered. While this restriction slightly underestimates the
number oscillatory solutions, it ensures that a synthetic
version of these circuits would produce detectable oscilla-
tions. We verified that our definition gave similar results
to a less stringent criterion for oscillation.

We used the direct Gillespie method to perform the
stochastic simulations [53]. We ran the simulations for
10 min and recorded the concentration of the regu-
lated mRNA (inhibitor for the ATC and the repres-
sor for the RTC). We then normalized the concentra-
tion such that the average would be zero and evaluated



TABLE I. Parameter values

Parameter Min Max Reference
O(min) 0.0188 34.5 [13-16]
ATC ps(min~t) 0.0509 0.1781 [50]
RTC ps(min~) 0.1781 0.8928 50]
8y (min™t) 0.0159 0.1516 [50]
f 1 30
ATC py(min~") f-ps
RTC py(min~*) prlf
a(mM~! min™!) 0/3.344 nM [39]
po(min~") VPiPb
B(min~1) 14.1 [50-52]
8p(min~1) 0.0077
v(nM min~1) 0.6 [37]
e(min™) 0.024 [37]
€1 (min™1) 6 [37]
V(fL) 40 [27]

the autocorrelation function. We then fit the function
C(t) = e~t/™ . cos(2nt/T) to the first 1500 min of the
autocorrelation function to measure the decay constant
7o and period 7. The ratio 79/7 describes how rapidly
the envelope of autocorrelation function decays per oscil-
lation period.
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