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While recent recordings from neural populations show beyond-pairwise, or higher-order correla-
tions (HOC), we have little understanding of how HOC arise from network interactions and of how
they impact encoded information. Here, we show that input nonlinearities imply HOC in spin-
glass-type statistical models. We then discuss one such model with parameterized pairwise- and
higher-order interactions, revealing conditions under which beyond-pairwise interactions increase
the mutual information between a given stimulus type and the population responses. For jointly
Gaussian stimuli, coding performance is improved by shaping output HOC only when neural firing
rates are constrained to be low. For stimuli with skewed probability distributions (like natural image
luminances), performance improves for all firing rates. Our work suggests surprising connections
between nonlinear integration of neural inputs, stimulus statistics, and normative theories of popula-
tion coding. Moreover, it suggests that the inclusion of beyond-pairwise interactions could improve
the performance of Boltzmann machines for machine learning and signal processing applications.

I. INTRODUCTION

The number of neurons for which activities can be simultaneously recorded is rapidly increasing [1]. We thus have
an advancing understanding of the statistics of population activities, like the relative frequencies of co-active neural
pairs, triplets, etc. In particular, much work has investigated the distributions of simultaneously recorded retinal
ganglion cell “words” (patterns of binary neural activities). For some population sizes and stimuli, these distributions
are well-fit by pairwise maximum entropy (ME) models [2–4], while in other cases beyond-pairwise interactions are
evident in the data and models incorporating higher-order correlations (HOC) are needed [5, 6]. Cortical studies yield
similar observations [7–9].

How do these correlations affect population coding? Much work has investigated how pairwise correlations impact
a population’s ability to transmit information [10–19]. In particular, [14] identify optimal pairwise interactions that
maximize encoded information in setting very similar to that we will study below. Coding studies of higher-order
correlations (HOC) are limited, but empirical work shows that in some cases, including HOC allows a decoder to
recover the stimulus presented to a neural population 3 times faster than a decoder with access only to pairwise
statistics [5]. Intriguingly, other work [7] shows that HOC reduce the mutual information (MI) between the stimuli
and resultant population responses. A recent theoretical investigation [20] outlines principles by which higher-order
correlations can impact the discriminability of pairs of nearby stimuli. There, second-order response statistics (pairwise
correlations) were held fixed at identical values for each stimulus, and the authors showed how triplet correlations
could make population responses more discriminable by skewing the distributions of population responses to the two
stimuli away from each other.

This prior work is intriguing, but begs several questions: How do HOC impact population coding of multiple stimuli,
or continuous families of stimuli – and not just the stimulus pairs of [20]? What network mechanisms can generate the
underlying HOC? Here, we address both of these questions, identifying when HOC may improve coding performance
and how those performance gains come about. Aside from its relevance for neurobiology, our study suggests that
incorporating higher-order interaction terms may improve the performance of Boltzmann machines (including deep
belief networks), which are promising algorithms for machine learning applications [21, 22]
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FIG. 1: (Color online) Encoding model. (A) Each model neuron has a bias hi (blue) determined by external stimuli.
Recurrent pairwise (Jij , red) and triplet (γijk, green) interactions further modify the output statistics. Illustrative schematic
shown for N=3 neurons; models can have arbitrary N. (B) The firing rate (spiking probability) of each neuron varies sigmoidally
with the strength of its input (xi = hi +

∑
j 6=i Jijσj +

∑
j<k;j,k 6=i γijkσjσk); see text. The steepness of the sigmoid depends on

β.

II. RESULTS

A. Encoding model

We generalize the approach of Tkačik et al. [14], and model the activity of a population of neurons by a triplet-wise
ME distribution. Within this model, the stimuli affect neural responses via bias terms hi = hsi + h0i (Fig. 1A). Here,
hi is the bias to neuron i, h0i is the stimulus-independent bias, and hsi is the stimulus-dependent bias. As discussed
below, the stimuli can be interpreted as additive inputs in a linear-nonlinear neural model, and we define the stimulus
distribution by the joint distribution over hsi [14].

Once the biases are specified, the neural activities {~σ} (σi ∈ {0, 1} is the silent vs. spiking state of neuron i) are
distributed as

p(~σ|~h) =
1

Z
exp

β
~h · ~σ +

∑
i<j

Jijσiσj +
∑
i<j<k

γijkσiσjσk

 . (1)

Here, β specifies the distribution’s width, defining neural reliability [14, 23] analogous to the inverse temperature of
an Ising spin-glass model. The parameters Jij and γijk describe the pairwise interactions and triplet interactions,

respectively. The partition function Z =
∑
{~σ} exp

[
β
(
~h · ~σ +

∑
i<j Jijσiσj +

∑
i<j<k γijkσiσjσk

)]
is the normal-

izing constant that ensures that all probabilities sum to 1. This distribution is the one that specifies the means,
covariances, and 3-pt correlations of the activity distribution, while making the fewest possible assumptions about
the distribution overall [2, 3, 24–26]. Later, we will optimize over the interaction parameters (and thus the moments
of the response distribution), for different stimulus distributions. In so doing, we will identify conditions under which
triplet interactions improve stimulus encoding.

As emphasized by [14], this parameterization of p(~σ|~h) can be interpreted as a static nonlinear input-output neural
model, within a network with symmetrical connections between units. Consider the probability of one neuron firing
(having σi = 1), conditioned on the states of the other neurons and the biases:

p(σi = 1|{σj 6=i},~h) = g[β(hi +
∑
j 6=i

Jijσj +
∑

j<k;j,k 6=i

γijkσjσk)], (2)

where g(βxi) = (1 + e−βxi)−1 is a sigmoidal function (Fig. 1B). To obtain Eq. 2 from Eq. 1, consider

the conditional probability distribution p(σi|{σj 6=i},~h), where σi can take on one of two values: either 0 or
1. The exponential “Boltzmann factors” for each of the two states, obtained by using σi = 0 or 1 in Eq. 1,
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while keeping everything else fixed, are exp
[
β
(∑

j 6=i σjhj +
∑
j<k;j,k 6=i Jjkσjσk +

∑
j<k<l;j,k,l 6=i γjklσjσkσl

)]
and

exp
[
β
(
hi +

∑
j 6=i Jijσj +

∑
j<kj;j,k 6=i γijkσjσk

)
+ β

(∑
j 6=i σjhj +

∑
j<k;j,k 6=i Jjkσjσk +

∑
j<k<l;j,k,l 6=i γjklσjσkσl

)]
respectively. Summing these two Boltzmann factors, we get the conditional partition function, and dividing the
appropriate Boltzmann factor by this conditional partition function, we obtain Eq. 2.

The firing probability in one discrete time bin is akin to the mean firing rate. Since firing rates that vary sigmoidally
with synaptic input are commonly encountered [27–29], we interpret the argument (xi) of the sigmoid as the input to
a linear-nonlinear model neuron. With no beyond-pairwise interactions (γijk = 0), the bias hi and recurrent inputs to
the neuron {Jijσj} add; the sigmoidal function of that sum determines the firing rate. If γijk > 0, then when neurons j
and k are co-active, the recurrent input to neuron i is Jij+Jik+γijk, which is larger than the sum of the contributions
observed when only one recurrent input is active at a time (Jij+ Jik); these inputs combine super-linearly. Conversely,
for γijk < 0, they combine sub-linearly. Thus, the way that synaptic inputs combine maps onto triplet interactions
in statistical models of population activity, shaping beyond-pairwise correlations. If the recurrent input to neuron i
is an arbitrary function of the activities of the other neurons, xi = hi + f({σj 6=i}), triplet interactions come from the
first nonlinear terms in the series expansion of f(·) (see Appendix A).

We note that, in this mechanistic interpretation of our probability model, both the recurrent connections Jij , and
the super- or sub-linear integration (given by γijk) are symmetrical in their indices. While this symmetry is physically
realizable in neuronal networks, it is not the most general possible configuration. We will later return to possible
biophysical mechanisms behind such nonlinearities. We further note that, in our model, these “recurrent” interactions
are instantaneous, which is not true for physical neurons. Studies of the present mechanism for HOC in recurrent
dynamical models, as in Ref. [31], are an intriguing area for future work. Finally, we note that, in addition to recurrent
coupling, interaction terms can also come from common noise inputs to multiple neurons [30, 31, 33], and that in this
case, the interactions are likely to be symmetrical, as in Eq. 1.

B. When do HOC improve coding?: – analytical results

Having motivated our probability model, we ask when triplet interactions improve coding. To do this, we use the
framework introduced by Tkačik et al. [14] to study population coding with pairwise interactions. For a given stimulus

distribution and parameter set {β, {h0i }, {Jij}, {γijk}}, we compute the mutual information (MI) between stimuli ~hs

and the responses ~σ:

I(~σ; ~hs) = −
∑
{~σ}

p(~σ) log[p(~σ)] +

∫
d ~hsp( ~hs)

∑
{~σ}

p(~σ| ~hs) log[p(~σ| ~hs)]. (3)

The first term is the response entropy, and the second term is (minus) the mean entropy of the response conditioned
on the stimulus (noise entropy).

We will first discuss analytical results, obtained in the limit of weak stimulus-dependence of the neural responses –
corresponding to small β – for arbitrary {{h0i }, {Jij}, {γijk}}. We will then show numerical results indicating that our
qualitative findings persist over a range of stimulus-coupling strengths. The analytical calculations are quite tedious,
and so we describe them briefly here, and show all the details in Appendix B. For the analytical investigation, we
re-write our probability distribution as

p(~σ|~h) =
1

Z
exp

ε ~hs · ~σ + β

 ~h0 · ~σ +
∑
i<j

Jijσiσj +
∑
i<j<k

γijkσiσjσk

 , (4)

where ε parametrizes the strength of the stimulus-dependence of the neuronal responses [32]. We then expand the MI
(Eq. 3) in powers of ε. This expansion yields
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I(~σ; ~hs) =
ε2

2

∑
i

〈
(hsi )

2
〉

var(σi) +
∑
i 6=j

〈
hsih

s
j

〉
cov(σi, σi)

 (5)

+ ε3

∑
i

µi
3

(
1 + 2µ2

i − 3µi
) 〈
h3i
〉

+
∑
i 6=j

cov(σi, σj) (1− 2µi)
〈
h2ihj

〉
+ ε3

 ∑
i 6=j 6=k

1

3
(τijk + 2µiµjµk − 3µkπij) 〈hihjhk〉


+ O(ε4),

where µi = E
[
σi| ~hs = ~0

]
, πij = E

[
σiσj | ~hs = ~0

]
, τijk = E

[
σiσjσk| ~hs = ~0

]
, angled brackets denote expectations over

the stimulus distribution, and cov(σi, σi) = πij −µiµj and var(σi) = πii−µ2
i are moments of the spontaneous activity

distribution (obtained when no stimulus is present, and thus hsi = 0 ∀ i).
The form of Eq. 5 emphasizes that the MI depends on the relationships between the moments of the stimulus

distribution, and the moments of the response distribution in a very specific way. In particular, it is the moments of
the spontaneous activity distribution (obtained when no stimulus is present, and thus hsi = 0 ∀ i) that determine the
MI. This effect arises because the Boltzmann factors (the exponentials in the numerator of) Eq. 4 factorize into a

stimulus-dependent part exp(ε ~hs·~σ), and a stimulus-independent part. In the case where the stimulus is set to zero, the
stimulus-dependent part is unity, and one obtains the Boltzmann factors for the spontaneous activity distribution.
Thus, the Boltzmann factors consist of a stimulus-dependent term multiplied by the Boltzmann factors for the
spontaneous activity distribution. Consequently, the moments of the spontaneous activity distribution determine the
statistical interactions of the encoding model, and thus the MI. Our analytical expansion exploits this multiplicative
structure to obtain Eq. 5.

Because Eq. 5 yields the MI as a function of moments of the spontaneous activity distribution – and the interaction
terms in Eqs. 1 and 4 determine those moments – we can use Eq. 5 to understand the conditions under which different
interactions will improve MI.

Our first observation is that, in the case of stimulus distributions that are symmetric about their mean (like, for
example, Gaussian distributions), the odd moments vanish, and thus so do the O(ε3) terms in Eq. 5. In this case, at
least up to O(ε4), the MI depends only on the first and second moments of the response distribution. Consequently, in
this case, adjusting the HOC (by having γ 6= 0) will not impact the MI (at least up to O(ε4)). Because the inclusion
of HOC lowers the response entropy – which can reduce the MI – we conjecture that the optimal population code in
this case will have no HOC. This conjecture is supported by our numerical investigation (below, Figs. 3AC).

A second prediction is that, for this case of symmetric stimulus distributions, the best MI is obtained when the
pairwise interactions between neurons – which determine the signs of cov(σi, σi) in Eq. 5 – have the same signs as
the correlations between their stimulus-dependent gains

〈
hsih

s
j

〉
. This finding is consistent with the numerical results

obtained by [14], in the case of small β (which, in their work, parametrizes both the strength of the stimulus coupling
and of the interactions between cells). We note that, because our analytical expansion (Eq. 5) holds only in the limit
of small β, we cannot use this expansion to understand the numerical results that [14] obtained in the limit of large β.

In the case of skewed stimulus distributions, the O(ε3) terms in Eq. 5 are non-zero, and thus changes to the HOC
– by adjusting the third-order interaction γ – can increase the MI: this is confirmed by the numerical results shown
in Fig. 3 BDF (below). Unfortunately it is not straightforward to determine the optimal sign of γ from Eq. 5 in the
case of unskewed stimulus distributions, because triplet moments in the response distribution will be simultaneously
determined by the J and γ. However, Eq. 5 does allow us to understand how HOC might impact coding in large
neural populations: in a population of N neurons, there are O(N3) of the cubic terms in Eq. 5 (that depend on
HOC), but only O(N2) of the quadratic terms (that do not depend on the HOC). Consequently, in the limit of large
N , the HOC could have a large impact on the MI.

C. When do HOC improve coding?: – numerical results

Our analytical investigation identified situations – of skewed stimulus distributions – in which we expect HOC
to enhance the population code. To verify this finding (and investigate the extent to which it applies to stronger
stimulus-coupling regimes than could be considered by our series expansion), we numerically seek the h0i , Jij , and
γijk in Eq. 1 that maximize the MI (Eq. 3). We repeat this optimization for different values of β – and thus different
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strengths of stimulus coupling: note that, in Eq. 1, β multiplies the stimulus, and thus it sets the strength of the
stimulus coupling.

To simplify our numerical investigation, we consider homogeneous parameter values: h0i = h0, Jij = J , and
γijk = γ ∀i, j, k. For consistency with this, we use permutation-symmetric stimulus distributions. However, for any

given stimulus example ~hs, the conditional response distribution will not necessarily be permutation-symmetric. For
a given set of model parameters, we numerically compute the MI using Monte Carlo methods, and we optimize over
the parameters using gradient ascent (see Appendix C).

As a control, to see if and when the HOC really do lead to better MI than could be obtained by a model with
no higher-order correlations, we also optimize MI over h0 and J while imposing the constraint γ = 0, the triplet
forbidden case. In this case, the conditional response distribution becomes the pairwise maximum entropy model,
which is the situation considered by [14] (here, with homogeneous parameters). Comparing the maximum attainable
MI with triplet interactions allowed or forbidden, we ascertain when, and how much, their presence improves coding.
This is related to 3rd order connected information [24], where one fits both 2nd and 3rd order ME models to the
stimulus-conditioned response distributions and compares the resulting MI. In the case of [24] (and in the recent
work of [20]), the second-order moments are held fixed as the third-order moments are varied, whereas we separately
optimize the interaction parameters controlling those moments in the two cases. Because we separately optimize the
2nd and 3rd order models, we obtain more conservative estimates of how MI increases due to the 3rd order interactions
than did [20].

We note that, when triplet interactions are allowed, the optimum can still occur for γ = 0. In this case the maximal
MI will be equal for networks allowing and forbidding triplet interactions. Thus, because the triplet-allowed model
space is a superset of the triplet-forbidden one, it will never be the case that the optimized triplet-allowed network
performs worse than the optimized triplet-forbidden one.

We begin with the case of jointly Gaussian stimuli (Fig. 2A) of varying levels of correlation ρ. Recall that our
analytical results (Eq. 5, above) suggest that, in this case, it is only the second-order moments of the response
distribution that affect the MI, and that we conjectured based on this that HOC confer no coding benefit. This
is borne out by our numerical analysis: (Fig. 3A,C, N = 10 neurons): even when triplet interactions are allowed,
the optimal encoder has γ = 0 (Fig. 4A). Here, the stimulus distribution is symmetric about the mean, and the
optimal encoder is on-off symmetric with 〈σ〉 = 0.5. That symmetry – with neurons being in either the “spiking” (1)
or “non-spiking” state (0) with equal probability – maximizes response entropy. When the stimuli are drawn from
discrete binary distributions with equal probabilities for the two states, we also find that triplet interactions confer no
coding advantage (data not shown). These observations support our analytical finding that, for unskewed stimulus
distributions, with on-off symmetric response distributions, triplet interactions are not useful for coding. Moreover,
these numerical results hold over a range of β values, and thus a large range of stimulus-coupling strengths (and not
just the weak ones considered in our analytical calculation).

To seek situations when triplet interactions might be beneficial to the population code, we break the on-off symmetry.
We do this in two different ways, the first of which is to consider skewed stimulus distributions. The case of skewed
stimulus distributions is potentially important because the distribution of membrane potentials (neuronal inputs) in
rat auditory cortical neurons is skewed [43], as are the spike-count distributions in dichotomized Gaussian models of
neural population activity [30]. Moreover, naturalistic stimuli (like pixel values in real-world images) have skewed
distributions (Fig. 2BC). Consequently, the inputs to real biological neurons – either from external stimuli, or from
other neurons within the brain – may show nonzero skew [36]. We use as stimuli calibrated luminance images from
the database of Tkačik et al. [37].

It is worth noting that images of natural scenes (as one might collect with a digital camera in, say, a forest) have
statistical properties that differ markedly from purely random white-noise images. Much theoretical and empirical
work has investigated these properties [34, 35, 38–42]. Of particular note are the rich correlation structure, and the
power-law power spectra: natural images have autocorrelation functions (Fourier transform of the power spectra) that
decrease with distance [38], in a manner that is surprisingly independent of the occlusion property of objects in those
images [41, 42]. By drawing groups of pixels (Fig. 2) with variable spacing d, we vary the level of correlation between
stimulus values. Since luminance (or photon count) is non-negative, but can be arbitrarily large, this distribution is
skewed (Fig. 2C).

For the natural image luminance stimuli, we find that triplet interactions indeed confer a coding advantage. For
N = 10 cells, this is a 5 — 10% improvement in MI compared to the optimized purely pairwise encoder (Figs. 3B,D).
The advantage is largest for close-by sampled pixels (small d), and at relatively low values of β (i.e., relatively unreliable
neurons). Natural images have rich beyond-pairwise statistics [35]. Is that why triplet interactions improve encoding
for natural image stimuli? No: repeating these optimization experiments using linear mixtures of variables from
skewed Pearson-system marginal distributions as stimuli, we also observed that triplet interactions improved coding
(data not shown). These results support our analytical findings that, in the case of skewed stimulus distributions,
triplet interactions can improve coding performance.
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FIG. 2: (Color online) Stimuli considered in this work. (A) Marginal histogram of one stimulus, hs
1, for the jointly

Gaussian ensemble. (B) One of the natural luminance images used in this work, from the database of Tkačik et al. [37]. The
marginal histogram of pixel values for this set of images (normalized to have zero mean and unit variance) is skewed (C). To
generate our naturalistic stimulus ensemble, we randomly draw dectuplets of pixel values with spacing d pixels by placing the
template (D) at a random location on a randomly chosen image, and setting stimulus values hs

i to match the pixel values falling
under each square. To maintain permutation symmetry of our stimulus ensemble, we permute which square corresponds to
which stimulus index i for each draw. The marginals (A,C) are the same for all stimulus indices i.

While our analytical results focused on the statistics of the stimulus distribution, one can also break the on-off
symmetry of our problem by restricting the firing rates (FR’s) of the neurons in our networks. Thus far, they have
been allowed to take arbitrary values. Empirically, however, neurons are seen to fire infrequently [2, 5, 9, 44, 45],
with mean FR’s of a few Hz: for 10 — 20 ms time bins [2, 5, 9] this yields 〈σ〉 ∼ 0.01 — 0.1. To incorporate this
constraint, we maximized a Lagrange function L = MI −λ 〈σ〉 that disfavors high FR’s [14, 46], similar to the notion
of sparse coding [46–50]. By varying λ, we alter the mean FR of the optimal network [14]. We ask how the MI for
these optimal networks varies as a function of their mean FR for networks with triplet interactions either allowed or
forbidden. For these investigations, we restricted ourselves to β = 1.5.

Intriguingly, for jointly Gaussian stimuli triplet interactions improve coding performance at sufficiently low firing
rates (Fig. 3E). The improvement is larger for stronger stimulus correlations. This effect is somewhat surprising
because our analytical results (Eq. 5) show that, up to O(ε3), MI is not increased by the inclusion of HOC when the
stimulus distribution is unskewed. We thus ascertain that the results in Fig. 3E arise at higher-order terms in the
series expansion. The key intuition is that, when the encoding problem is sufficiently symmetric (i.e.: the stimulus
distribution is symmetric about the mean and no firing rate constraint prevents the response distribution from being
on-off symmetric), the best encoders have no triplet interactions.

For natural image pixel stimuli (with skewed distributions), restricting firing rates lead to further benefits of triplet
interactions, over and above those already seen with unconstrained firing rates. In particular, for low firing rates the
benefits of triplet interactions can be as large as 15 — 20% (Fig. 3F).

The results shown herein are for networks of N = 10 neurons. This is as large as we can consider while being able to
numerically optimize our MI function with reasonable speed (see Appendix C for methods). However, we emphasize
that our analytical results (Eq. 5) hold for arbitrary N , and in fact suggest the effect of higher-order interactions on
MI may grow with population size (see discussion of analytic calculations above).
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FIG. 3: (Color online) Triplet interactions can improve encoding of stimuli. Panels (ACE) show results for Gaussian-
distributed stimuli, whereas panels (BDF) are for natural image pixel stimuli, which have skewed distributions. (A) For jointly
Gaussian stimuli with pairwise correlation coefficients of 0.95 (dashed lines) or 0 (solid lines), encoders with triplet interactions
allowed (green) or forbidden (red, γ = 0) have the same coding performance, which increases with neural reliability β. (B)
For natural image stimuli with pixel spacings of d = 32 (solid lines) or d = 2 (dashed lines), the triplet-allowed encoder
(green) performs better. The shaded regions (similar in thickness to the lines) around the lines in panels (A,B) show the
standard deviation of the mean MI over 5 repeats of the optimization procedure with different sets of random stimuli. (C,D)
To summarize how performance gains vary with correlation level, we plot the ratio of the MI for the optimal triplet-allowed
networks (MI3) to the one for triplet-forbidden networks (MI2, γ = 0) as a function of β. The darkest curve corresponds
to the largest correlation (ρ = 0.95 for the Gaussian (C) and d = 2 for the natural image stimuli (D)), the lightest curve
corresponds to the smallest correlation (ρ = 0 for the Gaussian and d = 32 for the natural image stimuli), and intermediate
shades correspond to intermediate levels of correlation. (E,F) For β = 1.5, we similarly plot the performance ratio as a function
of mean firing rate for Gaussian (E) and natural image (F) stimuli, in cases with constrained firing rates (see text). In order
to make a fair comparison, we estimate the MI of the triplet-allowed and triplet-forbidden networks at the same firing rate (see
Appendix C for details). N = 10 neurons for all cases.

D. How do HOC improve coding?

To understand how the HOC improve the population code, we investigated the parameters of the optimized models:
the J , h0, and γ that maximized the MI in different cases.

For skewed natural image pixel stimuli, the negative (γ < 0) triplet interactions we observed at optimality (Fig.
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FIG. 4: (Color online) Triplet interactions, when they are beneficial, sparsify the neural representation of stimuli.
(A) For jointly Gaussian stimuli (ρ = 0.95) and no firing rate constraint, optimal encoders have no triplet interaction (γ,
green). At low β, these optimal encoders have pairwise interactions (J , red) that enhance the input correlations, whereas at
high β they oppose them [14]. The optimal biases h0 (blue) cancel the effective mean-field bias from pairwise interactions,
heff = (N−1)J 〈σ〉. (B) For the natural image pixel stimuli (d=2), the optimal encoders have negative triplet interactions (when
triplet interactions are allowed: solid lines) for all β – the encoder parameters do not change sign. When triplet interactions are
forbidden (dashed lines), the magnitudes of the pairwise interaction and bias are smaller, and do change sign with increasing
β. The solid horizontal line (at zero) is to guide the eye. The shaded regions (similar in thickness to the lines) around the
lines in panels (A,B) show the standard deviation of the mean parameter values over 5 repeats of the optimization procedure
with different sets of random stimuli. For other levels of stimulus correlation, we find qualitatively similar results (not shown).
A comparison of the response distributions of the optimal encoders for the natural image pixel stimuli (d=2) with triplet
interactions allowed (C) or forbidden (D, γ = 0) shows that the triplet interactions sparsify the responses by reducing the
probability of the state in which all neurons are active.

4B) sparsify neural responses by reducing the frequency of multi-spike synchrony in which many neurons fire si-
multaneously. This sparsifying role of triplet interactions agrees with experimental findings [9] and mechanistic
modeling [30, 31, 59]. Importantly, γ < 0 is optimal even in the absence of a FR constraint, pointing to a richer role
in shaping response distributions.

Following [14], we first note that (at least at small β when γ = 0, and for all β when γ 6= 0) the optimal encoders
have positive J (Figs. 4A,B). Thus, pairwise network interactions reinforce the positive correlations already present
in the stimulus, which [14] interpret as an error-reducing property: responses tend to be constrained to a smaller
set of possibilities. This effect can be beneficial only up to a point: for very large positive J , neurons would all fire
synchronously regardless of the stimulus, sharply reducing response entropy. There is therefore a trade-off between
the desiderata of error reduction (J reinforces correlations) and high response entropy (J opposes correlations).

Triplet interactions impact the tradeoff in a novel way: γ < 0 combats multi-spike synchrony, so that response
entropy can be maintained even with J reinforcing stimulus correlations [52]. Triplet interactions are more suited
than pairwise ones at specifically suppressing multi-spike states, in line with the observation that γ < 0 and J > 0 at
optimality, and not vice versa (see Appendix D). The response distributions of optimal encoders with triplets allowed
(Fig. 4C) or forbidden (Fig. 4D) support this notion: even with no constraints on the FR, the triplet-allowed network
makes less use of the state in which all neurons are active. Moreover, with triplet interactions forbidden, the optimal
encoders have smaller J (Fig. 4B), also consistent with the interpretation above. Finally, we observed γ < 0 to be
optimal when we constrained the firing rates as well (data not shown).

Allowing nonzero triplet interactions yields optimized network parameters J and γ that do not change sign as β is
varied. This stands in contrast to the case of γ = 0, for which the encoder parameters change sign as β is varied (Fig.



9

4): at low β, they reinforce the stimulus correlations, while at high β, they oppose them. This behavior is dictated
by the trade-off between noise and response entropies described above [14].

III. DISCUSSION AND CONCLUSIONS

We have shown that, in the case of skewed stimulus distributions, or of low neural firing rates, neural population
coding efficacy can be enhanced by third-order correlations between neurons.

A. What about 4th order and higher interactions?

While we have herein restricted ourselves to third order interactions, the same methods would apply equally well
to higher-order models (with 4th or 5th, or higher-order terms in the exponential in Eq. 1). This naturally begs the
question: “What order is high enough?” In other words, what is the highest order of interactions that one must
consider in order to understand information transmission in neural systems? Evidence from available experiments
seems to suggest an encouraging answer. For recordings of ≈ 100 cells from retina being stimulated with naturalistic
movies [5] it appears that, even at 4th order, the number of non-zero interactions is quite small, and by sixth order,
there are none. Recordings from somatosensory cortex [7] also suggest that the order of needed interactions will be
much smaller than the recorded number of neurons. To summarize, the type of approach used in this paper could be
extended to higher orders, and available experiments suggest that such a venture will have a well-defined stopping
point: once we understand how interactions up to order 5 or 6 affect coding, we could be largely done.

B. Potential biophysical origins of beyond-pairwise interactions

In our model, higher-order interactions can arise from the nonlinear combination of recurrent inputs. Neurobiology
provides several processes which can affect such nonlinear combinations. Even for passive single-compartment neurons
(no dendrites), inputs can combine sub-linearly, as follows. Synaptic inputs open ion channels, moving the membrane
potential towards that ion’s reversal potential [51]. Opening subsequent channels creates less current as there is less
driving force pushing ions through the channel [53]. Dendrites have additional properties that yield nonlinearities [53–
56]. This allows flexible higher-order interactions: both super- and sub-linear dendritic summation are observed when
two inputs impinge on the same dendritic branch [57], while inputs to separate branches combine linearly. For strong
dendritic inputs, the observed integration properties are sub-linear [57], corresponding to negative triplet interactions,
similar to what we observed (Fig. 4) for optimal coding.

We emphasize that, in our probability model, the nonlinear integration is symmetric for the cell triplets (Eq. 1).
In other words, if neuron i super-linearly combines the inputs from neurons j and k, then neuron j super-linearly
combines the inputs from cells i and k, etc. While this is a highly constrained case, it is physically realizable. At the
same time, the nonlinear statistical interactions in our probability model can also arise from common noise inputs to
multiple neurons [30, 31, 33]. In that case, the interactions will naturally be somewhat symmetrical.

We note that caution is warranted when making mechanistic interpretations of statistical parameters observed in
neural data. Pairwise interactions in those data do not necessarily reflect synaptic couplings, as there may be common
input to both neurons from unobserved cells that are the cause the correlation. Similar remarks apply to higher-order
interactions, which can also be driven by “hidden” (unobserved) cells [58], spike-generating nonlinearities [30, 31, 59]
and other mechanisms [24, 31].

C. Implications for machine learning and computer vision

In both the mammalian visual system, and in Boltzmann-type computer vision algorithms [21, 22], continuous-
valued pixel intensities are encoded into binary. These codewords describe the states of all computational units in
the system, each of which are either “on”, or “off” at any given moment. This binarization naturally leads to a
loss of information about the image, potentially hindering these systems’ abilities to perform the hard computational
task of object recognition. Herein, we investigated the features that can minimize the information loss in binary
image processing systems. Our results indicate that pairwise and beyond-pairwise statistical interactions between
computational units can improve the performance of Boltzmann-type image encoders, like deep belief networks [21].
In other words, we identify and begin to explain an information-theoretic role for recurrent interactions within such
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network layers. At the same time, these higher-order interactions might be difficult to optimize (i.e., to find suitable
learning rules).

D. Summary and Conclusions

We have demonstrated that input nonlinearities can generate beyond-pairwise interactions in spin-glass statistical
models of neural population activity, and observed that – under biologically relevant conditions – these nonlinearities
can improve population coding. In particular, we find that the third-order interactions can improve coding when the
stimulus distribution is skewed, and/or when the neurons are restricted to have reasonably low firing rates. Normative
theories might thus predict differences in the summation properties of neurons in networks that are evolved (or
adapted) to encode different types of stimuli, or in networks with different pressures to regulate firing rates.
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Appendix A: Triplet interactions arise from the first non-linear terms in a series expansion of the input to
our model neuron

If we let the recurrent input to neuron i be an arbitrary function of the activities of the other neurons, xi =
hi + f({σj 6=i}), triplet interactions arise from the first nonlinear terms in the series expansion xi = hi +

∑
j 6=i aijσj +∑

j 6=i bijσ
2
j +

∑
j,k 6=i cijkσjσk + ..., where aij , bij , cijk are the series coefficients, and we have omitted the constant

in the expansion. Since σj ∈ {0, 1}, σ2
j = σj , and the bijσ

2
j terms can be grouped with the aijσj ones, this yields

xi = hi +
∑
j 6=i Jijσj +

∑
j,k 6=i γijkσjσk + ..., where Jij = aij + bij and γijk = cijk.

Appendix B: Analytic Calculations of Mutual Information

This Section is organized as follows: we first parametrize the strength of the stimulus-coupling (ε) in the probability
model. Next, we re-write the mutual information in a more convenient form. Then, we exploit that re-write to expand
the MI in powers of ε.

1. Problem (re)Statement

We want to compute the mutual information (MI) between neural responses ~σ, where σi ∈ {0, 1} is the spiking or

not spiking of a neuron in a given time bin, and the stimuli ~hs. We do this by writing down the conditional PDF,
and computing conditional and marginal entropies. Following the main paper paper (Eq. 4), let’s write down the
conditional PDF as

p(~σ| ~hs) =
1

Z( ~hs)
exp

ε ~hs · ~σ + β

∑
ij

Jijσiσj +
∑
ijk

γijkσiσjσk

 , (B1)

where the pair-wise and triplet interactions are given by J and γ, and β describes the strength of those interactions.
Note that the diagonal elements of J can be thought of as the bias terms (h0i in the main paper) for the neurons. As
in Eq. 4 of the main paper, parameter ε describes the strength of the coupling between stimuli and neural responses.

Z( ~hs) is the conditional partition function,

Z( ~hs) =
∑
{~σ}

exp

ε ~hs · ~σ + β

∑
ij

Jijσiσj +
∑
ijk

γijkσiσjσk

 . (B2)
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The mutual information can then be computed as

I(~σ; ~hs) = −
∑
{~σ}

p(~σ) log[p(~σ)] +

∫
d ~hsp( ~hs)

∑
{~σ}

p(~σ| ~hs) log[p(~σ| ~hs)]. (B3)

Note that these two terms look like log(p) averaged over some distributions, which requires that we know the

partition function (i.e.: the log(Z( ~hs) terms). Computing partition functions is hard, since it requires a sum over
all states, and there are 2N states of a system with N neurons. The “α method”, described below, gets around this
difficulty.

2. The “α method”

a. Re-writing the conditional PDF

Looking at the conditional PDF, we notice that (ignoring for now the partition function), it factorizes into

two parts. First, the stim-coupling part α = exp
[
ε
(
~hs · ~σ

)]
. And, next, the “network interactions” part

ψ = exp
[
β
(∑

ij Jijσiσj +
∑
ijk γijkσiσjσk

)]
. Consider, for now, the partition function when there is no stimu-

lus present, so that ~hs = ~0. In that case, α = 1, and the partition function becomes

Z( ~hs = 0) =
∑
~σ

exp

β
∑

ij

Jijσiσj +
∑
ijk

γijkσiσjσk

 =
∑
~σ

ψ. (B4)

Call this “zero-stim” partition function Z0. We can then notice that PDF of the spontaneous activity distribution
(or “zero-stim” distribution) is

p(~σ| ~hs = 0) =
1

Z0
exp

β
∑

ij

Jijσiσj +
∑
ijk

γijkσiσjσk

 =
ψ

Z0
. (B5)

And, accordingly, the non-zero-field partition function is

Z( ~hs) =
∑
~σ

exp

ε( ~hs · ~σ)+ β

∑
ij

Jijσiσj +
∑
ijk

γijkσiσjσk

 . (B6)

=
∑
~σ

αψ

=
∑
~σ

αZ0p(~σ| ~hs = 0)

= Z0 E
SAD

[α] ,

where ESAD [·] represents an expectation over the spontaneous activity distribution (SAD). Finally, using this bit
of notation, we can re-write our conditional PDF as

p(~σ| ~hs) =
1

Z( ~hs)
αψ, (B7)

=
αψ

Z0 ESAD [α]

=
αp(~σ| ~hs = 0)

ESAD [α]
.
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This, on its own, doesn’t look like much of a simplification. However, notice that we no longer have a conditional
partition function to evaluate. In its stead, we have the zero-field partition function, and an expectation of α over
the SAD. The zero-field partition function will be the same for the conditional and marginal distributions, and will
thus cancel when we compute mutual information (below).

b. Simplifying the Mutual Information

We use another form for the mutual information, that is equivalent to (Eq. B3), but a bit more convenient for our
purposes:

I(~σ; ~hs) =

∫
d ~hsp( ~hs)

∑
{~σ}

p(~σ| ~hs) log[p(~σ| ~hs)/p(~σ)]. (B8)

To evaluate this, we need to know the marginal distribution over responses, which is

p(~σ) =

∫
d ~hsp( ~hs)p(~σ| ~hs) (B9)

= p(~σ| ~hs = 0) E
~hs

[
α

ESAD [α]

]
,

where E ~hs [·] is an expectation over the stimulus distribution. Using all of our above observations, we can re-write
the mutual information as

I(~σ; ~hs) = E
~hs

∑
{~σ}

p(~σ| ~hs = 0)
α

ESAD [α]
log

 α
ESAD[α]

E ~hs

[
α

ESAD[α]

]
 (B10)

= E
~hs

 E
SAD

 α

ESAD [α]
log

 α
ESAD[α]

E ~hs

[
α

ESAD[α]

]


where the factors of p(~σ| ~hs = 0) in the logarithm cancel because they appear in both the numerator and denominator
of the fraction, and the second line follows from the first because the sum over all states reduces to an average
over the spontaneous activity distribution. We now observe that the problem of computing mutual information,
which previously required a hard partition function calculation, has been reduced to computing expectations of

α = exp(ε ~hs · ~σ) over both the spontaneous activity distribution, and over the stimulus distribution.

Finally, notice that, while we have used a specific functional form for p(~σ| ~hs) in our calculations, the same logic

applies to any conditional PDF of the form p(~σ| ~hs) = α( ~hs, ~σ)ψ(~σ), with the condition α( ~hs = 0, ~σ) 6= 0. Intuitively,
the variability in responses due to ψ(~σ) is the same for all stimuli, so it provides the same contribution to the marginal
and conditional entropies, and that contribution cancels when we compute mutual information.

3. Analytically relating MI to moments of the stimulus and response distributions

Our MI calculation reduced to (Eq. B10) expectations over the SAD and the stimulus distribution. We know

that we can write out the exponentials, logarithms, and ratios as power series in ε ~hs · ~σ, and the MI is an average
of those things over the SAD and stimulus distributions. This means that we can analytically write down the MI as
a function of moments of the SAD and stimulus distributions. Let’s do that, but first break up Eq. B10 into a few
easier-to-manage terms:
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I(~σ; ~hs) = E
~hs

 E
SAD

 α

ESAD [α]
log

 α
ESAD[α]

E ~hs

[
α

ESAD[α]

]
 (B11)

= E
~hs

[
E

SAD

[
log (α)

α

ESAD [α]

]]
− E

~hs

[
log
(

E
SAD

[α]
)]

− E
~hs

[
E

SAD

[
α

ESAD [α]
log

(
E
~hs

[
α

ESAD [α]

])]]

a. Dealing with the 3rd term in the above equation

The first few terms are (relatively) simple, so let’s focus for now on the third term (−T3) in the above equation,
with:

T3 = E
~hs

[
E

SAD

[
α

ESAD [α]
log

(
E
~hs

[
α

ESAD [α]

])]]
. (B12)

We’ll expand to 3rd order in ε, and thus restrict ourselves to small ε. In so doing, we will find that T3 = 0 +O
(
ε4
)
,

and hence that we can ignore it in the small ε limit. To simplify our notation, let s = ~σ · ~hs (the s is for “sum”), such
that α = exp(εs). We first note that T3(0) = 0, because α(ε = 0) = 1 ∀ s, and thus the ratio in the logarithm is unity.
Since they will keep coming up in our calculation, we’ll note straight away that

∂
∂ε

(
α

ESAD[α]

)
= sαESAD[α]−αESAD[sα]

(ESAD[α])2
(B13)

∂2

∂ε2

(
α

ESAD[α]

)
= Ω

Ω = s2α(ESAD[α])2−αESAD[s2α]ESAD[α]−2sαESAD[sα]ESAD[α]+2α(ESAD[sα])2

E3
SAD[α]

,

where we have defined Ω for our convenience. Then,

T3(ε) = T3(0) + ε
∂T3
∂ε

∣∣∣∣
ε=0

+
ε2

2

∂2T3
∂ε2

∣∣∣∣
ε=0

+
ε3

6

∂3T3
∂ε3

∣∣∣∣
ε=0

+O(ε4). (B14)

To proceed further, we need to evaluate the derivatives in Eq. B14.

∂T3
∂ε

= E
~hs

[
E

SAD

[
α

ESAD

(
E
~hs

[
α

ESAD

])−1
E
~hs

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

]]]
(B15)

+ E
~hs

[
E

SAD

[
log

(
E
~hs

[
α

ESAD [α]

])
sαESAD[α]− αESAD[sα]

E2
SAD [α]

]]
.

Conveniently, the first term in Eq. B15 (above) vanishes. To see this, notice that
(
E ~hs

[
α

ESAD

])−1
and

E ~hs

[
sαESAD[α]−αESAD sα]

E2
SAD[α]

]
are independent of ~hs, being already expectation values over ~hs. If we change the or-

der of our expectations over SAD and ~hs, then α
ESAD

and
(
E ~hs

[
α

ESAD

])−1
cancel. What remains is (again, swapping

the order in which we compute expectations)

E
~hs

[
E

SAD

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

]]
(B16)

= E
~hs

[
ESAD[sα]ESAD[α]− ESAD[α]ESAD[sα]

E2
SAD [α]

]
= 0.
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With this simplification, we have

∂T3
∂ε

= E
SAD

[
log

(
E
~hs

[
α

ESAD [α]

])
E
~hs

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

]]
, (B17)

which is zero when evaluated at ε = 0, due to the ratio of α’s in the logarithm. There is thus no first-order
contribution to T3! We now require the second (and eventually third) derivative in our Taylor series:

∂2T3
∂ε2

= E
SAD

[
log

(
E
~hs

[
α

ESAD [α]

])
E
~hs

[Ω]

]
+ ζ (B18)

ζ = E
SAD

[(
E
~hs

[
α

ESAD [α]

])−1(
E
~hs

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

])2
]
.

As with the first derivative, when we evaluate this at ε = 0, the term with the logarithm vanishes, leaving

∂2T3
∂ε2

∣∣∣∣
ε=0

= ζ

∣∣∣∣
ε=0

(B19)

= E
SAD

[(
E
~hs

[s]− E
~hs

[
E

SAD
[s]
])2

]

=⇒ ∂2T3
∂ε2

∣∣∣∣
ε=0

= E
SAD

[(
E
~hs

[s]

)2
]
−

(
E

SAD, ~hs

[s]

)2

The second derivative was messy to calculate (Eq. B18), and now we require the third derivative, which is even
worse. We’ll save ourselves a bit of effort by noting that the term that contains a logarithm will vanish when evaluated
at ε = 0, and so we won’t compute it at all. With that in mind,

∂3T3
∂ε3

= E
SAD

[
log

(
E
~hs

[
α

ESAD [α]

])
E
~hs

[
∂Ω

∂ε

]]
(B20)

+ E
SAD

[(
E
~hs

[
α

ESAD [α]

])−1(
E
~hs

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

])
E
~hs

[Ω]

]

+
∂ζ

∂ε
,

where Ω and ζ are as defined in Eqs. B13, B18, and

∂ζ

∂ε
= 2 E

SAD

[(
E
~hs

[
α

ESAD [α]

])−1(
E
~hs

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

])
E
~hs

[Ω]

]
(B21)

− E
SAD

[(
E
~hs

[
α

ESAD [α]

])−2(
E
~hs

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

])3
]
.

Putting all of these pieces together, we observe that

∂3T3
∂ε3

= E
SAD

[
log

(
E
~hs

[
α

ESAD [α]

])
E
~hs

[
∂Ω

∂ε

]]
(B22)

+ 3 E
SAD

[(
E
~hs

[
α

ESAD [α]

])−1(
E
~hs

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

])
E
~hs

[Ω]

]

− E
SAD

[(
E
~hs

[
α

ESAD [α]

])−2(
E
~hs

[
sαESAD[α]− αESAD[sα]

E2
SAD [α]

])3
]
,
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where (again) Ω is as defined in Eq. B13. Let’s now evaluate this at ε = 0;

∂3T3
∂ε3

∣∣∣∣
ε=0

= 3 E
SAD

[(
E
~hs

[s]− E
SAD, ~hs

[s]

)
E
~hs

[
Ω

∣∣∣∣
ε=0

]]

− E
SAD

(E
~hs

[s]− E
SAD, ~hs

[s]

)3
 . (B23)

This looks pretty hairy, but we’ll note that all of our terms are multiplied by either E ~hs(s) or ESAD, ~hs(s). These

will vanish for zero-mean stimulus distributions. Since one can compensate for non-zero mean along any stimulus
distribution by changing the bias for the corresponding neuron (the diagonal elements Jii in Eq. B2), then WLOG
we can assume the stimuli are zero-mean. This means that

E
~hs

[s] = E
~hs

[∑
i

hiσi

]
(B24)

=
∑
i

E
~hs

[hi]σi

= 0 ∀ ~σ.

Thus, the 3rd order term vanishes Looking back at Eq. B19, one can similarly note that the second order term
vanishes, and (at least up to 3rd order in ε), T3 vanishes!

b. Looking back at the other terms in our MI formula

Noting (from above) that we can ignore T3 up to 3rd order in ε, we find that

I(~σ; ~hs) = E
~hs

[
E

SAD

[
log (α)

α

ESAD [α]

]]
− E

~hs

[
log
(

E
SAD

[α]
)]

+O(ε4), (B25)

where we must now evaluate the two terms in Eq. B25 in order to proceed. Using the fact that α = exp(εs), and
calling these terms T1 and T2,

T1 = E
~hs

[
E

SAD

[
εs

α

ESAD [α]

]]
(B26)

T2 = E
~hs

[
log
(

E
SAD

[α]
)]
.

c. Expanding the first term, T1

We’ll start by expanding the T1 term up to 3rd order in ε, but first note that it already has a factor of ε in front of
it (from the log(α)), so we will need do a second-order Taylor series of T̃1 = T1/ε, and just multiply that whole thing
by ε. Thus,

T1(ε) = ε
[
T̃1(ε)

]
(B27)

= ε

[
T̃1(ε = 0) + ε

∂T̃1
∂ε

∣∣∣∣
ε=0

+
ε

2

∂2T̃1
∂ε2

∣∣∣∣
ε=0

]
+O(ε4).

The 0th order term in the expansion vanishes (T̃1(ε = 0) = ESAD, ~hs [s] = 0) for the same reason our T3 vanished

(Eq. B25). Again, we require derivatives to proceed, and (Eq. B13)
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∂T̃1
∂ε

= E
SAD, ~hs

[
s
sαESAD[α]− αESAD[sα]

(ESAD[α])
2

]
. (B28)

Evaluating this at ε = 0, we observe that

∂T̃1
∂ε

∣∣∣∣
ε=0

= E
SAD, ~hs

[s (s− ESAD[s])] (B29)

= E
SAD, ~hs

[
s2
]
− E ~hs

[
(ESAD[s])

2
]
,

which does not necessarily vanish for zero-mean stimulus distributions! Carrying on to get the second derivative,

∂2T̃1
∂ε2

= E
SAD, ~hs

[sΩ] , (B30)

where Ω (Eq. B13) has made a re-appearance. Evaluating Ω for ε = 0, we find that

∂2T̃1
∂ε2

∣∣∣∣
ε=0

= E
SAD, ~hs

[
s
(
s2 − E

SAD
[s2]− 2s E

SAD
[s] + 2( E

SAD
[s])2

)]
(B31)

= E
SAD, ~hs

[
s3
]
− E
SAD, ~hs

[
s E
SAD

[
s2
]]
− 2 E

SAD, ~hs

[
s2 E

SAD
[s]
]

+ 2 E
SAD, ~hs

[
s
(

E
SAD

[s]
)2]

.

Thus, combining Eqs. B27, B29 and B31, T1 (Eq. B26) is

T1 = ε2

(
E

SAD, ~hs

[
s2
]
− E ~hs

[
(ESAD[s])

2
])

(B32)

+
ε3

2

(
E

SAD, ~hs

[
s3
]
− E
SAD, ~hs

[
s E
SAD

[
s2
]]
− 2 E

SAD, ~hs

[
s2 E

SAD
[s]
]

+ 2 E
SAD, ~hs

[
s
(

E
SAD

[s]
)2])

.

So, the first term in our MI function has been reduced to moments of the stimulus and spontaneous activity
distributions, which we will later simplify.

d. Expanding the second term, T2

Let’s go over our second term now (T2 in Eq. B26):

T2(ε) = E
~hs

[
log
(

E
SAD

[α]
)]

(B33)

= T2(0) + ε
∂T2
∂ε

∣∣∣∣
ε=0

+
ε2

2

∂2T2
∂ε2

∣∣∣∣
ε=0

+
ε3

6

∂3T2
∂ε3

∣∣∣∣
ε=0

+O(ε4).

The 0th order term T2(0) vanishes due to the log. Let’s compute the derivatives one-by-one, starting with the first
derivative:

∂T2
∂ε

= E
~hs

[
ESAD [sα]

ESAD [α]

]
. (B34)

When evaluated at ε = 0, this derivative vanishes for zero-mean stimulus distributions:
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∂T2
∂ε

∣∣∣∣
ε=0

= E
~hs

[
E

SAD
[s]
]

= 0, (B35)

where, in the second step, we swap the order in which we take the averages, and recall Eq. B24. Moving on to the
second derivative,

∂2T2
∂ε2

= E
~hs

[
ESAD [α]ESAD

[
s2α
]
− E2

SAD [sα]

E2
SAD [α]

]
. (B36)

When evaluated at ε = 0, we find that

∂2T2
∂ε2

∣∣∣∣
ε=0

= E
~hs

[
E

SAD

[
s2
]
−
(

E
SAD

[s]
)2]

. (B37)

Finally, we require the third derivative,

∂3T2
∂ε3

= E
~hs

[
−2ESAD[α]ESAD[sα]

(
ESAD [α]ESAD

[
s2α
]
− E2

SAD [sα]
)

E4
SAD [α]

]
(B38)

+ E
~hs

[
E2
SAD[α]

(
−ESAD [sα]ESAD

[
s2α
]

+ ESAD [α]ESAD
[
s3α
])

E4
SAD [α]

]
,

which could be simplified, but will be easier to simplify once we evaluate it at ε = 0:

∂3T2
∂ε3

∣∣∣∣
ε=0

= E
~hs

[
2( E
SAD

[s])3 − 3 E
SAD

[s] E
SAD

[s2] + E
SAD

[s3]
]
. (B39)

Assembling the pieces (Eqs. B33,B35,B37,B39), we find that

T2 =
ε2

2
E
~hs

[
E

SAD

[
s2
]
−
(

E
SAD

[s]
)2]

(B40)

+
ε3

6
E
~hs

[
2( E
SAD

[s])3 − 3 E
SAD

[s] E
SAD

[s2] + E
SAD

[s3]
]

+O(ε4).

e. Assembling to terms in the MI

We can now take the individual terms we calculated (Eqs. B32,B40 for terms T1 and T2), and assemble them to
find the MI (Eq. B25)

I(~σ; ~hs) = ε2

(
E

SAD, ~hs

[
s2
]
− E ~hs

[
(ESAD[s])

2
])

(B41)

+
ε3

2

(
E

SAD, ~hs

[
s3
]
− E
SAD, ~hs

[
s E
SAD

[
s2
]]
− 2 E

SAD, ~hs

[
s2 E

SAD
[s]
]

+ 2 E
SAD, ~hs

[
s
(

E
SAD

[s]
)2])

.

− ε2

2
E
~hs

[
E

SAD

[
s2
]
−
(

E
SAD

[s]
)2]

− ε3

6
E
~hs

[
2( E
SAD

[s])3 − 3 E
SAD

[s] E
SAD

[s2] + E
SAD

[s3]
]

+O(ε4).

Grouping the ε2 and ε3 terms together,
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I(~σ; ~hs) =
ε2

2

(
E

SAD, ~hs

[
s2
]
− E ~hs

[
(ESAD[s])

2
])

(B42)

+
ε3

3

(
E

SAD, ~hs

[
s3
]
− E

~hs

[
( E
SAD

[s])3
])

+ ε3
(
E
~hs

[(
E

SAD
[s]
)3]
− E

~hs

[
E

SAD
[s2] E

SAD
[s]
])

+O(ε4).

f. Computing the relevant moments of the SAD and stimulus distributions

To proceed, we need to compute the expectation values in Eq. B42. Let’s start with the ε2 terms, and notice that

s2 =
∑
ij

σiσjhihj (B43)

=
∑
i

σih
2
i +

∑
i6=j

σiσjhihj ,

where we have used the fact that, for σi ∈ {0, 1}, σ2
i = σi. Averaging these over the SAD, with ESAD[σi] = µi,

ESAD[σiσj ] = πij (the π is for “pair”), we see that

E
SAD

[s2] =
∑
i

µih
2
i +

∑
i 6=j

πijhihj . (B44)

Averaging this quantity over the stimulus distribution, recalling that the stimuli are zero-mean, and denoting the
elements of the covariance matrix by νij = E ~hs [hihj ] (we can’t use σij to denote covariance since that already describes
the spin states),

E
SAD, ~hs

[s2] =
∑
i

µiνii +
∑
i6=j

πijνij . (B45)

Similarly, we can note that E ~hs

[
(ESAD[s])

2
]

= E ~hs

[∑
i µ

2
ih

2
i +

∑
ij µiµjhihj

]
. Carrying out the average over the

stim distribution, we find that

E ~hs

[
(ESAD[s])

2
]

=
∑
i

µ2
i νii +

∑
i 6=j

µiµjνij . (B46)

Then, the ε2 term in Eq. B42 is

ε2

2

[∑
i µiνii +

∑
i 6=j πijνij −

∑
i µ

2
i νii −

∑
i 6=j µiµjνij

]
(B47)

= ε2

2

[∑
i νiiµi(1− µi) +

∑
i 6=j νij (πij − µiµj)

]
.

The first of these terms contains µi(1−µi) = var(σi), and the second one contains (πij−µiµj) = cov(σi, σj), where
these moments (recall) are computed over the spontaneous activity distribution, and thus cov(σi, σj) is best related
to the Jij terms in Eq. B2, and var(σi) is best related to the mean-determining bias term Jii in Eq. B2. If we ignore
the higher-order terms in the MI (the 3rd moments come in at O(ε3)), and restrict ourselves momentarily to O(ε2),
we notice that

I(~σ; ~hs) =
ε2

2

∑
i

νiivar(σi) +
∑
i6=j

νijcov(σi, σi)

+O(ε3). (B48)
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We now make our first observation, namely, that for maximum MI, we require that νij and cov(σi, σi) should have
the same sign (both positive or both negative). Since the correlations in the SAD are controlled by (and have the
same sign as) Jij , we find that Jij should have the same sign as νij (the stimulus covariances), which agrees with
our numerical experiments, and those of Tkacik et al. We also notice that, to maximize cov(σi, σi) and var(σi), one
should choose µi = 1/2, which again agrees with our numerical experiments with unskewed stimuli. If there are
skewed stimuli, and thus the 3rd order terms are to be considered, these conclusions may no longer hold, so to make
more progress, we must consider the ε3 terms in Eq. B42.

As with the ε2 terms, we will consider the ε3 terms one-by-one, starting with

E
SAD, ~hs

[
s3
]

= E
SAD, ~hs

∑
ijk

σiσjσkhihjhk

 (B49)

= E
~hs

∑
i

µih
3
i + 3

∑
i6=j

πijh
2
ihj +

∑
i 6=j 6=k

τijkhihjhk

 ,
where we have used the fact that, for σi ∈ {0, 1}, σ3

i = σ2
i = σi, and defined τijk = ESAD[σiσjσk] (the τ is for

“triplet”) in going from the first line to the second. Carrying out the average over the stimulus distribution, we
observe that

E
SAD, ~hs

[
s3
]

=
∑
i

µi
〈
h3i
〉

+ 3
∑
i 6=j

πij
〈
h2ihj

〉
+
∑
i6=j 6=k

τijk 〈hihjhk〉 , (B50)

where we have used triangle brackets 〈·〉 to denote an expectation value over the stimulus distribution. Moving on
to the next ε3 term in Eq. B42,

E
~hs

[
( E
SAD

[s])3
]

= E
~hs

∑
ijk

µiµjµkhihjhk

 (B51)

= E
~hs

∑
i

µ3
ih

3
i + 3

∑
i6=j

µ2
iµjh

2
ihj +

∑
i 6=j 6=k

µiµjµkhihjhk


=
∑
i

µ3
i

〈
h3i
〉

+ 3
∑
i 6=j

µ2
iµj

〈
h2ihj

〉
+
∑
i6=j 6=k

µiµjµk 〈hihjhk〉 .

We can assemble these two terms, to get the ε3

3 term in Eq. B42:

ε3

3

∑
i

µi(1− µ2
i )
〈
h3i
〉

+ 3
∑
i6=j

(
πij − µ2

iµj
) 〈
h2ihj

〉
+
∑
i 6=j 6=k

(τijk − µiµjµk) 〈hihjhk〉

 . (B52)

What remains is to compute the ε3 term (with no factor of 1/3), and we’ll again do that term-by-term, noting that
the first part (E ~hs

[
(ESAD[s])3

]
) is already known (Eq. B51), leaving us to compute

E
~hs

[
E

SAD
[s2] E

SAD
[s]
]

= E
~hs

∑
i

µih
2
i +

∑
i6=j

πijhihj

∑
k

µkhk

 (B53)

= E
~hs

∑
i

µ2
ih

3
i +

∑
i 6=j

µiµjh
2
ihj + 2

∑
i 6=j

µiπijh
2
ihj +

∑
i 6=j 6=k

µkπijhihjhk


=
∑
i

µ2
i

〈
h3i
〉

+
∑
i 6=j

µiµj
〈
h2ihj

〉
+ 2

∑
i 6=j

µiπij
〈
h2ihj

〉
+
∑
i 6=j 6=k

µkπij 〈hihjhk〉
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where we have used Eq. B44 for ESAD[s2], and the factor of 2 on the second line comes in because k could be either
j or i. We can assemble this with Eq. B51 to get the ε3 term (with no factor of 1/3) in our MI formula;

ε3
(∑

i µ
2
i (µi − 1)

〈
h3i
〉

+
∑
i6=j µi (3µiµj − µj − 2πij)

〈
h2ihj

〉
+
∑
i 6=j 6=k µk (µiµj − πij) 〈hihjhk〉

)
= ε3

(
−
∑
i µivar(σi)

〈
h3i
〉

+
∑
i 6=j µi (µiµj − µj − 2cov(σi, σj))

〈
h2ihj

〉
−
∑
i 6=j 6=k µkcov(σi, σj) 〈hihjhk〉

)
.

Assembling the pieces (above and Eqs. B42,B48,B52), we observe that

I(~σ; ~hs) =
ε2

2

∑
i

νiivar(σi) +
∑
i6=j

νijcov(σi, σi)


+

ε3

3

∑
i

µi(1− µ2
i )
〈
h3i
〉

+ 3
∑
i 6=j

(
πij − µ2

iµj
) 〈
h2ihj

〉
+
∑
i 6=j 6=k

(τijk − µiµjµk) 〈hihjhk〉


+ ε3

−∑
i

µivar(σi)
〈
h3i
〉

+
∑
i 6=j

µi (µiµj − µj − 2cov(σi, σj))
〈
h2ihj

〉
−
∑
i 6=j 6=k

µkcov(σi, σj) 〈hihjhk〉

 .

+ O(ε4).

We can simplify this a bit further by grouping together the ε3 terms, to yield

I(~σ; ~hs) =
ε2

2

∑
i

νiivar(σi) +
∑
i 6=j

νijcov(σi, σi)

 (B54)

+ ε3

∑
i

µi
3

(
1 + 2µ2

i − 3µi
) 〈
h3i
〉

+
∑
i 6=j

cov(σi, σj) (1− 2µi)
〈
h2ihj

〉
+ ε3

 ∑
i 6=j 6=k

1

3
(τijk + 2µiµjµk − 3µkπij) 〈hihjhk〉


+ O(ε4).

Recall that µi = ESAD(σi), πij = ESAD(σiσj), τijk = ESAD(σiσjσk), νij = E ~hs(hihj), angled brackets denote
averages over the stimulus ensemble, and cov(σi, σi) and var(σi) are moments of the spontaneous activity distribution.
Cleaning up our notation to match the main paper, we thus find that

I(~σ; ~hs) =
ε2

2

∑
i

〈
(hsi )

2
〉

var(σi) +
∑
i 6=j

〈
hsih

s
j

〉
cov(σi, σi)

 (B55)

+ ε3

∑
i

µi
3

(
1 + 2µ2

i − 3µi
) 〈
h3i
〉

+
∑
i 6=j

cov(σi, σj) (1− 2µi)
〈
h2ihj

〉
+ ε3

 ∑
i 6=j 6=k

1

3
(τijk + 2µiµjµk − 3µkπij) 〈hihjhk〉


+ O(ε4).
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Appendix C: Numerical Methods

1. Monte Carlo methods and optimization

The mutual information between the stimuli and responses,

I(~σ; ~hs) = −
∑
{~σ}

p(~σ) log[p(~σ)] +

∫
d ~hsp( ~hs)

∑
{~σ}

p(~σ| ~hs) log[p(~σ| ~hs)], (C1)

involves the sum over all 2N possible population states, and an integral over the stimulus distribution of another such
sum. This function is not analytically tractable for N = 10 (the network size considered in this work) and / or for
continuous stimulus distributions. Instead, we use Monte Carlo methods to compute the MI. In particular, we define
the (un-normalized) frequency function

φ(~σ| ~hs) = exp

β( ~hs · ~σ + h0
∑
i

σi + J
∑
i<j

σiσj + γ
∑
i<j<k

σiσjσk)

 . (C2)

This (log-polynomial) function can be very quickly evaluated, and to compute the MI, we take a large number of

stimuli ~hs from the appropriate distribution, and evaluate the frequencies of each of the 2N states for each of the
stimuli. We then divide the frequencies for each state and stimulus by the sum of the frequencies over all states for
that stimulus, to get (normalized) conditional probabilities:

p(~σ| ~hs) = φ(~σ| ~hs)/
∑
{~σ}

φ(~σ| ~hs). (C3)

This normalizing operation can be done quickly using matrix operations in MatLab [60]. Note that, if one instead
defined the conditional probability for each state (instead of frequencies), then one would need to evaluate the partition
function (costly) in the calculation of the probability of each of the 2N states. Using the approach of first computing
frequencies, we evaluate the partition function only once for each stimulus value, saving 2N − 1 evaluations of the
partition function for each stimulus example. Given the conditional probabilities, we then compute the conditional
entropy (for each stimulus),

H(~σ| ~hs) = −
∑
{~σ}

p(~σ| ~hs) log[p(~σ| ~hs)]. (C4)

Averaging these values over the set of stimuli from our distribution we get the noise entropy (Hnoise, which is minus
the second term in Eq. C1). Similarly, we can average the conditional probabilities across all stimulus examples to
get the (marginal) response distribution

p(~σ) =
〈
p(~σ| ~hs)

〉
~hs
. (C5)

Finally, we compute the entropy of the response distribution

Hresp = −
∑
{~σ}

p(~σ) log[p(~σ)] (C6)

and subtract the noise entropy to get the MI: I(~σ; ~hs) = Hresp −Hnoise.
Note that, since we are using Monte Carlo integration, each evaluation of the MI function involves a (potentially)

different set of stimuli, and thus a potentially (slightly) different result, even for identical network parameters. This
noise makes gradient-based optimization methods highly error-prone. We avoid this pitfall by using exactly the same
set of stimuli in subsequent calls to the MI function during the optimization. This common random number approach
makes the MI a smooth function of our parameters, allowing us to use gradient-based optimization techniques;
see [61] for an overview of optimization methods for noisy functions. For the optimization itself, we use the open-
source MinFunc package [62] from Mark Schmidt. We found that MinFunc was much faster and more reliable than
the minimizers in the MatLab optimization toolbox.

In this paper, we have used ensembles of 1000 stimulus examples in evaluating the MI function. We repeated the
optimization 5 times, with different sets of stimuli each time, and found that the results were highly reproducible:
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the standard deviation of the mean MI achieved over those 5 trials is small (Fig. 3A,B of the main paper) – it is
comparable to, or in many cases less than, the line width on the plots – as is the standard deviation of the mean
parameter values obtained at optimality (Figs. 4A,B of the main paper).

The expressions herein (and in the main paper) do not specify the base in which the logarithm is computed. For
MI values in bits, those logarithms are to base 2.

2. Comparing optimal networks with constrained firing rates

When we use Lagrange multipliers for optimizing MI with constrained firing rates (see main paper), the exact
functional relationship between Lagrange multiplier λ and firing rate is unknown: although higher Lagrange multipliers
lead to lower firing rates, we cannot easily specify what value of λ is needed to achieve a given firing rate. We use the
same values of the Lagrange multipliers when we optimize with triplet interactions either allowed (TA), or forbidden
(TF), resulting in (slightly) different mean firing rates for the optimal TA and TF networks. The reason for this
difference is easy to understand, as they have different MI values, and thus the optimal trade-off between MI and
firing rate in the Lagrange function L = MI − λ 〈σ〉 will be slightly different.

We use linear interpolation to estimate the MI of the TF network at the exact mean firing rate of the TA network :
since we have several points on the curve of MI vs. mean firing rate for the TF network, this interpolation is easy
to implement. Finally, we take the ratio of the MI value for the TA network to the (interpolated) one for the TF
network at the same firing rate to create the data in Figs. 3E,F.

Appendix D: Triplet interactions are better than pair-wise ones at suppressing multi-spike states, hence the
observation that γ < 0 and J > 0 at optimality, and not vice versa

Consider the contribution C of the recurrent connections to the log-polynomial probability distribution over network
states, C = J

∑
i<j σiσj +γ

∑
i<j<k σiσjσk. When this number is large, the state is favored, and vice versa. The first

term (J
∑
i<j σiσj) is J times the number of active neural pairs, which is O(α2), where α is the number of co-active

neurons, while the second term (γ
∑
i<j<k σiσjσk) is O(α3).

Let us consider situations in which it is desirable for neurons act cooperatively, while not always firing synchronously.
If we choose positive J and (small) negative γ – which is what we observe at optimality: see Fig. 4B of the main

paper – then neurons are encouraged to be co-active by the positive J : they cooperate. If one considers states with
many spikes (large α), however, we can see that the effects of the triplet interaction, which are O(α3), can exceed the
pair-wise ones, which are O(α2). In other words, C ∼ JO(α2) + γO(α3) is a unimodal function with a positive peak,
such that for large α, states are strongly suppressed, while for intermediate α, they may be facilitated (Fig. 5: upper
(pink) curve). This acts somewhat like negative feedback: for small α, the effects of J (larger in magnitude than γ)
dominate, pushing the network towards having co-active cells, while for large α, the effects of γ push the network
away from having too many co-active cells. Thus, the network produces cooperative responses but has a diminished
probability of having all of the neurons co-active.

Now consider the opposite situation, with negative J , and positive γ. In this case C is unimodal with a negative
peak, and the larger-α states are progressively more facilitated by recurrent interactions (Fig. 5: lower (brown) curve).
This is reminiscent of positive feedback, and leads to heavy usage of the all-neurons-on state.

Of course, if we allow 4th order terms in the probability model, then one could have positive γ, while still avoiding
epileptic levels of synchrony, by having negative 4th order interactions, for example.
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