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Abstract

We consider the interaction between nematic liquid crystal (NLC) and polymer substrates. Such

substrates can interact with NLC, exhibiting a phenomenon known as director gliding: the preferred

orientation of the NLC molecules at the interface changes on timescales slow relative to the elastic

relaxation timescale of the NLC. We present two models for gliding, inspired by experiments that

investigate the interaction between the NLC and a polymer substrate. These models, though

simple, lead to non-trivial results, including loss of bistability under gliding. Perhaps surprisingly,

we find that externally imposed switching between the steady states of a bistable system may

reverse the effect of gliding, preventing loss of bistability if switching is sufficiently frequent. Our

findings may be of relevance to a variety of technological applications involving liquid crystal devices,

and particularly to a new generation of flexible Liquid Crystal Displays (LCDs) that implement

polymeric substrates.

PACS numbers: 42.70.Df, 61.30.Dk, 61.30.Gd, 61.30.Hn
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I. INTRODUCTION

The interaction between nematic liquid crystals (NLCs) and substrates is of great im-

portance due to the widespread use of portable electronic devices that use Liquid Crystal

Displays (LCDs) [1, 2]. A typical LCD consists of pixels, within each of which a thin layer

of NLC is placed between two plates a few microns apart [3]. In such devices, the amount

of light passing through the layer depends on the orientation of NLC molecules, represented

mathematically by a unit vector referred to as the director field. This orientation in turn

depends both on boundary effects at the plates (NLC molecules have a preferred orientation

at solid boundaries, a phenomenon known as anchoring), and on external forces (due, in

conventional display devices, to an applied electric field). Broadly speaking, the “field on”

and “field off” states are optically distinct, giving the basis for a controllable display [4].

Anchoring may be weak or strong, depending on the strength of the interaction between

the molecules of the NLC and those of the alignment material at each substrate. For both

weak and strong anchoring, the substrate is characterized by an “easy axis”, the axis along

which the interaction energy between the substrate and liquid crystal is minimized. In the

case of strong anchoring, the “easy axis” is nearly parallel to the director alignment at the

bounding surface. For weak anchoring, the director alignment may deviate significantly

from the easy axis, giving rise to a surface torque, which is balanced by the internal elastic

torque at the liquid crystal interface [5, 6]. At the interface between a NLC and a polymeric

substrate, a continuous realignment of the easy axis may occur, typically on a characteristic

time scale that is much longer than that of the elastic response of the NLC film. Such a

phenomenon has been called director gliding [6, 7]: polymeric surfaces are particularly prone

to exhibiting this behavior. Director gliding at an interface arises as a result of a prolonged

exposure to an external force due, e.g., to an applied electric or magnetic field or to the bulk

elastic distortion induced by different anchoring conditions (specifically, different anchoring

angles, though anchoring strength may also differ) at the two bounding interfaces of a NLC

layer [8–11].

Studying how director gliding affects the behavior of NLC is also of relevance due to

recent developments in the LCD industry regarding the design of flexible devices, where

bounding surfaces are polymeric [1]. Such devices offer significant advantages over glass-

based devices (lightweight, unbreakable, flexible) provided surface effects, including possible
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gliding, can be well-controlled. We note that, in most liquid crystal display applications,

the liquid crystal is not exposed to the bare substrate surface; the substrates are coated

with an alignment material (usually mostly organic). The anchoring (and thus the gliding,

where it occurs) is really a property of the alignment material, not of the substrate and it

is prevalent in polymer coated substrates. In the following however we do not always make

this distinction, and will refer simply to the anchoring properties of the substrate, under

gliding. For a polymer-based display based on conventional LCD technology, if anchoring

conditions are the same at both bounding surfaces, then the field-free state has very low

elastic energy (it should be more or less uniform) and should induce no gliding. With the

electric field applied however, surface molecules experience significant torque and gliding

could occur if the field is sustained for times comparable to the gliding timescale. (Gliding

should not, however, be an issue for such devices in only short term or intermittent use.)

Another situation where gliding could be an issue is in polymer-based devices that use

bistable technology [3, 12–16]. In a bistable device, the NLC layer can sustain two stable

field-free director configurations that are optically distinct, in the absence of an applied field.

In contrast to a conventional LCD display, an electric field is applied across the layer for

the sole purpose of switching between the two director configurations, reducing the power

consumption of the LCD device. Bistability exists regardless of whether gliding is present;

but note that such systems may be prone to gliding with soft substrates: in order to achieve

such bistability the two bounding surfaces must have different anchoring properties, which

means that each of the stable states is associated with significant bulk elastic energy, leading

to surface torques at the NLC/polymer interface, and hence to gliding over long timescales.

With such considerations in mind, in this paper we develop a mathematical model describ-

ing a NLC layer sandwiched between two parallel bounding plates, with different anchoring

conditions at each plate, where we assume gliding can occur. We remark that, although the

phenomenon of gliding may occur in both strongly and weakly anchored systems, our model

focuses on gliding in the presence of weak anchoring only, and may require modification

before applying to a system with strong anchoring. Furthermore, we focus on gliding of the

zenithal (or polar) director angle only, as observed by, e.g., [7]. We introduce two possible

gliding sub-models, and study the effect of each on the director. Although the effect of

an applied electric field on gliding is clearly of relevance, we believe that gliding should be

first understood precisely in the absence of the field, and that is the focus of this paper.
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We consider the simplest case in which the director is confined to a plane perpendicular

to the bounding plates: this, together with our neglect of the dielectric and flexoelectric

contributions in the free energy density, permits an analytical solution for the director. In

line with what is known about the relative timescales of gliding and director reorientation

in the bulk, we consider a quasistatic model in which the director angle, θ, depends on time

only via the changes in anchoring angles on the long (gliding) timescale. The model we use

permits bistability, and therefore we study this aspect of the system under gliding also.

The paper is laid out as follows: in Sec. II we introduce the key variables, discuss the

modeling assumptions, and present the equations used to govern the evolution of the director

field and the anchoring angles at each surface. One of our modeling assumptions for gliding

is that, due to the properties of the polymeric bounding plates, the anchoring angle cannot

change by an arbitrarily large amount from its initial value [6, 8]: we limit the change by

some prescribed tolerance value, θtol. This assumption is supported by the experimental

results reported by Jánossy & Kósa [6], and Joly et al. [7]. Section IIA discusses two

possible ways to implement this: in the first gliding is stopped abruptly when the tolerance

is reached; in the second, gliding stops smoothly as θtol is approached. Section III presents

the results for the two models and Section IV discusses conclusions to be drawn, and future

work.

II. MATHEMATICAL MODEL

Figure 1 shows the basic setup that consists of a nematic liquid crystal layer placed

between two parallel bounding plates at z∗ = 0 and z∗ = h∗. Here, superscripts are used to

denote dimensional quantities; they will be dropped when nondimensionalizing. The local

average molecular orientation throughout the layer is described by a unit vector director field,

n , which we assume lies in the (x∗, z∗)-plane, but does not depend on x∗. Hence, we consider

a one-dimensional model where the director can be expressed in terms of a single angle,

θ(z∗) ∈ (−π/2, π/2], the angle the director makes with the z∗-axis: n = (sin θ, 0, cos θ).

This assumption obviously limits our investigation to gliding of the zenithal or polar director

angle only (as observed in [7]), though we note that gliding of the director azimuthal angle

may certainly occur in systems with twist, e.g. [6]. In addition, we consider a steady state

model, reflecting the assumption that the elastic response of the NLC layer is established in
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milliseconds [7], much faster than the timescale on which director gliding occurs (minutes

to hours [6, 7, 10, 11, 17]).
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Figure 1. (Color online) Sketch showing the setup and summarizing the key parameters in the

dimensionless coordinates.

The free energy of the liquid crystal layer, in the absence of an applied electric field

and with specified anchoring conditions at each bounding surface, includes both bulk and

surface contributions. The bulk free energy density W ∗ comprises splay and bend elastic

contributions (since the director is confined to a plane, there is no twist), and with the

assumed form for n and the frequently-used assumption of equal bend and splay elastic

constants K∗
1 = K∗

2 = K∗
3 = K∗ [18, 19], is given by

W ∗ =
K∗

2
θ2z∗ . (1)

We focus on weak anchoring conditions since we expect that particularly in this case

interesting dynamics arise as a result of the energy minimization between the substrate and

the liquid crystal. The total free energy of the system comprising both bulk and surface

energy contributions is then given as

J∗ =

∫ h∗

0

W ∗dz∗ + g∗0|z∗=0 + g∗h∗|z∗=h∗ , (2)
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where g∗{0,h∗} (at z∗ = 0, h∗) are the Rapini-Papoular surface energies used to model the

surface anchoring at each boundary [20]. They are given by: g∗{0,h∗} = A∗
{0,h∗} sin

2(θ−α{0,h∗})

where α{0,h∗} are the preferred anchoring angles at z∗ = 0, h∗ respectively, and A∗
{0,h∗}

the anchoring strengths. An accurate description of the dynamic process by which the

director evolves to minimize the free energy given by Eq. (2) requires the full equations

of nematodynamics that couple flow and director orientation [18, 21]. We follow several

authors (e.g. Davidson & Mottram [3], Cummings et al. [12, 13], Kedney & Leslie [14]) in

assuming that the system evolves in the direction that minimizes its total free energy (a

gradient flow). This approach leads to the following time dependent problem:

µ̃∗θt∗ = K∗θz∗z∗ ,

ν̃∗θt∗ = K∗θz∗ −
A0

∗

2
sin 2(θ − α0) on z∗ = 0, (3)

−ν̃∗θt∗ = K∗θz∗ +
A1

∗

2
sin 2(θ − αh∗) on z∗ = h∗,

where µ̃∗ and ν̃∗ are bulk and surface rotational viscocities, respectively. In the following, we

supplement Eqs. (3) by two proposed gliding models that capture the dynamics of molecular

reorientation under gliding, before nondimensionalizing and simplifying the resulting full

system.

A. Gliding

Fundamentally, the anchoring properties of a given polymer surface are due to the ori-

entation of its molecules at the exposed polymer surface, and their interactions with the

molecules of the NLC. At a non-gliding surface, the preferred orientation of the molecules

is fixed, as dictated by the anchoring conditions. At a gliding surface, by contrast, the

molecules can slowly reorient in time if there is a sustained torque on them due to the

molecules of the adjacent NLC. Such a torque arises, for example, if the anchoring condi-

tions within our NLC layer are different at the two bounding surfaces, leading to a director

orientation that changes across the layer, with attendant elastic stress throughout the layer

(including at the bounding surfaces). Such molecular torques at the bounding surfaces lead

to slow variation of the anchoring angles in time: experimentally the anchoring angle is ob-

served to reorient towards the director angle at that surface [5–8, 10, 11, 17]. We introduce

two models to capture this gliding behavior. Both models assume that the rate of anchoring
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reorientation at a surface depends on the difference between the anchoring angle and the

director angle at that surface.

The models also incorporate an additional feature, observed in experiments such as those

of Jánossy & Kósa [6], and Joly et al. [7]: gliding does not continue indefinitely; rather, the

anchoring angle stops reorienting after some time under torque. The experimental setup

used in [6] consists of a nematic liquid crystal layer placed between two different substrates,

only one of which exhibits gliding (azimuthal gliding, rather than the zenithal or polar

gliding that we model). Anchoring is strong and planar, aligned with a specific rubbing

direction, at the upper (non-gliding) substrate; and weak and planar at the lower substrate,

where gliding occurs. The layer is exposed to a magnetic field applied perpendicular to

the rubbing direction. The anchoring angle at the lower substrate rotates (glides) in time

under the magnetic torque. The field is removed after some time (before any steady state

is reached, but after significant gliding), and the system is then allowed to evolve under

gliding alone. If gliding were unlimited, the system should ultimately glide back to a fully-

undistorted state throughout the layer, this being the global energy minimizer. However,

this does not happen, indicating that there is some physical constraint on the degree of

gliding that can occur. (Similar observations regarding limited gliding were made by Joly

et al. [7] although with a slightly different setup.)

Jánossy & Kósa interpret their experimental results by developing a model based on the

Q-tensor formulation for nematics [6, 18]. Although their model gives very good agreement

with the experimental results over reasonable times, it does not capture the fact that the sur-

face director appears not to relax back to its original state in the experiments. By contrast,

we base our governing equations on the Ericksen-Leslie theory for nematic liquid crystals.

In addition, we account for the observed limited gliding described above by introducing the

parameter, θtol, as explained in detail below.

1. Gliding Model I: Abrupt cessation

In the first gliding model, we assume that the anchoring angle, α, changes at a rate

directly proportional to its deviation from the adjacent director angle. The anchoring reori-

entation (gliding) persists until the anchoring angle has changed by a maximal amount θtol

or until θ(·, t∗) = α{0,h∗}(t
∗), at which point gliding stops abruptly. Mathematically this is
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represented as follows

dα{0,h∗}

dt∗
=







λ∗
{0,h∗}(θ(·, t

∗)− α{0,h∗}(t
∗)) if |α{0,h∗}(t

∗)− α{0,h∗}(0)| < θtol,

0 if |α{0,h∗}(t
∗)− α{0,h∗}(0)| = θtol,

(4)

where θ(·, t∗) indicates that θ(z∗, t∗) is evaluated at the appropriate boundary. Here, λ∗
{0,h∗}

are the anchoring relaxation rates at z∗ = 0, h∗, respectively. When θtol = 0, the interface

exhibits no gliding, while as θtol → π/2, the gliding process occurs indefinitely as in the

model described in [6]. Unlimited gliding leads ultimately to a director that is uniform

throughout the layer, though this uniform value is unknown a priori and will depend on the

relative values of the anchoring relaxation rate constants at the two boundaries. The model

given by Eq. (4) introduces gliding in perhaps the simplest possible manner; we will use this

simplicity below to gain a better understanding of the basic features of gliding. Before doing

so, we introduce our second gliding model.

2. Gliding Model II: Smooth cessation

Model I has the advantage of maximal simplicity, but has the perhaps unrealistic feature

that gliding halts abruptly once gliding through angle θtol has occurred. We therefore propose

a second gliding model (Model II) with the same essential features as Model I, but here we

ensure smooth cessation of gliding by specifying the rate of change of the anchoring angles

according to

dα{0,h∗}

dt∗
= λ∗

{0,h∗}[θ(·, t
∗)− α{0,h∗}(t

∗)]

(

1−
|α{0,h∗}(t

∗)− α{0,h∗}(0)|

θtol

)

. (5)

Note that the first factor on the right hand side is present in both models, ensuring that

the anchoring angle always reorients itself towards the director angle at that interface. The

second term leads however to a slowdown of the gliding process as the maximum gliding

angle is approached.

B. Scaling and nondimensionalization

We scale z∗ with the cell height h∗ and define t, the nondimensional time variable, as t =

t∗λ∗
0 where λ∗

0 is the relaxation rate associated with the lower substrate z∗ = 0. Relaxation
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rates can be inferred from experimental data reported in the literature. We use results of

Janossy & Kosa [6] to estimate λ∗
{0,h∗}. Their experiment consists of a nematic liquid crystal

layer sandwiched between two polymer plates where one plate is treated chemically to ensure

strong anchoring, while the other is left as a “soft” plate, exhibiting weak anchoring with

gliding. Modifying our model to account for strong anchoring at the plate z∗ = h∗ we are able

to obtain good agreement between the experimentally-observed evolution of the anchoring

angle at the “soft” plate [6] and our model by using λ∗
0 ≈ 0.0031 s−1 as a relaxation rate in

gliding Model I. Hence, we assume this value in our nondimensionalization.

The surface energies g∗{0,h∗} (at z∗ = 0, h∗) are nondimensionalized by g{0,1} = g∗{0,h∗}h
∗/K∗

leading to the non dimensional Rapini-Papoular surface energies: g{0,1} = (A{0,1}/2) sin
2(θ−

α{0,1}), A{0,1} = (h∗A∗
{0,h∗})/K

∗, where α{0,1} ≡ α{0,h∗}. Equations (3) in turn become:

δθt = θzz in 0 < z < 1,

δν̃θt = θz −
A0

2
sin 2(θ − α0) on z = 0, (6)

−δν̃θt = θz +
A1

2
sin 2(θ − α1) on z = 1,

where δ = h∗2µ̃∗λ∗
0/K

∗ and ν̃ = ν̃∗/(µ̃∗h∗). Note that δ represents the ratio between two

timescales: h∗2µ̃∗/K∗ is the time scale of the bulk elastic response of the NLC, while 1/λ∗
0 is

the timescale of the gliding response (the estimate above gives a little over 5 minutes for the

gliding response, but this timescale may range from a few minutes to several hours depending

on the properties of the liquid crystal and the substrate [6, 7, 10, 11, 17]). Typical values

of the dimensional parameters are h∗ ∼ 1 × 10−6 m, K∗ ∼ 1 × 10−12 N, µ̃∗ ∼ 0.1 N s m−2,

A∗
{0,h∗} ∼ 10−4−10−6 N m−1, ν̃∗ ∼ 10−10 N s m−1 [3, 5, 22]. Hence the bulk elastic response

timescale of the NLC is of the order of a few milliseconds, and δ ≪ 1, ν̃ ≪ 1. We therefore

use a quasistatic approximation and set δ = 0 in Eqs. (6), giving

0 = θzz, (7)

0 = θz −
A0

2
sin 2(θ − α0) on z = 0, (8)

0 = θz +
A1

2
sin 2(θ − α1) on z = 1. (9)

The dimensionless forms of the gliding Models I and II given by Eqs. (4) and (5) are:
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Model I:
dα{0,1}

dt
=







λ{0,1}(θ(·, t)− α{0,1}(t)) if |α{0,1}(t)− α{0,1}(0)| < θtol,

0 if |α{0,1}(t)− α{0,1}(0)| = θtol;
(10)

Model II:
dα{0,1}

dt
= λ{0,1}[θ(·, t)− α{0,1}(t)]

(

1−
|α{0,1}(t)− α{0,1}(0)|

θtol

)

, (11)

where λ{0,1} = λ∗
{0,h∗}/λ

∗
0 (so λ0 = 1 always; and in fact for all simulations shown in this

paper we also set λ1 = 1). Equations (7)–(9) governing the director orientation will be

dynamic once supplemented with the gliding model (Eqs. (10) or (11)) describing how α{0,1}

change in time. Note that the actual gliding timescale, 1/λ∗
0, is important only if we wish

to convert our dimensionless results back to real time.

III. ANALYSIS AND RESULTS

A. Solution scheme

Equations (7)–(9) in conjunction with either Eq. (10) or Eq. (11) constitute a complete

model to describe the director field angle θ(z, t) within a simple sandwich of NLC with gliding

at both interfaces (dynamic evolution of α0(t), α1(t)). Due to the quasistatic approximation,

Eqs. (7)–(9) can be solved independently of the gliding model if the anchoring angles α{0,1}

are assumed known: θ = az + b where a and b are fixed by Eqs. (8) and (9). Following [13],

the director solution may be written as

θ = az +
1

2
sin−1

(

2a

A0

)

+ α0, (12)

where a satisfies a nonlinear algebraic equation

f(a) = a + a
A1

A0

cos(2a+ 2(α0 − α1)) +
A1

√

A2
0 − 4a2

2A0

sin(2a + 2(α0 − α1)) = 0 (13)

(here the time dependence in a, α0, α1 is suppressed for brevity). Given initial conditions

α0(0), α1(0) for the anchoring angles and values A0, A1 for the anchoring strengths, Eqs. (12)

and (13) describe possible initial states for the system. We choose values of A0 and A1 that

correspond to “weak anchoring” (A∗
{0,h∗} ∼ 10−6N m−1). In addition, we expose any behavior

due to different anchoring conditions at each substrate by setting A0 6= A1: in all simulations

presented in this paper we take A0 = 5.0, A1 = 2.4, as used in [13].
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Depending on the values of {α0(0), α1(0)}, Eq. (13) may have multiple solutions. For the

chosen values of A0, A1, the number of solutions is always one or three, and we will focus on

this case in the rest of the paper. Choosing different values of A0 and A1, however, may lead

to more than three solutions, each solution associated with a root of Eq. (13)). In such cases

the multiple roots of larger amplitude correspond to complex director configurations where

the director bends through large angles. These configurations are unlikely to be observed in

physical systems due to the associated high elastic energy, and will not be considered further.

[Such solutions may be considered an artifact of our assumption of purely 2D geometry: real

systems are 3D and the director can “escape” from a highly-bent 2D solution, unwinding

into the third dimension.] When Eq. (13) has one root, the system has only one steady

state (monostability); when it has three roots, the system is bistable (one of the three roots

always represents an unstable solution for θ; a local maximum of the free energy).

The results that we present are obtained as follows. From our chosen initial state, inte-

grating either Eq. (10) or Eq. (11) through one time step using the appropriate integrating

factor, we compute the evolution of the anchoring angles based on Models I and II. These

anchoring angles are used to obtain a new director solution using Eqs. (12) and (13) at the

new time step. To ensure accuracy, we use relatively small time step, dt = 10−3; we have

verified that such dt leads to results that are accurate to 0.1%.

B. Effect of gliding on a monostable system

We focus first on an initially monostable system, and consider how the proposed gliding

Models I & II drive the evolution of the anchoring angles and director field under unlimited

(θtol = π/2) and limited (θtol < π/2) gliding (we use θtol = π/20 as a representative example).

We expect unlimited gliding to smooth the director solution throughout the layer, leading

to a uniform solution at large time, while limited gliding may lead to a nonuniform steady

state for the director.

Figure 2 shows a snapshot of f(a), defined in Eq. (13), for a monostable system. Fig-

ure 3(a) shows the evolution of the director field from the initial state represented by the root

in Fig. 2, under unlimited gliding. These results are computed using Model I; results obtained

using Model II are very similar and are therefore omitted. Figure 3(b) shows the accom-

panying evolution of the anchoring angles α0, α1 for both gliding Models I and II. For both
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Figure 2. (Color online) The location of the root of f(a), see Eq. (13), for a monostable system.

The anchoring angles are α0(0) = 0 and α1(0) = π/6. The arrow accompanying the root indicates

its initial evolution under gliding (Model I). The symbols on the curves shown in this and upcoming

figures are purely for identification with the legend.
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Figure 3. (Color online) Gliding effect for θtol = π/2 (unlimited gliding) using Models I and II:

α0(0) = 0, α1(0) = π/6 and λ0 = λ1 = 1.0 (these values for the dimensionless relaxation constants

are assumed throughout this paper). (a) Evolution of the director field in time as result of gliding

Model I. (b) Evolution of anchoring angles for Model I: α0(t)–(⋆), α1(t)–(◦); and Model II: α0(t)–

(�), α1(t)–(⊲).

models, with θtol = π/2, the director field evolves to a solution uniform throughout the layer,

with θ(z,∞) = α0(∞) = α1(∞). However, the steady states attained by the two models are

not the same in Fig. 3(b): the additional smoothing factor
(

1− |α{0,1}(t)− α{0,1}(0)|/θtol

)
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in Eq. (5) becomes important, leading to quantitatively different results. This observation

highlights the importance of accurately capturing the intermediate dynamics in any gliding

model. Note also that, regardless of the model used, α1(t) varies more from its initial value

than does α0(t) due to the lower associated anchoring strength (A0 = 5.0, A1 = 2.4).
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Figure 4. (Color online) Gliding effect for θtol = π/20 (limited gliding) using Models I and II:

α0(0) = 0, α1(0) = π/6 and λ0 = λ1 = 1.0. (a) Evolution of the director field in time as result of

gliding Model I. (b) Evolution of anchoring angles for Model I: α0(t)–(⋆), α1(t)–(◦); and Model II:

α0(t)–(�), α1(t)–(⊲).

Figure 4 shows the evolution of the director solution and the anchoring angles under

gliding Models I and II for θtol = π/20, with all other parameters as in Fig. 3. We note that

the anchoring angles at the two boundaries no longer settle at the same steady state value:

α0(∞) 6= α1(∞) leading to a director solution that is nonuniform throughout the layer at

large times. In addition we observe that, unlike the unlimited gliding example of Fig. 3,

under limited gliding the two models lead to the same steady state solution at large times,

at least for sufficiently small θtol as used here. This is due to the fact that, for sufficiently

small θtol, gliding stops (for both models) due to the maximum gliding angle being reached:

|α{0,1}(t)− α{0,1}(0)| = θtol at finite time (see Eq. (10) or Eq. (11)).

C. Effect of gliding on a bistable system

The existence of two (or more) stable field-free steady states that are optically distinct is of

relevance to applications, since in this case, contrast can be maintained in a display without
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an externally applied electric field (a field is required only to switch the device from one state

to the other). Theoretical investigations of bistable devices have been carried out by many

authors: see, eg. [3, 12–14] and references therein. In [12], bistability is obtained in a special

case where the anchoring angles are π/2 out of phase and the anchoring strengths are the

same at both boundaries; switching between the states is obtained through the application of

a transient electric field and in particular, two-way switching is possible for weak anchoring

only. In [13], Cummings et al. generalize the study by treating the anchoring conditions

as adjustable parameters, providing the values of A{0,1}, α{0,1}, for which bistability and

switching are possible. In the same spirit, bistability may be achieved in the simple model

considered here by appropriate choice of (initial) anchoring conditions: whether the system

remains bistable over long times depends on how the anchoring angles evolve under gliding.

In this section we consider the effect of gliding on bistable systems by means of specific

examples.
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Figure 5. (Color online) (a) Location of the roots of f(a) for a bistable system with α0(0) = 0,

α1(0) = π/3. The arrows accompanying the stable roots indicate their initial evolution under

gliding. Two steady state configurations n1 and n2 are shown, corresponding to a1 ≈ 0.63 and

a2 ≈ −1.17. (b) Dependence of solution multiplicity on ∆α = α1(0)−α0(0) where ∆α varies from

0 to π/2 with α0(0) = 0. When f(a) (defined by Eq. (13)) has three roots, two correspond to

stable steady states (△), and one to an unstable steady state (◦). The vertical line is drawn at

∆α(0) = π/3, the state shown in (a).

Figure 5(a) shows an example of the function f(a), defined in Eq. (13), for a bistable
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system. The roots of this function determine director solutions as in Eq. (12); here f(a) has

three roots, only two of which represent stable solutions, as discussed below. With anchoring

strengths fixed, we find that whether the system specified by Eqs. (7)–(9) is bistable (three

roots of f(a)) or monostable (one root of f(a)) depends primarily on the difference of the

initial anchoring angles, ∆α(0) = α1(0)− α0(0), with only weak dependence on individual

values of the two anchoring angles; therefore for purposes of illustration we fix α0(0) = 0 and

vary α1(0). Figure 5(b) shows how the number of solutions of Eqs. (7)–(9) then depends on

∆α(0). We observe that if ∆α(0) = α1(0)− α0(0) < ∆αc ≈ 0.82, the function f(a), defined

by Eq. (13), has only one root, corresponding to a single solution n = (sin θ, 0, cos θ), where

θ is given by Eq. (12). Two stable steady states emerge if ∆α(0) > ∆αc: in this case, f(a)

has three roots, two corresponding to stable solutions given by Eq. (12) (local minima of the

free energy given in Eq. (2)), and one corresponding to an unstable solution (local maximum

of the free energy). Note that the particular value of ∆αc in a given system depends also on

the anchoring strengths, A{0,1}; in Fig. 5 as elsewhere these are set at A0 = 5.0, A1 = 2.4.

1. Effect of unlimited gliding on a bistable system

The discussion presented so far in this section pertains to the initial states of a system

before any gliding dynamics are seen. Since gliding can affect the structure of an initially

bistable system, we explore its effect below, discussing a specific example. Before doing so,

we observe that as the anchoring angles α0(t), α1(t) vary under gliding, the function f(a)

defined by Eq. (13) evolves in time as well. In the following, we say that we “track” n1/n2

when the director solution (given by Eq. (12)) whose behavior is dictated by the evolution

of the largest/smallest root of f(a), evolves under gliding. It is important to emphasize that

this evolution under gliding is totally different for each steady state, as we now discuss.

Given values for the surface energies A0, A1, and initial values for the anchoring angles,

α0(0), α1(0), the system has a choice of two steady states, n1 or n2, corresponding to two

distinct roots of Eq. (13). If we start with state n1 and track it under gliding, the anchoring

angles will evolve according to the solution of Eq. (10) or Eq. (11). Since each of these

equations depends on the director solution n1 itself, the evolution here is quite different

than if we started from the solution n2.

Note also that, when we track solution n1, the solution n2 corresponding to the other
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(stable) root of f(a) exists “in the background”, but is not manifested. This “background”

evolution of n2, when tracking n1, is again quite different from the evolution of n2 when it

is the solution being tracked. The following explicit examples should clarify these remarks.

Consider the two possible scenarios for the evolution of f(a) in Fig. 5(a) with ∆α(0) =

π/3. Initially this system has two stable steady states, n1 and n2, corresponding to the roots

of f(a) as shown in Fig. 5(a). Figures 6(a) and 7(a) show the evolution of the director field

when tracking n1 and n2 (respectively) under unlimited gliding using Model I. Similarly to

the monostable case, independently of which gliding model we choose, for θtol = π/2 gliding

smooths the solution θ(z; t) as time progresses, leading ultimately to a director solution

uniform throughout the domain. Note however that, in line with our remarks above, the

large-time uniform solution obtained depends on which solution was tracked; compare the

final states in Figs. 6(a) and 7(a).

As the steady states n1 and n2 evolve under gliding towards the uniform state, in either

case, the system switches from bistable to monostable. To illustrate how bistability is lost,

we show early time evolution of f(a) in Figs. 6(b) and 7(b). We see that in both cases, f(a)

evolves in a way that leads to the loss of two roots under gliding, leaving only a single root,

corresponding to one stable steady state. Figure 6(b) shows that, while tracking n1, the

root corresponding to n1 persists in time while the root corresponding to n2 disappears at

t ≈ 0.6 (f(a) moves to the left and down). Similarly Fig. 7(b) shows that, when tracking n2,

the root corresponding to n2 persists in time while the root corresponding to n1 disappears

at t ≈ 2.5 (f(a) moves to the right and up). These figures also illustrate that the time at

which bistability is destroyed, tb, depends on which state we are tracking, n1 or n2.

As the director solution n1 (or n2) is tracked under gliding the director begins to relax

and smooth towards a uniform state, as in Fig. 6(a) (or Fig. 7(a)). As this happens, the

total energy associated with n1 (or n2) decreases. At the same time, however, the total

energy associated with the other “background” stable state n2 (or n1) increases as shown

in Fig. 6(c) (or 7(c)). If, as is the case in Figs. 6 and 7, gliding is not halted, the energy

of that background state n2 (or n1) will ultimately increase to a stage where that solution

is no longer a local minimum of the free energy (at which point that steady state ceases to

exist, simultaneously with the loss of roots of f(a)).

In the particular case considered in Figs. 6 and 7, bistability is destroyed faster when

tracking n1. This seems to be a consequence of the higher bulk energy associated with the
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Figure 6. (Color online) (a) The evolution of director solution n1 under gliding Model I for α0(0) =

0, α1(0) = π/3 and θtol = π/2. (b) The evolution of f(a) under gliding (same parameters) when

tracking n1. Bistability is lost at t ≈ 0.6. (c) The free energy J(t) for n1 (solution tracked,

solid curve) and n2 (“background” solution, dashed curve). The dashed curve stops where the

background solution disappears.

director solution for n2. This solution n2 represents a shallower local minimum of the free

energy for this parameter set, so that it is destroyed sooner under gliding. Figures 6(c) and

7(c) show the total free energies (given by J = J∗h∗/K∗; see Eq. (2)) of both the solution

being tracked (solid line) and the “background” solution (dashed line): we see that in both

cases the solution being tracked decreases its total free energy under gliding, while the energy

of the background solution increases. In these unlimited gliding examples, the dashed line

stops abruptly in both cases, corresponding to the loss of the background solution (its free
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Figure 7. (Color online)(a) The evolution of director solution n2 under gliding Model I for α0(0) = 0,

α1(0) = π/3 and θtol = π/2. (b) The evolution of f(a) under gliding (same parameters) when

tracking n2. Bistability is lost at t ≈ 2.5. (c) The free energy J(t) for n2 (solution tracked,

solid curve) and n1 (“background” solution, dashed curve). The dashed curve stops where the

background solution disappears.

energy at that point ceases to be a local minimum in the energy landscape and the solution

disappears). Note that it is never the solution being tracked that disappears under gliding

but always the other solution, resulting in a continuous evolution of a. The tracked solution

always decreases its total free energy, becoming more stable with time, while the reverse

applies to the background solution. Gliding Model II leads to similar results: although the

time at which bistability is destroyed varies slightly from gliding Model I, it too ultimately

destroys bistability provided that θtol is sufficiently large, as in Model I.
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2. Effect of limited gliding in Model I

To determine how limited gliding, using Model I, affects the structure of an initially

bistable system in time, we solve Eqs. (7)–(10) for a range of values of θtol. Figure 8 shows

the times, tb, at which bistability is destroyed, for different values of θtol and ∆α(0). Both

steady states n1 and n2 are considered separately. We first discuss the general properties of

the behavior of the gliding system, and then discuss the specific properties of each steady

state separately. We observe that if θtol is small, then gliding lasts for a short time only,
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Figure 8. (Color online) The time, tb, at which bistability of a system is destroyed, vs θtol given a

steady state n1 shown in (a) or n2 shown in (b) for various ∆α(0) = α1(0)−α0(0) with α0(0) = 0.

Gliding Model I is used here.

and the system will retain its bistability independently of which solution we track, while

if θtol is sufficiently large then the system will glide until bistability is destroyed. Figure 8

shows four different bistable cases, characterized by different values of ∆α(0) and, while

results are quantitatively different between these four cases, three common key features

are observed. First, if θtol is sufficiently small, then gliding always stops before bistability is

destroyed, hence tb = ∞. Second, if θtol is sufficiently large, then bistability will be lost before

either anchoring angle has glided through the tolerance value; therefore in such situations

tb is independent of θtol (the horizontal portions of the graphs). Third, the horizontal and

vertical portions of the graphs are connected by intermediate sloped portions. These relate

to situations where, depending on the value of θtol and the initial anchoring conditions,

gliding may stop first at one boundary but continue at the other, leading to ultimate loss of
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bistability.

The transitions between the different portions of the (θtol, tb) graphs depend on which

solution is considered (n1 or n2), and on the initial state, characterized by ∆α(0). Due to

the special symmetry of the case ∆α(0) = π/2, where n1 and n2 are simple mirror images,

these two curves are the same in Figs. 8(a), 8(b). However, for other values of ∆α(0), the

two corresponding steady states, n1 and n2, give rise to different behavior. We find that,

in line with our observations about energetics in the unlimited gliding case at the end of

Sec. IIIC 1, in general when tracking n2 we require larger values of θtol to destroy bistability

(compare Figs. 6 and 7: the solution n1 is associated with a relatively deep free energy

minimum and takes longer to eliminate under gliding). Therefore, when tracking solution

n2, gliding must proceed for a longer time in order to eliminate the stable steady state n1

and destroy bistability, hence higher values of θtol are required for this to happen.
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Figure 9. (Color online) θmin
tol (representing the smallest value of θtol that leads to loss of bistability

under gliding) plotted as a function of ∆α(0) for each steady state (n1 (�) and n2 (◦)). These plots

identify three regions in (θtol,∆α(0)) parameter space with initial steady states n1 and n2: Region

I: bistability is not destroyed regardless of which steady state is tracked; Region II: bistability is

lost when tracking n1 but not for n2; and Region III: bistability is lost independently of which

steady state we start from.

Since the number of steady states (at any given time) in an initially bistable system

depends on both θtol and the difference in initial anchoring angles ∆α(0), we now further

investigate how ∆α(0) influences bistability under gliding. We define θmin
tol

to be the smallest

value of θtol that leads to loss of bistability under gliding, for each value of ∆α(0). Figure 9
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plots θmin
tol versus ∆α(0) for both initial steady states n1 and n2. We observe that θmin

tol

increases (very nearly linearly) with ∆α(0) for n1, but decreases (again almost linearly)

with ∆α(0) for n2. The two curves in Fig. 9 meet where ∆α(0) = π/2: this is again due to

the mirror-image symmetry of n1 and n2 in this situation (with α0(0) = 0).

We can use these results to identify regions in (∆α(0), θtol) space where the system retains

its bistability, depending on which director solution is tracked. With the chosen values of

anchoring strengths and α0(0) = 0 we distinguish three such regions in Fig. 9: Region I, in

which bistability is never destroyed regardless of which steady state is tracked; Region II,

in which bistability is lost when tracking n1 but not when tracking n2; and Region III, in

which bistability is lost regardless of whether n1 or n2 is tracked.

3. Effect of limited gliding in Model II

We now briefly outline results analogous to those of Sec. IIIC 2 for gliding Model II,

Eqs. (7)–(9) and Eq. (11). Figure 10 (analogous to Fig. 8) shows time tb at which bistability

is destroyed, as a function of θtol. The behavior is qualitatively similar to that of Model I,

but smoothed. In the regions to the left of the nearly vertical portion of the curves, θtol is

sufficiently small that bistability is never destroyed. When tracking n2 under gliding, larger

values of θtol are needed to destroy bistability than when tracking n1 (see also Figs. 6 and

7). Also, for sufficiently large (but fixed) θtol, tb decreases with ∆α(0) for n1 and increases

as ∆α(0) decreases for n2. Again the results for the symmetric case ∆α(0) = π/2, in which

n1 and n2 are mirror-images, are identical in Figs. 10(a) and 10(b), as anticipated.

Unsurprisingly, Models I and II generate quantitatively different results. Comparing the

plots of tb for n1 in both models (see Figs. 8(a) and 10(a)), we observe that when θtol is

small, tb is larger for Model II, with the reverse trend for large θtol. Similarly, when tracking

n2 in Model II (see Fig. 10(b)), bistability is destroyed faster for large values of θtol and

slower for small values of θtol (see Fig. 8(b)).

D. Effect of switching and unlimited gliding in a bistable system

Switching between the two stable steady states in an initially bistable system is

possible in the absence of gliding [12, 13]: with the application of a suitable transient electric
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Figure 10. (Color online) The time at which bistability of a system is destroyed, tb vs θtol given a

steady state n1 shown in (a) or n2 shown in (b) for various ∆α(0) using gliding Model II. Compare

with Fig. 8 for Model I.

field, one can achieve two way switching in the appropriate parameter regimes. Motivated

by the relevance of switching in devices that are both flexible and bistable, and by our results

in Sec. IIIC, we now examine a bistable system in which both unlimited gliding (θtol = π/2)

and switching act sequentially, and we investigate the effect that such switching has on the

system dynamics.

As an illustrative example we consider an initially bistable system with anchoring con-

ditions α0(0) = 0, α1(0) = π/3. As noted above, in practice two way switching would be

obtained through transient application of an electric field; however in the present work, we

simply impose the switch between states at specified times: we switch the system instanta-

neously from one stable state to the other by selecting the alternative (stable) root of Eq. (13)

at the chosen switching time to obtain the new director solution (in any practical application

switching would occur on a timescale much faster than gliding, so from the point of view of

the gliding dynamics this instantaneous switch is reasonable). Gliding is then continued, but

now with the new steady state. For the example, illustrated in Fig. 11, we initially track n2,

and then impose a series of switches at chosen switching times t = 1, 2, 3, 4, etc. Note that

the initial steady state influences only the details of the results that follow; similar results

are obtained if we initially track n1.

Figure 11(a) shows the evolution of the director field over four successive switches. Fig-
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Figure 11. (Color online) (a) Switching from n2 → n1 → n2 → n1 → n2 for α0(0) = 0,

α1(0) = π/3 using gliding Model I. (b) Switching and gliding dynamics for the same system over

long times, monitored by plotting the selected root a (solid curve) of Eq. (12) and the free energy

J (dashed curve) of the corresponding solution.

ure 11(b) shows the evolution over many more successive switches, via the plot of the root,

a(t), of Eq. (13) that corresponds to the director solution being tracked under gliding; and

via the corresponding total free energy J(t) = J∗h∗/K∗ (see Eq. (2)) of that solution. We

observe that, in contrast to the case of unlimited gliding without switching, bistability is not

destroyed, even though gliding occurs continuously throughout. If switching had not been

imposed, then bistability would have been lost at tb ≈ 2.3, see Fig. 8.

Figure 11(b) shows that, except at switching events, where energy is put into the system

to make the switch, |a(t)| (the total director bending angle across the layer) and J(t) (the

system free energy) are always decreasing under gliding, no matter which state we track.

The director is always relaxing towards a uniform state between switches, lowering its energy

as it does so. However, recalling the results of Figs. 6 and 7, we know that as this happens,

the “background” solution is simultaneously increasing its free energy.

Consider the behavior of |a(t)| and J(t) at the switching times t = 1, 2, 3, 4, ..., n. At

each switching time, both |a(t)| and J(t) jump (the states before and after the switch have

different energies). Consider, for example, the switch from n2 → n1 at t = 2. Here,

|a(2+)| > |a(2−)| (the ± superscripts denote right- and left-handed limits, respectively), and

J(2+) > J(2−), indicating that (i) the solution after switching (n2 here) has a greater elastic
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bend across the layer than the solution before the switch (n1), and that (ii) energy input

is required to effect the switch (which in practice would most likely come from transient

application of an electric field). Figure 11(b) reveals that, though the initial behavior of

the system is irregular, after many regularly-spaced switches both J(t) and |a(t)| fall into

a periodic behavior. This implies that regular switching can sustain bistability indefinitely:

while gliding acts to dissipate elastic energy from the bulk, the act of switching puts new

energy into the system. Providing that switching takes place sufficiently often, the bulk

elastic energy can be maintained at a high enough level to retain the bistability. Another way

to view this periodic behavior is that the regular switching reverses the effect of the gliding.

Consider times t = n sufficiently large that we are in the periodic regime. Immediately

after a switch (to solution n1|t=n+, say) this solution begins to glide, evolving eventually

to n1|t=(n+1)− . We can undo this gliding exactly, if we now switch to solution n2|t=(n+1)+ ,

allow it to glide for one time unit to n2|t=(n+2)− , and then switch to n1|t=(n+2)+ ≡ n1|t=n+ .

The example shown in Fig. 11 raises an interesting question: Since switching reverses the

gliding effect in a bistable system, and we know that indefinite gliding with no switching

leads inevitably to loss of bistability, how often must we switch to retain bistability? To

answer this question (at least for our specific example) we modify the previous procedure:

instead of switching between steady states at the chosen fixed times, we now let the system

glide until it is about to lose bistability, then switch, ensuring that switching occurs at

tlb, which we define as the last time for which the system is bistable. Figure 12 shows an

example of this procedure, applied repetitively. Figure 12(a) shows the director field and

Fig. 12(b) plots a(t) and J(t) as switching between the states occurs. As above, bistability

can be maintained indefinitely with this approach. In addition, with this switching strategy

we observe that |a(t)| and J(t) both fall into a periodic behavior immediately after the first

switch occurs.

It is curious that this particular switching strategy changes the dynamics of the director

solution immediately after the switch. For t = t+lb, |a(t)| starts to increase briefly, before

the anticipated decrease under gliding. This behavior is reflected both in the plot of the

director in Fig. 12(a), and in the plot of a(t) in Fig. 12(b). Plotting the evolution of f(a)

before and after the first switching time tlb = 2.335 (shown in Fig. 13), we observe that when

tracking the initial solution n2, f(a) (and the corresponding root) moves to the right (see

Fig. 13(a)) while after switching to n1, f(a) moves to the left and down (see Fig. 13(b)).
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Figure 12. (Color online) (a) Switching from n2 → n1 → n2 → n1 for α0(0) = 0 and α1(0) = π/3

using gliding Model I, with all switches imposed when the system is about to lose bistability. (b)

Switching and gliding dynamics for the same system over long times, monitored by plotting the

selected root a (solid curve) of Eq. (12) and the free energy J (dashed curve) of the corresponding

solution.
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Figure 13. (Color online) Evolution of f(a), Eq. (13), close to the root and the switching time

t = 1.650 from n2 → n1 when α0 = 0, α1(0) = π/3. (a) Tracking the director configuration n2

before switching at t = 1.650. (b) Tracking n1 after switching at t = 1.650. The switch takes place

just before bistability would have been lost.

A transition phase occurs at t = 2.335+ immediately following the switch where the root

|a(t)| continues to increase despite the change in evolution of f(a) at the switch time (see

profiles of f(a) at t = 2.335 and t = 2.400 in Fig. 13(b)). Note however that, though this
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Total Energy Input vs. Switching Interval

Switching Interval S∆J

t = 0.5 47.34

t = 1.0 46.79

t = 1.5 44.71

t = 2.0 44.58

t = 2.3 42.67

t = tlb 42.39

Table I. Total Energy input as a result of switching measured from t = 20 until t = 100.

non-monotone behavior of a(t) under gliding immediately following switching is curious, the

total energy following the switch immediately begins to decrease in time under the gliding,

as anticipated.

Another interesting question to ask is how the energy lost due to gliding (compensated

by the energy input in switching) depends on the switching interval, and whether there is an

‘optimum’ switching strategy minimizing total energy expenditure. To answer this question,

we consider a general periodic switching strategy, and compute the total energy lost due to

gliding, ∆Jn+1 = J(t)|t+n −J(t)|t−
n+1

, for different switching intervals ∆t = t−n+1− t+n . Table I

shows the total energy expenditure, S∆J , for the period t = 20 to t = 100, during which the

system has settled into a periodic behavior. We observe that, at least for the case considered

here, the total energy input needed to maintain bistability decreases as the time interval at

which switching is applied increases (even though more energy is lost during each gliding

cycle as its length increases). We conjecture that the most efficient approach to maintaining

the bistability is to switch as late as possible.

Although in this section we have used specific examples to illustrate our results, we

believe that certain conclusions apply quite generally. To summarize: (i) If an initially

bistable system undergoes unlimited gliding, and no switching between states occurs, then

loss of bistability is inevitable (the system will approach a uniform director solution); (ii)

if switching between the states is imposed sufficiently often (specifically, one must always

switch to the “background” solution before it disappears) then bistability can be retained

indefinitely; (iii) if the switching is imposed periodically then the whole system will approach
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a periodic state at large times; and (iv) if we always wait the maximum time before switching

(waiting until the background state is about to disappear) then the periodic behavior is

attained immediately (possibly with some anomalous behavior in a(t)).

Finally, we remark that these examples and observations represent a worst-case scenario

in which gliding is unlimited, so that loss of bistability is inevitable with no switching.

Introduction of limited gliding θtol < π/2 will only improve matters since, as we already

know, if θtol is sufficiently small then bistability can be retained indefinitely even with no

switching.

IV. CONCLUSIONS

We have presented two Models (I and II) that describe the evolution of the director

field within a confined layer of nematic liquid crystal, bounded by two infinite polymeric

plates, at each of which anchoring is weak. At these plates, director gliding may occur: the

anchoring angle or easy axis undergoes a continuous realignment under the torque due to the

bulk elasticity of the nematic layer. In Model I, gliding occurs at a rate proportional to the

difference between the anchoring angle and the director angle at the interface considered,

but stops abruptly once the deviation of the anchoring angle from its initial value reaches

some tolerance value, θtol (abrupt cessation). In Model II, gliding is halted smoothly as

θtol is approached (smooth cessation). Both models exploit the separation in timescales

between gliding (long timescale) and elastic response (short timescale) to justify a quasistatic

approximation for the director field orientation within the layer, with the model dynamics

driven purely by the gliding. We investigate in detail how director gliding, governed by each

model, affects the evolution of the director field, as θtol, and the initial anchoring angles, vary.

For large θtol, gliding leads to a director solution that is uniform throughout the domain, for

both gliding models.

We pay particular attention to the behavior under gliding of an initially bistable sys-

tem. For large values of θtol, gliding destroys bistability independently of the model chosen.

However, the time at which bistability is destroyed is model dependent. Furthermore, we

investigate how switching between stable steady states, in the presence of gliding, can affect

the number of available steady states at a given time. We conclude that switching can retain

bistability, even under unlimited gliding, as long as it occurs sufficiently often. Furthermore,
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we find that if retention of bistability is the sole aim, then it is advantageous to switch as late

as possible (just before the system is about to lose bistability): such a strategy minimizes

the energy lost due to gliding.

We expect that the models proposed here will provide an appropriate foundation for

considering more realistic switching driven by an applied electric field, combined with gliding.

This will be the subject of our future work.
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