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Smectic liquid crystals vividly illustrate the subtle interplay of broken translational and orienta-
tional symmetries, by exhibiting defect structures forming geometrically perfect confocal ellipses and
hyperbolas. Here, we develop and numerically implement an effective theory to study the dynam-
ics of focal conic domains in smectic-A liquid crystals. We use the information about the smectic’s
structure and energy density provided by our simulations to develop several novel visualization tools
for the focal conics. Our simulations accurately describe both simple and extensional shear, which
we compare to experiments, and provide additional insight into the coarsening dynamics of focal
conic domains.

I. INTRODUCTION

Translational order is frail. Most broken symmetry
states respond elastically until deformations are large. In
contrast, crystals fracture or plastically yield at strains
of a few parts per thousand. In equilibrium, they form
grain boundaries – expelling rotation gradients into walls
– when subject to atomic-scale boundary displacements.
An analogous expulsion occurs in smectics, which expel
deviations from equal-layer spacing in a manner that can
be mapped onto the Meissner/Higgs effect [1]. Instead
of grain boundaries, this expulsion of strain in smectics
results in a remarkable patterns of singular ellipses, hy-
perbolas, and parabolas known as focal conic domains
(FCDs, Fig. 1), which are the signature of the smectic
one-dimensional layered structure. Smectics provide a
window into deep properties of translational order, lend-
ing insight into crystalline behavior.
FCDs have appealed to theorists and experimentalists

since the early days [2], partially because of their unique
geometric origin. In its minimum energy state, a smec-
tic has lamellar layers spaced at equal distances. Equal
layer spacing implies a singularity at the centers of cur-
vature of the surfaces. This constraint of equal layer
spacing, surprisingly, determines the allowed shapes of
the smectic’s lamella. The lamella choose surfaces whose
centers of curvature trace out curves rather than costly
two-dimensional internal boundaries. These surfaces are
called cyclides of Dupin [3]; their centers of curvature
trace out one-dimensional conic sections, typically confo-
cal ellipses and hyperbolas. The resulting structures in
smectics are known as FCDs.
On a practical level, an understanding of focal conic

dynamics is necessary for the description of a variety of
liquid-crystalline states, such as smectic-A [4, 5], smectic-
C and C∗ [6, 7], lyotropic lamellar [8, 9], twist-bend [10],
and even metallotropic liquid crystals [11]. We focus our
attention on smectic-A’s, which are the simplest case.
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FIG. 1. (Color online) Experimental (a and c) and simulation
(b and d) results for polarizer microscopy images of a section
of smectic-A slab for planar (a and b) and homeotropic an-
choring (c and d).

Our current understanding of focal conic structures in
smectics at rest includes the study of geometrical and
energetic properties [12–14], the effects of anchoring for
several substrates [15–17], the role played by dislocations
[18, 19], and beautiful insights extracted from a hidden
symmetry of the Poincaré group [20]. When a smectic
is driven by external dilatative stresses, experiments on
initially planar-aligned samples show a sequence of elas-
tic and plastic strain patterns that ultimately lead to a
polygonal array of parabolic focal conic lines [21]. More
recently, experiments on smectic samples with antagonis-
tic anchoring conditions subjected to shear flow report on
the emergence of satellite defects [22]. Further recent de-
velopments on the smectic rheology have been reported
in [23, 24]. However, progress in simulating smectic dy-
namics has been slow, perhaps because of the challenge
of incorporating defect dynamics into Ericksen-Leslie-
Parodi theory. Simulations of smectics are often based
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on atomistic and molecular dynamics approaches [25–27].
Numerical solutions of the Ericksen-Leslie equations and
Monte Carlo methods using the Frank free energy have
been reported for nematics (see e.g. [28, 29]). As far as
the authors know, there has been no report of the obser-
vation of focal conic domains in smectic simulations.
In this paper we present results of our simulations of

an effective theory of smectic-A liquid crystals. Our dy-
namics is an extension of Ericksen-Leslie-Parodi dynam-
ics and the Oseen-Frank free energy [30, 31], in that we
allow focal conic singularites by allowing the order pa-
rameter to change magnitude, but we continue to for-
bid dislocations. The use of modern GPU computing
makes these simulations feasible. Our simulations natu-
rally form FCDs upon relaxation of random initial con-
ditions and allow us to study these fascinating defects
both during formation and under mechanical loading.
We find good comparisons with experiments performed
under similar situations. Our approach allows us to in-
vestigate focal conic structures in great detail through
simulations, and provides us with an invaluable tool to
understand their several aspects, ranging from energet-
ics, topology and geometry to anchoring and mechanical
strain effects, nicely complementing current experimental
approaches [32].

II. EQUATIONS OF MOTION

Our description of the smectic starts from its elastic
free energy

Ψ =

∫

dr [F (Nµ, ∂µNν) + λ · ∇ ×N ] , (1)

which is a functional of the layer-normal field and its
derivatives. The layer normal field N can be written in
terms of the scalar displacement field u as N = N0−∇u
[4, 33], where N0 is the undeformed layer normal. The
free-energy density F is given by:

F =
B

4
(1−N4)2 +KN2 (∇ ·N)

2

+
1

2
K24N

2 ∇ · [(N · ∇)N −N (∇ ·N)] .

(2)

Here, the first term penalizes compression or extension
of the layers away from N = 1. The second and third
terms are related to splay and saddle-splay distortions,
which are inherited from the Oseen-Frank elastic free en-
ergy [30, 31, 34]. Notice that the order parameter N

plays a dual role, and is very close to a unit vector field
away from the focal singularities because of the small de
Gennes’ length (we will elaborate on this choice of dy-
namics in the next few paragraphs). The Lagrange mul-
tiplier λ forbids dislocations by ensuring that the layer-
normal field is curl-free, since the vector ∇ × N is the
density of dislocations (the Burger’s vector in units of
the average layer spacing is given by the contour and
area integrals

∮

N · dℓ =
∫

Γ
∇× N · ds). We will treat

the effects and dynamics of dislocations in a separate pa-
per [35]. Note that there is no term in the free energy
to account for anchoring at the boundaries. We instead
enforce strict anchoring, by doubling the simulation vol-
ume and using suitably symmetrized initial conditions, to
enforce the homeotropic or planar boundary conditions
(see section III for more details).
Note that a more general smectic free energy should

depend on two order parameters, such as the displace-
ment field and the tensorial liquid-crystalline order pa-
rameter. For uniaxial order, it is possible to write the
elastic free energy as a functional of the Frank director
n and layer normal N vector fields. Assuming these vec-
tors are parallel (they should be in smectics-A), and that
their sizes are nearly constant (they will be constant ex-
cept near singularities), it is possible to minimize the free
energy with respect to one of the fields, yielding a rela-
tionship between N2 and n2, and derive a (complicated)
effective free energy in terms of a single field. For the
sake of simplicity, we bypassed this analysis, and started
with a single order parameter. The unusual amplitude
dependence (∼ N2) multiplying the K and K24 elastic
terms is motivated by gradient distortions of the form
(∇Q)2, which are proportional to N2 for nematic uniax-
ial ordering [36], where Q = ((Qi j)) is the Maier-Saupe
tensorial order parameter. Since n and N are parallel,
we use N4 in the first term of Eq. (2) because the lowest
order invariant in a Landau-de Gennes theory (trQ2) is
proportional to N4. Strictly speaking, neglecting an ef-
fective coupling between n and N , the compression term
should be proportional to (1−N2)2, as in the first term
of the r.h.s. of Eq. (4). Later on we will get back to this
choice for the smectic dynamics (see Eqs. (4) and (5)).
To arrive at the smectic’s dynamical equations of mo-

tion, we evolve the layer normal field in the simplest pos-
sible form, assuming N relaxes directly towards equilib-
rium. These dynamics give a partial differential equation
for the gradient-descent evolution of N :

γ Ṅ = −
(

δΨ

δN
−
〈

δΨ

δN

〉)

, (3)

where the angle brackets denote a spatial average and
γ is a viscosity constant; γ can be written in terms of
Leslie coefficients as γ = α3 − α2 [4]. The second term
of (3) ensures that the net number of layers in the cell
given by N0 does not change during the gradient descent
step. Equations (1-3) differ from Ericksen-Leslie-Parodi
(ELP) dynamics in a few aspects. We relax the constraint
of equal layer spacing |N | = 1, which is ensured in ELP
theory by means of a Lagrange multiplier, and we con-
sider amplitude-dependent elastic constants. Apart from
the dependence on N , our dynamics is a particular case
of ELP theory in the limit of infinite fluid viscosity. As a
result, our centers of mass move affinely with the external
shear and only the orientation of the molecules change.
We have also considered two other choices for the

energy-gradient dynamics, which are not completely de-
scribed by Eqs. (1-3). For future reference, we label the
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dynamics described in the last paragraph as dynamics I.
For our second choice (dynamics II ), we keep equations
(1) and (3), but replace the free energy density by:

FII =
B

4

(

1−N2
)2

+K (∇ ·N)2 . (4)

Note that this choice of dynamics does not make contact
with the tensorial order parameter Q. Since there is no
amplitude dependence, the saddle-splay term is a surface
term that vanishes in a system with periodic boundary
conditions. On the one hand, the absence of a saddle-
splay term limits the morphology of the allowed focal
conic domains, since this term is associated with the
Gaussian curvature energy of the layers [5] (the splay
term is associated with the mean curvature). On the
other hand, the equations of motion are simpler for dy-

namics II, so that we can implement simulations in a
more efficient way, and study the numerical effects of
varying grid sizes and de Genne’s lengths (see Appendix
A). Finally, for our third choice (dynamics III ) we con-
sider the free energy as a functional of the displacement
field and its derivatives, and replace Eq. (2) by:

FIII =
B

4

[

1− (∇u)2
]2

+K (∇ · ∇u)
2
, (5)

which is equivalent to (4), and Eq. (3) by

γ

λ2
u̇ = −δΨ

δu
, (6)

where γ is a viscosity constant, and λ is a length scale
that we take to be the grid spacing a for convenience.
This roughly corresponds to a smectic where the motion
of layers is the dynamical bottleneck, rather than the re-
orientation of molecules (and hence the layer normals).
The numerical evolution is slower for this choice of dy-
namics, probably due to derivatives of higher order in the
equations of motion. Fig. 2 shows polarizer microscopy
images of a simulated smectic-A planar section, starting
from the same initial condition (which has been used in
Fig. 1(b)) and evolved using dynamics I (a), II (b) and
III (c). For (a) and (b), we evolved the initial configu-
ration for a period of about t = 2000τ , where τ ≡ γ/B.
(c) was obtained using dynamics III for a longer time
(∼ 10000τ). The morphology in (c) resembles the FCD
pattern shown in Fig. 2d of [11] for metallotropic liquid
crystals.
To impose the external shear and extensional flows, we

assume the layers are dragged with a displacement field
determined by the flow. For simple shear, the layers are
dragged in the x direction according to the displacement
field

us
x(x, y, z; t) =

A

lz
(z − lz) sin (ωt) , (7)

where lz is the system size in the z direction, A is the am-
plitude, and ω is the frequency of oscillation; our simula-
tions are done at a fixed Ericksen number γωl2z/K ≈ 129.
Extensional dynamics are implemented by stretching the

(a) (b) (c)

FIG. 2. Simulation results for polarizer microscopy images of
a planar section of smectic-A slab using dynamics I (a), II
(b), and III (c).

smectic in the z direction while it contracts in the or-
thogonal x and y directions, as described by the set of
equations

lz(t) = lz(0)f(t), lx,y(t) =
lx,y(0)
√

f(t)

f(0) = 1, f(t) > 0, ∀ t ∈ [0,∞) ,

(8)

where lx, ly, and lz are the grid sizes along the x, y, and z
directions. To incorporate shear and dilatational dynam-
ics simultaneously with the director relaxation, we em-
ploy an operator splitting method, alternatively applying
gradient-descent motion from Eq. 3 and one of the load-
ing dynamics from Eqs. (7) & (8).

III. EXPERIMENTAL AND SIMULATION

SETUP

We perform analogous experiments on 8CB in the SmA
phase, using a custom-built shear cell that allows precise
control of the plate separation for gaps as small as 2-5
µm while keeping the plates parallel to < 1 part in 103

[37], allowing us to explore a large range of strain ampli-
tudes and Ericksen numbers. The shear cell is outfitted
with two parallel glass plates, which we use as the sample
boundaries, and imaged with cross-polarized microscopy.
We treat the glass slides with cetyl-trimethylammonium
bromide for homeotropic anchoring and with a poly-
imide treating for planar anchoring.
At the beginning of our simulations, we generate nor-

mally distributed random grids for each spatial compo-
nent of the layer-normal field. We then enforce anchoring
constraints, and use a Gaussian filter to smooth the field
on short length scales. To implement boundary condi-
tions, we double the grid size in the z direction, and re-
quire that

Nx(lz + z) = Nx(lz − z), Ny(lz + z) = Ny(lz − z),

Nz(lz + z) = −Nz(lz − z), (9)

for planar anchoring, and

Nx(lz + z) = −Nx(lz − z), Ny(lz + z) = −Ny(lz − z),

Nz(lz + z) = Nz(lz − z), (10)
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for homeotropic anchoring, with 0 ≤ z ≤ lz − 1. Mixed
homeotropic and planar boundary conditions can be en-
forced in a similar way by quadrupling the thickness of
the simulation grid. In order to remove the curl com-
ponent of the field, we use a Helmholtz decomposition
in Fourier space. The resulting components are divided
by the mean length of the director field so that the field
has average unit norm. We use an Euler integrator with
adaptive step size [38] in order to integrate our partial
differential equations. The driving code is written in
Python. Each step of the integration is evaluated us-
ing parallel computing on a GPU using CUDA. Spatial
derivatives are evaluated with Fourier methods (FFTs).
In this letter we present results for fixed values for the
ratio K24/K = −1.5, and for deGenne’s length scale

ξ =
√

K/B = 0.2a, where a is the finite-difference grid
spacing. (Larger ξ produces similar results with blurred
features; see Appendix A). Except in the study of dilata-
tional flow, we have presented results for fixed values of
lz = 320 ξ. A systematic study of the dependence of the
dynamical behavior on sample thickness is beyond the
scope of the present work.

IV. VISUALIZATION

From these random initial conditions, our gradient-
descent dynamics forms FCDs which closely resemble
those seen in experiments as shown in Fig. 1. We visual-
ize the focal conics domains in our simulations through
several techniques we have developed. We render po-
larizer microscopy images, as shown in Fig. 1, by ray-
tracing light using the Fresnel equations for anisotropic
dielectrics [5]. Figure 3 shows a plot of the free energy
density F , overlaid with cross-sections of the layer sur-
faces (contours of constant N0 · r − u). The free energy
is high at the focal lines, where the layer contours form
cusps.
Three visualizations of the three-dimensional smectic

structure are shown in figure 4. Figure 4a is a volume
rendering visualization of the free energy density where
each voxel is given a color and degree of transparency
that is associated with its free energy density. The high
energy regions (red) have organized into the character-
istic focal conic structure of smectics, forming multiple
ellipses, each with a hyperbola coming out of its focus.
The focal conic character of the smectic structures is re-
inforced by the loci of the principal centers of curvature
of the smectic layers, shown in Fig. 4b, which coincide
with the regions of high energy density in 4a [5]. To
calculate the radii of curvature, we project each layer’s
second fundamental form tensor Mµν = ∂µ∂νu into the
layer-surface tangent plane. The principal radii of curva-
ture are equal to the inverse of the principal curvatures,
which are the eigenvalues of the projected Mµν . The
shared surface normals intersect at the centers of curva-
ture for the layers, which form the confocal conics [12].
Finally, Fig. 4c shows three-dimensional level surfaces of

FIG. 3. (Color online) Simulated energy density (white-blue
density plot) and some sections of the layer surfaces (black
lines) at the top section z = lz of the system with planar
anchoring (Fig 1b).

the mass-density field.

(a) (b)

(c)

FIG. 4. (Color online) 3D visualizers of a simulation of
smectic-A liquid crystals with planar anchoring. (a) Volume
rendering visualization of the energy density; (b) loci of the
centers of curvature of the layer surfaces; (c) layer surfaces.

V. COARSENING

To study the coarsening dynamics of focal conics we
simulate with no anchoring at the boundary, since the
boundary constraint introduces a length scale for the dis-
tribution of the layer-surface radii of curvature. As the
system evolves, our dynamics seem to energetically fa-
vor ellipses with large linear eccentricity c. The layers
around singular ellipses become flatter with increasing
c, and converge to planes when c → ∞. This is the
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(a)

(b)

FIG. 5. (Color online) Scaling collapses in logarithmic scale
of the layer-surface radii of curvature distribution. (a) Naive

power-law scaling, R∗(t) ∼ t1/4. (b) Incorporation of loga-

rithmic corrections to scaling, R∗(t) ∼ [t log(t/τc)]
1/4, with

τc = 100τ .

dominant coarsening mechanism in our simulations. The
coarsening of focal conics becomes slower with increasing
time, but it does not stop until a uniform flat configu-
ration is reached. (Our computational defect structures
can be stabilized with simulated ‘dust’ particles on the
glass slides, by introducing spatially-dependendent en-
ergetic anchoring on the boundaries.) To quantify the
coarsening, we investigate the probability distribution of
the principal radii of curvature R, which define a charac-
teristic distance to the focal conics, and are distributed
according to a function P (R, t) which also depends on
time. The scaling assumption states that the morphol-
ogy at late times statistically scales with a single length
scale R∗, so in particular P (R, t) ∝ Π(R/R∗(t)) for some
(possibly universal) function Π(X). In Appendix B, we
propose two possible arguments yielding the cutoff radius
of curvature R∗ ∼ t1/4, and R∗ ∼ [t ln(t/τc)]

1/4. Fig 5
shows scaling collapse plots that are consistent with both
of these possibilities, (see Appendix B for more details,
and for a discussion of the decay in the energy density
with time). Using the first scaling form (∼ tα), we ob-
serve that the exponent α = 0.5 gives a better numer-

ical collapse of the data. We do not show the collapse
plot for this exponent because it does not have theoreti-
cal motivation. Incidentally, the inclusion of logarithmic
corrections (due to the singularities near the conic sec-
tions) makes the collapse worse for α = 0.5, but improves
the collapse using α = 0.25. These results do not change
if we use dynamics II [39]. The approach to equilibrium
by increasing eccentricity to minimize bending energy is
an interesting contrast to the typical approach to equi-
librium of decreasing eccentricity to minimize a surface
energy.

VI. FLOW DYNAMICS

Our simulations and experiments also provide a win-
dow to understand dynamics of focal conic domains un-
der shear. From our simulations, simple shear oscilla-
tions parallel to the glass slides primarily act to accel-
erate the focal conics’ coarsening. When we shear sta-
bilized focal conic structures, our simulations show that
the focal conics are not significantly altered by the pla-
nar shear, in qualitative agreement with our experiments
with strong homeotropic anchoring. In addition, our sim-
ulations allow us to tune the smectic’s anchoring at the
boundary. As a result, our simulations promise to dis-
cern the effects of anchoring imperfections, such as weak
or spatially-modulated anchoring, on the rich structures
that can be produced in experiments (see supplemental
animations [40]).
Under dilative strain (stretching the layer spacing),

homeotropic smectic-A liquid crystals are known to re-
lease free energy by forming undulations [41–43], and fo-
cal conic domains [21, 44]. In Fig. 6a we show simulation
results for the total free energy as a function of time for
a dilative dynamics with f(t) = 1+A(1− cosωt), where
A = 0.25, and ω = 2π/1000 (τ−1). The first sharp peak
at about t1 = 100 τ marks the onset of an undulation pat-
tern, which is depicted in the layers contour plot in the
inset of Fig. 6a. Linear stability analysis using the meth-
ods of [41–43] leads to a critical strain threshold ǫc that
is given by the solution of the equation (see Appendix
C):

ǫc =
πξ

lz

√

1− 6ǫc + 6ǫc2

(1− 3ǫc + 2ǫc2)
2
≈ πξ

lz
, (11)

since ǫc is small. This analysis results in a buckling
wavelength of ≈ 9a ≈ 0.04lx, which is consistent with
our simulations (see inset of Fig. 6a), as is the onset
strain of the instability (the first peak in Fig. 6a) is later
than the instability onset by approximately a factor of
two, because of the growth time of the undulation pat-
tern). The second peak of the free energy signals the
onset of a configuration which evolves towards a com-
plex pattern of focal conic domains. Fig. 6b and 6c show
crossed-polarizer images obtained from simulations and
experiments at maximum strain, respectively. We found
compatible results using dynamics II.
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(a)

(b) (c)

FIG. 6. (Color online) Simulation and experimental results
for SmA under dilative stress. (a) Total free energy as a
function of time. In the inset we show layers in the x-z plane
showing undulation pattern at t = 120τ . (b) Simulation and
(c) experimental results for crossed-polarizer images showing
a pattern of focal conic domains, at strain amplitudes of 0.33
and 0.13, respectively.

Note the fascinating fact that the critical change in
length ǫlz ≈ πξ is a microscopic length. Except near
a critical point, one expects ξ to be of the order of a
molecular size; the instability threshold [45] for a bulk
material happens when one stretches it by one molecular
length [46]! A simple calculation for crystals shows an
analogous result for grain boundaries: a bent crystal’s
ground state has dislocations once the net displacements
become of the order of the lattice constant (up to a log-
arithm of the crystal size over the atomic size). Unlike
crystals which are metastable, smectics are unstable un-
der long-wavelength deformations with atomic-scale dis-
placements – the lower-energy defective state has no as-
sociated nucleation barrier. Thus the equilibrium contin-
uum elastic theory of materials with broken translation
invariance is frail [47, 48]– it is only valid in general for
microscale net displacement differences over macroscale

distances.

VII. CONCLUSIONS

To conclude, we have presented results from numerical
simulations and experiments of smectic-A liquid crystals.
In our simulations, focal conic domains spontaneously
emerge out of random initial configurations. The nu-
merical reproduction of the experimental morphologies
is striking, for both planar and homeotropic boundary
conditions. Our several visualization tools comprise the
description of the most important structural features of
FCDs. We have also characterized the coarsening of
FCDs, by studying the scaling behaviour associated with
the distribution of the layer surface radii of curvature,
which is the length scale related to the size of the fo-
cal conics. Finally, we have studied the system response
to strain, which includes a numerical and experimental
investigation of the classical dilatational instability, cor-
rectly predicting the instability threshold, and the onset
of a state populated with parabolic focal conic domains.

Appendix A: Convergence tests

In this section we present some results of a test to an-
alyze the effects of small grid sizes and small de Genne’s
length (ξ = 0.2a) in our simulations. We start with a
smoothened random initial field of linear size 16a, and
evolve it for a very short time (≈ 0.5τ), using dynamics

II with ξ = 0.2a [49] and no anchoring at the boundaries.
We then duplicate the resulting configuration into larger
lattices, with linear size 32, 64 and 128. To generate a
smooth interpolation between lattice points of the larger
lattices, we copy the Fourier components of small wave
number, and leave the coefficients associated with short
wavelengths equal zero. To be consistent with the pe-
riodic boundary conditions, we divide the smaller cubic
grid into eight equal pieces, and copy the configuration
of each piece into the corresponding corner of the larger
grid in Fourier space. To estimate the finite-size error,
we evaluate

σb = max
µ∈{x,y,z}

max
i,j,k

∣

∣Nµ(b i, b j, b k)−N ′
µ(i, j, k))

∣

∣(A1)

where N and N
′ are the large and small lattices, with

linear sizes l and l′ = b l, respectively. The indices i, j,
and k are grid coordinates of N

′. The second row of
Table I shows the error comparison for this initial config-
uration. Since the configuration is copied (with a smooth
interpolation) from the smaller to the larger lattices, this
error is of order 10−15. We then evolve this initial state
for each grid for a period of time of about 200τ , keeping
ξ = 0.2a for l = 16, and using dynamics II. In order to
have comparable simulations, we multiply K and K24 by
four (thus increasing ξ by a factor of two) each time we
double the grid size, since the wave vectors are divided
by two, and the splay and saddle-splay terms contribute
with two gradient terms. The results for ξL=16 = 0.2a
and t = 200τ are shown in the third row of Table I. Note
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that the difference between the 323 lattice (with ξ = 0.4a)
and the 1283 lattice (with ξ = 1.6a) is of just about two
percent. For the sake of completeness, we started with
the same initial state, and evolved each lattice using dy-

namics II with ξL=16 = 0.4a (so that ξ = 0.8a, 1.6a, and
3.2a for L = 32, 64 and 128, respectively). The results
for this case are shown in the fourth row. Notice that
σ2(64, 128) for ξL=16 = 0.2a is comparable to σ4(32, 128)
for ξL=16 = 0.4a, because the 643 lattice in the third row
and the 323 lattice in the fourth row are simulated using
the same de Genne’s length. The same comparison holds
between σ2(32, 128) for ξL=16 = 0.2a and σ4(16, 128) for
ξL=16 = 0.4a. Note that this test analyzes convergence
upon increasing both resolution and de Genne’s length,
and that ξ = 0.4a gives sensible results even for small lat-
tices. We recall that most of the results that have been
presented in this paper were obtained using dynamics I

with ξ = 0.2a for large grids (2562 × 64). We keep the
results for dynamics I, even though it is harder to con-
trol numerical instabilities in this case, because that is
our only choice with a Gaussian curvature energy, which
is associated with the saddle-splay term. We emphasize
that we do not observe a significant change for our re-
sults for coarsening and dilative dynamics when we use
dynamics II with ξ = 0.4.

σ8 (16, 128) σ4 (32, 128) σ2 (64, 128)

Initial state 10−15 10−15 10−15

ξL=16 = 0.2a at t = 200τ 0.55 0.03 0.0007

ξL=16 = 0.4a at t = 200τ 0.02 0.0009 0.0007

TABLE I. Comparison of the errors of evolved simulation con-
figurations for grids with increasing resolution and de Genne’s
length.

Appendix B: Scaling exponent for the coarsening of

focal conics

The principal radii of curvature R define a character-
istic distance to the focal conics: equally spaced layers
develop singularities at their centers of curvature. These
radii have a time-dependent probability distribution
P (R|t). Scaling suggests that all correlation functions
should scale with a single length scale R∗(t) that diverges
at late times, hence P (R|t) ≈ Π(R/R∗)/R∗ for some per-
haps universal function Π(X). (Here the last factor pre-
serves normalization:

∫

P (R)dR =
∫

Π(X)dX = 1.) In
coarsening problems, it is often possible to use simple
energetic arguments to derive the power law divergence
R∗(t) ∝ tα; for example, phase separation in systems
without hydrodynamic flow has α = 1/3 for conserved
order parameters and α = 1/2 for non-conserved order
parameters. Here we give two possible scaling forms, of
increasing sophistication. The first mimics the standard
energetic arguments and the second provides a refined ar-
gument including a logarithmic correction due to defect

FIG. 7. (Color online) Total free energy ψ (symbols) as a
function of time in log-log scale. The blue dashed line cor-
respond to the behavior predicted from the naive argument
R∗

∼ t1/4. The black dashed line is a best fit (∼ t−0.55).

cores (Fig. 5).
Away from the defect cores, where |N | ≈ 1, the free

energy density scales as R−2. So the average energy den-
sity is

E(R∗) =

∫

P (R)/R2dR. (B1)

In traditional coarsening, one assumes that the integral
for E(R∗) converges at zero, so E(R∗) ∼ 1/(R∗)2. This
leads to a force (tension) T = δE/δR∗ ∼ 1/(R∗)3. Since
the order parameter is non-conserved [50],

Ṙ = −γ T, (B2)

where γ is an effective inverse viscosity (see section 11.4
of [51]). This can be solved giving R∗ ∼ t1/4 (Fig. 5a),
and hence E(R∗(t)) ∼ 1/t1/2 (Fig. 7).
How does this change if we consider the defect cores,

where |N | < 1? The energy in the cones, near the focal
conic line singularities, scales as the length of the conics
times ln(R/ξ), where ξ is de Gennes’ length scale. Within
a focal domain of size R∗, near the singular ellipse and
hyperbola R → 0, the volume fraction P (R) ∼ R, so
that Π(X) ∼ X for small X . This leads to a divergence
in the integrated energy near the focal conic singularities,
which is cut off by ξ,

E(R∗) =

∫ ∞

ξ

(1/R2)Π(R/R∗)/R∗dR

=

∫ ∞

ξ/R∗

Π(X)/(XR∗)2)dX

∼ (1/R∗)2
∫ 1

ξ/R∗

X/X2dX

= log(ξ/R∗)/(R∗)2, (B3)
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(see section 10.5 of [5]). After some calculation, Eq. (B2)
implies

R∗ ∼ [t ln(t/τc)]
1/4

, (B4)

in the limit of large R or t. So if the focal domains are
all of the same length scale R∗, and the relaxation of the
core singularites dominates the coarsening, we expect a
t1/4 scaling with a logarithmic correction, as in Fig. 5(b).
There is a large range of values for τc which collapse
our data. Fig. 5b shows a scaling collapse plot with the
logarithmic corrections for τc = 100τ . Note that Eq.
(B4) only applies for times times t larger than τc, hence
the range of times used in the collapse plot of Fig. 5(b).
Our data for t < 200τ do not fit well in the collapse plot,
even when we consider lower τc so that t is still greater
than τc; we surmise that τc is associated with the time
needed to form line singularities. Unfortunately, we have
not been able to verify this hypothesis, since there is no
surface anchoring in this case and the three-dimensional
visualizers are not useful at early stages of the dynamic
evolution.
Both of these scaling forms are compatible with the

data, given the limited scaling regime (less than a decade
in length, corresponding to less than three decades in
‘size’); P (R, t) is clearly still evolving in shape from its
non-universal initial form.

Appendix C: Linear stability analysis for SmA

under dilative strain

We consider a situation where a thin slab of
homeotropic smectic-A is subject to dilative stress [4, 5,
33, 41–43]. In this case, the smectic layers are parallel
to the glass slides, so that the stretching of the gap pro-
motes an increase of the interlayer spacing. Planar-layer
configurations store a considerable amount of bulk en-
ergy as strain is increased, which is released with the for-
mation of an undulation pattern after a critical strain is
reached. Here we use the methods of [41–43] to study the
formation of undulation instabilities on smectic-A liquid
crystals.
The displacement field associated with an undulation

pattern of a smectic-A can be written as:

u(r) = ǫz + u0 cos(qx) sin(kz), (C1)

where we take k = π/lz to enforce strict homeotropic
anchoring. Our elastic free energy density is given by:

f =
B

4
(1−N4)2 +K (∇ ·N)

2
. (C2)

Notice that we have not included a saddle-splay term, nor
have we considered amplitude dependence of the elastic
constant K, since their effects are negligible. Roughly
speaking, the amplitude dependence of K24 gives rise to
higher-order terms for the undulating solution. Hence
we can approximate N2 multiplying K and K24 by one,

and the saddle-splay term becomes a surface term that
vanishes for periodic boundary conditions. Also, we do
not need include a Lagrange multiplier, sinceN = z−∇u
is curl-less if u is given by Eq. (C1). The free energy
density (C2) can be written in terms of the displacement
field as

f =
B

4







1−
[

1 +

(

∂u

∂x

)2

− 2
∂u

∂z

]2






2

+K

(

∂2u

∂x2

)2

. (C3)

We can combine Eqs. (C3) and (C1) in order to write

f

B
= ξ2q4u0

2 sin2(kz) cos2(qx)

+
1

4

{[

q2u0
2 sin2(kz) sin2(qx)

−2(ku0 cos(kz) cos(qx) + ǫ) + 1]
2 − 1

}2

,(C4)

where ξ =
√

K/B is de Gennes’ length scale. To find
the stability threshold we integrate out the free energy
density over one period in the x-direction, and from 0 to
lz in the z-direction:

F =

∫ 2π

q

0

dx

∫ lz

0

dz f(x, z). (C5)

The stability threshold is given by the solution of the
equation:

∂2F

∂u0
2
= 0, (C6)

or,

4k2
(

6ǫ2 − 6ǫ+ 1
)

+q2
(

ξ2q2 − 8ǫ3 + 12ǫ2 − 4ǫ
)

= 0. (C7)

For given ξ and lz, this equation defines a curve in the
ǫ× q plane. Fig 8 shows the critical strain as a function
of q for ξ = 0.2a and lz = 64a, corresponding to our sim-
ulation parameters, where a is the finite-difference grid
spacing. The strain is minimal for

q =

√
4ǫ3 − 6ǫ2 + 2ǫ

ξ
. (C8)

Eq. (C8) can be plugged back into Eq. (C7), so that,

ǫc =
πξ

lz

√

1− 6ǫc + 6ǫc2

(1− 3ǫc + 2ǫc2)
2
≈ πξ

lz
, (C9)

where the approximate solution on the r.h.s. of (C9)
is valid since ǫ is small. Notice that our approximate
critical strain (πξ/lz) corresponds to half of the value
obtained in [41–43], because we use a slightly different
form for the free energy density. Also, it is interesting to
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FIG. 8. Showing critical strain as a function of q for ξ = 0.2a
and lz = 64a.

point out that the critical change in length ǫclz ≈ πξ is
a microscopic length (see main text).
Fig 6 shows simulation results for smectic-A liquid

crystals under dilative stress with ξ = 0.2a and lz = 64a.
We simulate f(t) = 1+A(1−cos(ωt)) (see Eq. (6) of main
text), with A = 0.25, and ω = 2π/1000 τ−1. Eq (C9)
predicts a strain threshold of ǫc ≈ 0.01, and a critical
wavelength of q ≈ 9a ≈ 0.04lx, which is consistent with
our simulations (Fig 6b). However, since ǫ = 1− f−1, we
can rearrange f(t) in order to write

tc =
1

ω
cos−1

(

1− ǫc
A(1− ǫc)

)

≈ 45 τ, (C10)

which is about half of the time threshold associated with
the first peak of Fig 6a. We suggest that the time scale
associated with the growth of the undulation pattern ac-
counts for the discrepancy between the simulation thresh-
old and the analytical estimate. We tested our stability
analysis directly by adding a small perturbation δN to
N0. Under a gradient descent infinitesimal evolution of
N , we expect that F [δNz(t+ δt)] = exp(λkδt)F [δNz(t)],
where F denotes a Fourier transform operator. An ex-
ponent λk is less than zero for stable planar configura-
tions, and reaches zero at the critical strain for some
wavenumber q. Careful numerical calculations for λk lead
to tc ≈ 45τ , and q ≈ 9a, in agreement with our analyti-
cal estimate. There is no significant change (apart from
shifts of numerical values) in the analysis and numerical
results using dynamics II.
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