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Some issues that arise when modeling elastic energy for binary alloys are discussed within the
context of a Keating model and density functional calculations. The Keating model is a simplified
atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs
whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the
strain field are the usual equations of linear elasticity for alloys and that they correctly capture the
coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange
equation of the continuum limit of the elastic energy will yield the same strain field equation. This
is the same energy functional that is often used to model elastic effects in binary alloys. However,
a direct calculation of the elastic energy atomistic model reveals that the continuum expression for
the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take
atomistic scale compositional non-uniformity into account. Importantly, this result also shows that
finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact
opposite of predictions made by some continuum theories. It is also shown that for strained thin
films the traditionally used effective misfit for alloys systematically underestimate the strain energy.
In some models, this drawback is handled by including an elastic contribution to the enthalpy of
mixing which is characterized in terms of the continuum concentration. The direct calculation of
the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that
elastic contribution to the enthalpy of mixing is non-isotropic and scale dependent. It is also shown
that such effects are present in density-functional theory calculations for the Si/Ge system. This
work demonstrates that it is critical to include the microscopic arrangements in any elastic model
to achieve even qualitatively correct behavior.

I. INTRODUCTION

Many modern material systems consist of alloys of two or more species. Applications of such
alloy systems include semiconductor systems for new optoelectronic devices [1], oxides for optical
and electronic applications [2], hydrogen storage systems [3], and more. Different species typically
have different lattice constants leading to elastic strain, which can significantly impact the perfor-
mance and stability. Of particular interest is the strain driven formation and self-organization of
heterostructures such as quantum dots for semiconductor systems [4–7]. It is therefore of paramount
importance to develop models that properly describe the effect of strain in alloy systems.

The challenge in modeling alloys is that the total energy of an alloy system depends on the
composition. This compositional dependence is hard to characterize and a common approach is to
assume a species dependent bond lengths and bond energies. This allows one to separate the total
energy into the chemical and elastic parts. The alternative is to work with just the total energy.
This is usually not tractable and the separation allows one to construct tractable models. In the case
of alloys of lattice mismatched elements, the difference in lattice spacing introduces compositionally
dependent strain. This is not simply characterized by modeling the response of the material to
applied stress. These alloys retain a stress free strain. This strain is determined as the deviation
of the bond lengths from their equilibrium values. However, if the bond lengths in the bulk are
environmentally dependent, it would not be possible to decompose the energy into chemical and
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elastic parts. Fortunately an environmentally independent bond length appears to be a reasonable
approach to modeling microscopic strain in alloys (see Tsao [8] page 94).

In this paper we revisit the issue of modeling of elastic energy of a binary alloy. The models for elas-
tic energy of alloys fall under two broad categories, namely continuum models and discrete/atomistic
models. Reality being that alloys are made of discrete atoms, a fully atomistic description would be
the model of choice. However, for practical reasons continuum models are often preferred.

Continuum models aim to characterize the alloy in terms of macroscopic quantities. These macro-
scopic quantities must vary slowly on the atomistic scale for a continuum model to be consistent.
For an alloy, the concentration field does not in general vary slowly on the atomistic scale. However,
one can introduce an average concentration which can be constructed to vary smoothly on atomistic
scales. It is apparent that for alloys one can make good predictions of coarse-grained displacement
fields using continuum theory.

However, the issue of deducing the elastic energy using continuum theory is more difficult. A
common starting point is to choose the reference lattice for the alloy in accordance to Vegard’s law
based on the average concentration. Vegard’s law states that the average lattice spacing of an alloy
varies linearly with concentration (see [8]). A second but more important assumption is that the
stress free strain of a uniform alloy in this reference state is zero. Under these assumptions, it can
be shown [9, 10] that for a nonuniform isotropic alloy the elastic energy can be written as

WC =
η2E

1− ν

∫
V

(θ − θ0)2dV. (1)

In Eq. (1), η is the effective misfit, E is Young’s modulus, ν is the Poisson ratio, θ is the composition
field of the alloy and θ0 is its average. This formulation has been used to study a wide range of
problems including strain driven morphological instabilities, spinodal decomposition, segregation
and microstructure evolution in metal and semiconductor alloys [5–7, 10, 11]. The formula given by
Eq. (1) implies that non-uniformity of the alloy will result in an increase in elastic energy. For this
reason, it is often suggested that contributions to the free energy that arise from atomistic misfit
stabilize an alloy or equivalently that intermixing will lower the elastic energy of the alloy.

While Vegard’s law in itself is known to be true for some systems [12, 13], it is a statement about
the average lattice spacing of alloys. In particular it does not exclude the existence of microscopic
stress free strain with respect to the reference lattice. Using a Keating model it has been argued (e.g.
Tsao [8]) that for alloys there is microscopic strain even when the alloy atoms are placed in a lattice
given by Vegard’s law. Thus, the stress free strain is not zero even when the composition appears to
be macroscopically uniform. The energy stored in the springs has been used as an estimate for the
contribution to the elastic energy due to this microscopic strain (e.g. Tsao [8]). The strain energy
associated with this microscopic strain can be considered the elastic contribution to the enthalpy
of mixing, H. Then one could posit (e.g. de Fontaine [14] or Ren et al [15]) that the total elastic
energy of the alloy can be written as

W = WC +H. (2)

The atomistic scales are captured by H whereas WC is used for the continuum scales. This is only
true in the presence of a clear separation of scales. In many time dependent problems there is a
range of scales, especially as the system coarsens. For example, in a finely mixed alloy the dominant
contribution will come from H, while the microscopic strain energy will lessen in favor of WC as the
alloy coarsens. In fact, we will present results that suggest that the total elastic energy, WC + H ,
can actually decrease as the system coarsens. Importantly, this means that elastic interactions that
arise from atomistic misfit can destabilize an alloy; in other words, they will enhance segregation.

We are not the first to consider some of the issues discussed here. For example, Eshelby [16]
argued that for materials whose internal energy is elastic in origin the disordered state is unstable.
On the other hand, from Cahn [9] it would seem that the disordered state is stable. De Fontaine
[14] calls this the Elastic Energy Paradox. This paradox has also been observed by Cook and de
Fontaine [17] and Khachaturyan [18] (see Chapter 13). The physical origin of both the continuum
elastic energy and the atomistic elastic enthalpy is the same: different atomistic sizes of the alloy
species. We shall see that the source of confusion is in treating them separately. They are both
elastic energies, but they are operating on different length scales.

There is some experimental evidence that atomistic misfit will destabilize alloys. In the case of
thin film growth of a Si-Ge alloy on Si, Cullis et al [19] present experimental evidence that lateral
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segregation occurs to lower strain. In metallurgy, Hume-Rothery, Mabbott and Evans [20], based
on experimental observations, proposed the “15% rule” which states that binary solid solutions are
very difficult to form if the atomic size factor exceeds ∼ 15 %. Eshelby [16] asserted that this rule
was a consequence of elastic instability of the disordered state. In related work, King [21] suggests
that certain alloys based on copper are unstable due to atomistic size effects. Furthermore, Woodilla
and Averbach [22] report that the critical temperature for spinodal decomposition in experiments
with Au-Ni is ∼ 220◦, whereas Golding and Moss [23] used Cahn’s approach and predicted it to be
∼ 0◦ C. Ren et al [15] surmise that if the enthalpy term was included it would raise this prediction
to more closely match experimental observations.

In this paper, we start with a well known atomistic model for a binary alloy in which the bond
energy is based on harmonic springs connecting atoms. The atoms are placed on a simple square
lattice with springs connecting nearest and next to nearest neighbors with the equilibrium lengths
being species dependent. First, we derive the discrete equations for the displacement field and
establish that if one coarse-grains these equations one will recover the usual continuum equations
of elasticity. This calculation reveals that continuum theory does a good job at predicting average
strain fields. Based on the form of the discrete elastic energy one can propose a continuum version
of the elastic energy and recover a well known and well used elastic energy which we will denote
WC . Furthermore, we establish that the Euler-Lagrange equations associated with WC yield the
continuum equations that were derived from coarse-graining the atomistic equations. In addition, if
we consider the case where continuum equations are isotropic, the elastic energy of our alloy takes
the same form as (1).

However, a direct calculation of the elastic energy of the atomistic model in mechanical equilibrium
reveals that its behavior can be quite different from its continuum counterpart and the key results
of this paper are the following:

1. This calculation demonstrates that the elastic energy is anisotropic and scale dependent. In-
deed, the calculation shows that in order to evaluate the elastic energy one needs to understand
the behavior of the concentration field on all scales ranging from the atomistic to the contin-
uum. The calculation shows that expressions like Eq. (1) can only be valid when the system
is almost completely segregated.

2. Furthermore, it also shows that the elastic energy can be changed by rearrangements at the
atomistic scale that would not affect the continuum concentration field. Segregation at the
atomistic scale can lower the elastic energy and segregation is preferred over intermixing if one
accounts for the atomistic scale details. This is not captured by the continuum theory which
not only does not distinguish between the different configurations with microscopic segregation
(due to lack of resolution) but in fact predicts the opposite.

3. Our work demonstrates that it is critical to include the microscopic arrangements in any elastic
model to achieve even qualitatively correct behavior. Specifically, we show that the enthalpy
of mixing H depends both on the direction and wavenumber of the alloy’s compositional
variations. It is important to note that lack of microscopic information is a direct consequence
of the assumption that the stress free strain in the reference lattice is zero. We demonstrate
that even though the average stress free strain in the reference lattice is zero the strain energy
is not.

Interestingly, in the modeling of heteroepitaxial growth inclusion of any sort of elastic contribution
to the enthalpy of mixing is largely ignored (e.g. Spencer et al [5] or Shenoy et al [7]). For models of
spinodal decomposition (e.g. Cahn [9]) the enthalpy of mixing that includes the microscopic strain is
not explicitly included but it can be argued that it is implicitly included in the free energy term (see
the discussion in the footnote on page 1478 of Ref. [10]). Even when enthalpy of mixing is included
it is assumed to be a function of the macroscopic concentration field (i.e, H = H(θ)). However, in
view of our discrete calculation it follows that H must depend on the atomistic details of the alloy
and among other things must be scale dependent.

Our calculations below are based on a ball and spring model but we surmise that they are valid
for real materials as well. To provide justification of this assertion we also present calculations using
density-functional theory applied to periodic Si/Ge. For example, we consider three dimensional
checker-board patterns with cubes of Si alternated with cubes of Ge in which the size of the cubes
is varied. The calculations show that as the sizes of the cubes are increased the elastic energy is
reduced - in agreement with the ball and spring model. Other arrangements of alloys were also
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considered and these also make it clear that the elastic energy will depend on the atomistic details
of the alloy.

II. ATOMISTIC ALLOY MODEL

FIG. 1: (Color Online) The schematic of the ball and spring model when the atom are located on the
reference configuration

We consider a binary alloy with lattice mismatch (say Si/Ge for ease of exposition) and use a
ball spring model on a simple square lattice in two dimensions with lattice spacing a with periodic
boundary conditions. The periodic domain is assumed to be a square domain of N × N lattice
sites. The atoms are connected by Hookean springs between nearest and next-nearest neighbors
with spring constants KL and KD, respectively. For simplicity and easy of calculation the spring
constants KL and KD are chosen to be independent of the type of bond (Si-Si, Ge-Ge or Ge-Si).
However for the Si/Ge system this is a reasonable assumption for the elastic constants for the two
species [24]. The displacement of an atom at site (`, j) from the reference configuration is denoted
(u`,j , v`,j). Each site on the lattice will be occupied by either a Si or Ge atom (see Fig. 1) and we
use the following indicator function to denote the atom type at site (`, j),

θ`,j =

{
1 if (`, j) if site contains a Ge atom
0 if (`, j) if site contains a Si atom.

The equilibrium Si-Si and Ge-Ge bond lengths are denoted as as and ag, whereas the bond length
between a Si and a Ge atom is taken to be 1

2 (as + ag). In this way the relative unstrained bond
length between atoms at sites (`+ n, j +m) and (`, j) is given by

f`+n,j+m = as − a+ asµ(θ`,j + θ`+n,j+m)/2, (3)

where

µ = (ag − as)/as. (4)
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The total elastic energy can then be written as

W = W (u, v, θ) =
1

2

N−1∑
`=0

N−1∑
j=0

(wL`,j + wD`,j). (5)

In this expression, the summand is the total elastic energy in springs connected to the atom at site
(`, j) where

wL`j =
KL

2

∑
n∈{1,−1}

(δu`+n,j)
2 + (δv`,j+n)2 and

wD`j =
KD

4

∑
n,m∈{−1,1}

(nδu`+n,j+m +mδv`+n,j+m)2,

and

δu`+n,j+m = u`+n,j+m − u`,j − f`+n,j+m
δv`+n,j+m = v`+n,j+m − v`,j − f`+n,j+m.

The model we choose is simple enough to be tractable but with the ability to incorporate the
discrete nature of the alloy, and to account for the microscopic arrangement of the atoms in an
alloy. In most models it is typically assumed that the alloy remains in mechanical equilibrium as it
evolves. This means that we need to evaluate the elastic energy, W , when the system is in mechanical
equilibrium. The equilibrium displacement field satisfies

∂W

∂u`,j
= 0 and

∂W

∂v`,j
= 0.

In other words

2KL(u`+1,j − 2u`,j + u`−1,j)

+ KD(u`+1,j+1 + u`−1,j+1 + u`+1,j−1 + u`−1,j−1 − 4u`,j)

+ KD(v`+1,j+1 + v`−1,j−1 − v`+1,j−1 − v`−1,j+1)

= µas [KL(θ`+1,j − θ`−1,j) +KD(θ`+1,j+1 + θ`+1,j−1 − θ`−1,j+1 − θ`−1,j−1)] (6)

and

2KL(v`,j+1 − 2v`,j + v`,j−1)

+ KD(v`+1,j+1 + v`−1,j+1 + v`+1,j−1 + v`−1,j−1 − 4v`,j)

+ KD(u`+1,j+1 + u`−1,j−1 − u`+1,j−1 − u`−1,j+1)

= µas [KL(θ`,j+1 − θ`,j−1) +KD(θ`+1,j+1 + θ`−1,j+1 − θ`+1,j−1 − θ`−1,j−1)] . (7)

It is easy to see from Eq. (5) that
∂2W

∂u2`,j
,
∂2W

∂v2`,j
> 0 and W → ∞ as u`,j , v`,j → ±∞ hence the

solution to Eq. (6) and Eq. (7) is the unique minimizer of the W . Later in this paper we shall
evaluate W when the displacement field satisfies Eqs. (6) and (7). However, now it is useful to look
at the continuum limit of these equations.

III. CONTINUUM LIMIT

For alloys, θ can vary on the scale of the lattice and cannot be used as a continuum variable.
Instead we appeal to a coarse-grained value:

θ̄`,j =
∑
`′,j′

AR(`− `′, j − j′)θ`′,j′ with
∑
`′,j′

AR = 1

where AR is an averaging kernel and R is a length scale over which the averaging takes place (e.g.
AR(`, j) = C exp[−(`2 + j2)/R2] where C−1 =

∑
`,j exp[−(`2 + j2)/R2]). Since the coarse-grained

variables are smooth functions of of the lattice site, we can introduce a smooth function Θ such that
θ̄`,j = Θ(a`, aj).



6

A. The Displacement Field

We apply the coarse-graining operation to the equations governing the displacement field (i.e.
Eqs. (6) and (7)). Since the equations of mechanical equilibrium are linear, it is clear that the
coarse-grained variables, (ū`,j , v̄`,j) satisfy the same equations as the atomistic system. However,
unlike their atomistic counterparts the coarse grained variables vary slowly over atomistic scales
such that ū`,j = U(a`, aj) and v̄`,j = V (a`, aj), where U and V are smooth functions. We can
consequently make use of approximations such as

ū`+1,j − 2ū`,j + ū`−1,j ≈ a2Uxx

to find that continuum variables satisfy the following equations

KLUxx +KD(Uxx + Uyy + 2Vxy) = (ag − as)(2KD +KL)Θx,
(8)

KLVyy +KD(Vxx + Vyy + 2Uxy) = (ag − as)(2KD +KL)Θy.

Therefore, continuum theory can predict the coarse-grained displacement field in terms of the
coarse-grained concentration field. Finally, we point out that for the case KL = 2KD the system
(8) corresponds to isotropic elasticity. This is seen by noting that the above equations represent
the constitutive relation between the stress and the strain and collecting the elasticity tensor (see
[10, 25]).

B. Continuum Elastic Energy

The elastic energy is a quadratic function of the displacement field and accordingly it is not a
simple matter to apply the coarse-graining operation to W and express the result in terms of the
coarse grained variables. Instead, what can be done is to use approximations such as

θ`+1,j − θ`,j ≈ aΘx (9)

and replace the atomistic value of θ by its continuum value, Θ. Given that the atomistic values are
not necessarily smooth functions of the lattice site, approximations of the type given by (9) could
be rather poor.

Nevertheless, if we apply this procedure to the atomistic energy (Eq. 5), we arrive at the following
continuum version of the elastic energy :

WC =
1

2

∫ [
(KD +KL)(S2

xx + S2
yy) + 2KDSxxSyy + 4KDS

2
xy

]
dxdy, (10)

where S = E − E0,

Ejk =
1

2

(
∂Uj
∂xk

+
∂Uk
∂xj

)
and

E0 =
1

a

(
as − a+ (ag − as)Θ 0
0 as − a+ (ag − as)Θ

)
.

We remark that E0 is sometimes called the stress free strain. It should be emphasized that Eq. (10)
is a commonly used model (e.g. Refs. [5–7]). In addition, the Euler-Lagrange equations for WC give
rise to the equations for continuum elasticity (8). By this we mean

δWC = 0 ⇒
2∑
k=1

∂

∂xk

∂WC

∂Uj,k
= 0

will yield (8).



7

By following the same approach as Cahn [9], we will compute the elastic energy of an alloy in
mechanical equilibrium for the isotropic case (KL = 2KD). We consider a periodic region of size
2π × 2π and we find

WC = W + W̃C ,

where

W = 4KD(as − a+ Θ0(ag − as))2(2π)2/a2,

and

W̃C =
4

3
KD

(µas
a

)2 ∫ ∫
(Θ(x, y)−Θ0)2 dxdy

where Θ0 = average value of Θ. We note that W is the “DC” contribution (Direct Current or

non-oscillating) to WC and W̃C is the contribution from the compositional variations. Notice that
by adjusting the lattice spacing a of the reference configuration we can make W = 0. This value
is a = as + Θ0(ag − as) and is sometimes called Vegard’s Law. An important conclusion from this
continuum formulation is that the elastic energy is zero for a homogenous alloy whose reference
lattice spacing satisfies Vegard’s Law.

IV. ELASTIC ENERGY IN THE ATOMISTIC CASE

It should be pointed out that here we are closely following the calculations of Cahn [9]. In this
section we apply his approach to discrete equations while he considered continuum equations.

Since we are in the periodic setting it is useful to expand various quantities in a discrete Fourier
series. For example

θ`,j =
1

N2

N−1∑
n=0

N−1∑
m=0

θ̂m,ne
iα(m`+nj) (11)

where α = 2π/N and θ̂m,n is the discrete Fourier transform of θ`,j . Furthermore, we will for now
restrict our calculations to the case KL = 2KD, in which case the continuum limit is isotropic.
Applying the discrete Fourier transform to (6) and (7) and solving for the transformed displacement
field we find

ûm,n =


0 n = m = 0

−2µasiθ̂m,n cos2(nα/2) sin(mα)

4− cos(mα)− cos(nα)− 2 cos(mα) cos(nα)
otherwise

(12)

and

v̂m,n =


0 n = m = 0

−2µasiθ̂m,n cos2(mα/2) sin(nα)

4− cos(mα)− cos(nα)− 2 cos(mα) cos(nα)
otherwise,

(13)

where ûm,n and v̂m,n are the discrete Fourier transforms of u`,j and v`,j , respectively.
Our goal is now to calculate the total elastic energy of the ball and spring model when the system

is in mechanical equilibrium. To that end, it is useful to define the average value of θ :

θ0 =

N−1∑
n=0

N−1∑
m=0

(m,n)6=(0,0)

θm,n.

Now it is worth noting that θ0 = θ̂0,0. In view of the two formulas above (12) and (13) it is apparent
that each component of the displacement field has mean zero. Therefore, in mechanical equilibrium
we have

W (u, v, θ) = W (0, 0, θ0) +W (u, v, θ − θ0) ≡W + W̃
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where W = N24KD(as − a + θ0(ag − as))2. The first term, W , represents the contribution to the

elastic energy if the material was of a uniform concentration. The second term, W̃ , results from the

compositional variations. We compute W̃ using Parseval’s formula combined with (12) and (13). A
lengthy calculation reveals

W̃ =
KD(asµ)2

N2

N−1∑
n=0

N−1∑
m=0

(m,n)6=(0,0)

G(αm,αn)|θ̂m,n|2 (14)

where

G(x, y) =
T (x, y)

8(4− cosx− cos y − 2 cosx cos y)2

and

T (x, y) = 196− 87[cosx+ cos y] + 4[cos 2x+ cos 2y] + cos 3x+ cos 3y

− 42[cos(x− y) + cos(x+ y)] + 2[cos(2x+ 2y) + cos(2x− 2y)]

+ 11[cos(2x+ y) + cos(x+ 2y) + cos(2x− y) + cos(x− 2y)]

+ cos(x− 3y) + cos(3x− y) + cos(x+ 3y) + cos(3x+ y).

Since G(2π − kx, ky) = G(kx, 2π − ky) = G(2π − kx, 2π − ky)=G(kx, ky) it is enough to consider
G(kx, ky) for 0 < kx ≤ π and 0 < ky ≤ π.

Notice that W̃ does not depend on a but W does. In fact we can relax our alloy by changing a:
If we pick a = as(1 + θ0µ) (Vegard’s law), then W = 0. For the remainder this value of a will be

used. Therefore the elastic energy of the relaxed alloy is W̃ .

FIG. 2: (Color Online) A plot of G(kx, ky) for the case KL = 2KD (KD = 1)

The dependence of W̃ on θ can be gleaned from Fig. 2. Note that W̃ is a weighted sum of the

G(kx, ky) with weights |θ̂|2. Different regions of the k-space represent different aspects of com-
position profiles. For example, an alloy that is finely intermixed on an atomic scale has weights

|θ̂|2 concentrated near (kx, ky) = (π, π), while for an alloy with variations on continuum length
scales the weights are concentrated near (kx, ky) = (0, 0). It therefore follows from Fig. 2 that
finely mixed alloys have more elastic energy than those that are segregated. Moving along from
(π, π) to (0, 0) corresponds to a coarsening patterns with checker board symmetry. The fact that
G(π, π)/G(0, 0) = 3/2 indicates that intermixing can significantly increase the elastic energy. Inter-
estingly, it also follows that fine line patterns (along kx = 0 or ky = 0 axis) have even less elastic
energy for the case where the constants KL and KD are related by KL = 2KD. Although these
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cases can be viewed as different regions of k-space, typical composition profiles would of course have
weights in all regions and no separation of scales. Thus, Fig. 2 also points to the difficulty relying on
formulas like Eq. (2), since it is clear that the elastic energy depends on the details of the atomistic
arrangement over the full range of length scales.

As mentioned above, the behavior near (kx, ky) = (0, 0) describes an alloy with variations on
continuum length scales and we note that

G(αx, αy) =
4

3
+

3x4 − 10x2y2 + 3y4

9(x2 + y2)
α2 +O(α4), (15)

which means the limit lim(kx,ky)→(0,0)G(kx, ky) is well defined and equal to 4
3 . This is consistent

with the assertion that the case KL = 2KD recovers isotropic elasticity. Furthermore if it assumed

that θ`,j is a continuum variable (i.e. |θ̂m,n| is strongly concentrated at the origin), then

lim
α→0

W̃ =
4kD(asµ)2

3N2

N−1∑
n=0

N−1∑
m=0

(m,n)6=(0,0)

|θ̂m,n|2

=
4

3
kD(asµ)2

N−1∑
`=0

N−1∑
j=0

(θ`,j − θ0)2. (16)

Therefore, the model is anisotropic on small scales and isotropic on large scales. The anisotropy of
ball and spring models on atomistic scales has been discussed in Refs. [17, 26].

A. Anisotropic Continuum Limit

We note that for KL 6= 2KD the continuum limit becomes anisotropic. It is well known (see [10]
page 1447) that in this case the function G(kx, ky) is a homogeneous function of order 0 near the
origin and lim(kx,ky)→(0,0)G(kx, ky) is not well defined giving rise to the cusp-like behavior near the
origin (see Figures 3 and 4).

FIG. 3: (Color Online) A plot of G(kx, ky) for KL = KD = 1

The nature of G makes it difficult to make claims about the relative amount of elastic energy in the
different scales for a wide range of values of KL and KD. However, the behavior along the diagonal
is relatively robust, as can be seen in Figure 5. In addition, we can establish that for arbitrary KL

and KD one has limα→0G(π, π)/G(α, α) = (KL + 4KD)/(KL + 2KD) > 1, which suggests that the
tendency for a finely mixed systems to have a greater elastic energy than a segregated one persists.
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FIG. 4: (Color Online) A plot of G(kx, ky) for KL = 3KD (KD = 1)

FIG. 5: (Color Online) A plot of G(k, k)/G(0, 0) vs k for different values of λ = KL/KD

B. Elastic Enthalpy of Mixing

If we compare Eqs. (14) and (16), it is evident that if one ignores the microscopic scales of the
concentration field (i.e. by only considering the Fourier modes near the origin) then the discrete
elastic energy is consistent with the continuum elastic energy. But more importantly the discrete
and continuum cases are different because the continuum elastic energy fails to account for the
contribution of the microscopic scales. The reason the coarse grained displacement field does not
suffer from this fate is that the microscopic strain fields average out. Since the energy is a quadratic
quantity, the microscopic contributions do not cancel when averaged.

As can be inferred by Tsao [8], atomistic variations of the alloy concentration lead to microscopic
strain whose contribution to the elastic energy can be referred to as the elastic contribution to the
enthalpy of mixing, H. Therefore, it follows from Eq. (14) that H is determined by both the direction
and wavelength of the Fourier modes of the microscopic concentration field. Furthermore, it appears
that H cannot be a function of the average concentration unless some simplifying approximations are
made. This can be done in one setting, namely if one assumes that the alloy is in local thermodynamic
equilibrium. In this case one has, in principle, H = H(Θ, T ). However, when the alloy is not in
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local thermodynamic equilibrium, as is the case in epitaxial growth or spinodal decomposition, then
H 6= H(Θ, T ), and then H will be determined by details at the atomistic scale. Unfortunately this
information is completely lost during coarse graining. This points to the difficulty of modeling elastic
energy using continuum theory.

FIG. 6: (Color Online) The figure on the left shows two microscopic arrangements that yield the same
continuum alloy concentration (shown on the right). The upper left hand figure shows a 1× 1 checkerboard
pattern whereas the lower one is a 2 × 2 pattern.

The following example is useful in elucidating some of the issues discussed above. Consider a
binary alloy arranged on a checker board pattern as shown in Fig. 6 (θ`,j = 1

2 (1 − (−1)`+j)). We
have chosen the lattice spacing of the reference configuration to be in accordance with Vegard’s
Law (a = 1

2 (as + ag)). Clearly then on a continuum scale the alloy can be considered homogeneous

Θ(x, y) = Θ0 with Θ0 = 1
2 . Consequently, the widely used continuum formulation (Eq. 1) predicts

that the elastic energy is zero. On the other hand, it is clear that there will be elastic energy in
the bonds due to fact that the atoms on this lattice do not correspond to their equilibrium bond
length. The continuum approximation ignores the microscopic stress fields. This is fine for the
coarse-grained displacement field as the microscopic fields average out. However, when computing
the energy the microscopic fields do not average out.

Now one could of course assert that the energy associated with the microscopic strain, calculated

above as W̃ in Eq. (14) is the enthalpic component H of the elastic energy and in many respects
it is. However, we will now argue that it cannot be simply characterized by the continuum value of
the concentration. This can be seen as follows: Suppose we now coarsen the checker board (see Fig.
6) so that the length scale is 2 atomistic units. Clearly on the continuum scale the alloy can still
be considered homogeneous and (Eq. 1) still predicts that the elastic energy is zero. However, if we
appeal to Fig. 2 we can infer that the elastic energy of the 2× 2 checker board will be smaller than
that of the 1×1 checker board, but the continuum value of the alloy concentration has not changed.
Therefore, we conclude that the elastic mixing enthalpy of a binary alloy cannot be characterized in
terms of the alloy concentration alone. Of course Fig. 2 makes this quite clear.
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FIG. 7: (Color Online) The atom arrangements for the density functional calculations. The figure on the
right shows the NC = 1 checkerboard pattern whereas the one on the left shows the NC = 64 pattern

V. DENSITY FUNCTIONAL THEORY

To explore the broader applicability of the ideas discussed above, we perform DFT calculations
for Ge/Si (with a zinc-blende lattice). All results presented here were obtained with the FHI-AIMS
code [27]. This is an all-electron full potential DFT code that uses numeric atom centered orbitals
as its basis set. We have carefully tested convergence of our results with respect to the basis set, and
the density of the (numerical) integration mesh, and have used parameters as they are implemented
in FHI-AIMS in the default setting “tight” [27]. We use GGA-PBE for the exchange-correlation
functional [28]. All calculations were done with supercells with periodic boundary conditions, and
the geometric configurations are fully relaxed.

Before we discuss the DFT results we note that one cannot simply repeat the calculation done in
the case of the ball and spring model. The reason is that DFT provides one with the total energy
for a given configuration, which has no clear separation between bond and elastic energy. However,
for Si or Ge bulk and Si-Ge in a perfect unstrained lattice the only contribution to the energy is
the chemical bond energy. If we assume that each atom forms exactly 4 bonds with its nearest
neighbors (which is reasonable for a zinc-blende structure), we can estimate the Si-Si, Ge-Ge, and
Si-Ge bond-strengths EBSi, E

B
Ge, and EBSiGe as follows: We calculate the energy of a bulk system with

Ntotal atoms, subtract the energy of Ntotal isolated atoms, and divide this number by 2Ntotal. In a
strained system, the elastic contribution Eel is defined as the difference between the total energy of
the strained system and the sum of all nearest neighbor bonds. This definition of Eel is consistent
with assuming that during the mechanical relaxation the bond energy remains the same while the
elastic energy changes and that the total energy is the sum of elastic and bond energies. All of our
calculations are at T = 0, so there are no entropic contributions.

TABLE I: Bond strengths EB (in eV) calculated with DFT.

lattice constant EB
Si EB

Ge EB
SiGe

1
2
(EB

Si + EB
Ge)

aSi 2.677 2.176 2.431 2.426

aSiGe 2.661 2.213 2.442 2.437

aGe 2.608 2.227 2.420 2.418

We calculated the bond energies for systems where all atoms are in a lattice with the optimized
lattice constants aSi, aGe, and aSiGe. The optimized lattice constants are calculated by optimizing
three different configurations. The first consists purely of Si atoms. The second purely of Ge atoms.
The third system used to calculate aSiGe consists of 50% Si and 50 % Ge arranged in an alternating
fashion so that all bonds in the zinc blend structure are Si-Ge bonds and are configurationally
equivalent to one another under periodic boundary conditions. Thus the uniform lattice spacing
of the optimized structure yields the aSiGe lattice spacing. The three different bond strengths are
calculated in a similar manner. The results are shown in table I. For all lattice constants we find
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that EBSi is stronger than EBGe, while EBSiGe is in-between. But a closer inspection of the numbers
reveals that EBSiGe is 2 to 5 meV stronger than the average of EBSi and EBGe for all lattice constants.
This implies that simple bond counting arguments predict that a perfectly intermixed Si/Ge system
is always preferred, regardless of whether the system has the lattice constant aSiGe, is compressed
to aSi, or is stretched to aGe.

Now we proceed to understand the system with elastic effects. For this we consider various
configurations of a Si0.5Ge0.5 alloy. We compare bulk alloy composition profiles that resemble a 3-
dimensional checkerboard, where each “checker-unit” consists of 1, 8, or 64 atoms of the same type
(i.e., all Si or all Ge) occupying a cubic region in space (see Fig. 2). This corresponds to moving
along the diagonal for G (cf. Fig. 2). We do this by placing the configuration in a zinc blend lattice
with reference lattice constant aSi or aSiGe and then optimizing the structure.

Table II summarizes the DFT results. ∆Etot is the difference in the total energy ( Etot that
includes bond and elastic energies) for systems with checker units that consist of NC atoms, and a
checkerboard with NC = 1. For a system with the lattice constant aSi (which is most relevant for
Ge deposition on Si) we find that the checkerboard with NC = 8 is preferred by 1 meV per atom
(over a system with NC = 1), and that one with NC = 64 is preferred by 4 meV per atom. For the
lattice constant aSiGe, the coarser system with NC = 64 is also preferred, but only by 1 meV.

The numbers for ∆Eel(NC) = Eel(NC) − Eel(NC = 1) represent the change in energy per atom
after correcting for the fact that simple bond counting arguments favor intermixing and should
be considered the true elastic contribution due to coarsening. For example, for a system with
NC = 8, half of the bonds are converted from being Si-Ge bonds to being either Si-Si or Ge-
Ge bonds, and one can show that ∆Eel = ∆Etot − 1/2EBSi − 1/2EBGe + EBSiGe. Since the average
of the Si-Si and Ge-Ge bond is 5 meV weaker than the Si-Ge bond (cf. table I), intermixing is
preferred by 5 meV per atom for this system. Similarly, for a system with NC = 64, ∆Eel =
∆Etot − 2/3EBSi − 2/3EBGe + 4/3EBSiGe, and intermixing is preferred by 7 meV per atom. ∆Eel then
represents the fact that elastic contributions have to overcome this favoring of intermixing. The
results confirm that elastic effects favor segregation.

We further note that the numbers given in table I and II are real numbers. The units are in eV.
The accuracy of the DFT calculations is at best of the order of meV. Therefore, we have rounded the
results to 3 significant digits past the decimal point (i.e., meV). In Table 2 we then report differences,
and these are given in meV.

TABLE II: ∆Etot and ∆Eel for different values of NC . Energy changes (in meV) are with respect to a
system with NC = 1 (a perfect zinc-blende structure).

NC ∆Etot(aSi) ∆Etot(aSiGe) ∆Eel(aSi) ∆Eel(aSiGe)

1 0 0

8 -1 1 -6 -4

64 -4 -1 -11 -8

In addition we have done DFT calculations where we considered Si0.5Ge0.5 systems with alter-
nating layers of Si and Ge. These layers are periodic in 2 dimensions and have layer thicknesses 1
and 2. The layers are oriented along the (100) direction, and consist of a bi-layer of Si and Ge. For
these systems we also find that a thicker layer is preferred by 1 meV (2 meV) when the system has
the lattice constant aSi (aSiGe). This trend continues for thicker layers (but additional changes are
less pronounced).

VI. HETEROEPITAXIAL THIN FILMS

We now consider a strained flat film of thickness T of pure Ge on a semi-infinite substrate of pure
Si. This case has a free surface unlike the periodic cases discussed above. According to continuum
theory, the total elastic energy will be

W = Cµ2AT,
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where C depends on the elastic properties and A is the area of the film. Now suppose that Si and
Ge mix perfectly in such a way that the film has a fraction θ0 of Ge. The film now has a thickness
T/θ0 and an effective misfit of µ(θ0) = θ0µ [7]. By continuum theory the total elastic energy is

W (θ0) = θ0W.

FIG. 8: (Color Online) The eight atom checker board pattern. There are 64 (8 × 8) atoms in each checker
board.

TABLE III: Normalized Total elastic energy

1 atom checker board 1.241

2 atom checker board 1.050

4 atom checker board 0.976

8 atom checker board 0.947

random arrangement 1.012

continuum theory 0.500

Therefore, according to continuum theory, the total elastic energy is reduced by intermixing. In
view of the previous discussion this is not expected to be true for the ball and spring model. To
that end, we performed a numerical calculation using the method in Ref. [29] to calculate the
elastic energy of the ball and spring with KL = 2KD and µ = .04. The film is 40 monolayers thick
and consists of an equal number of Si and Ge atoms. We considered 4 cases in which the atoms are
arranged in checker board patterns, where the only difference is that the scale of the pattern changes.
On the finest scale, each square consists of exactly one atom. For a reference state we computed the
total elastic energy of a thin film with 20 monolayers of pure Ge on a substrate of pure Si. Note
that the total number of Ge atoms is the same in each of the 4 cases and in the reference state. We
note that the reference configuration corresponds to θ0 = 1 with a film thickness of 20 layers and all
the checker board patterns in the continuum model are equivalent to θ0 = 0.5 with a film thickness
of 40 layers. The normalized elastic energy is the total elastic energy divided by the elastic energy
of the reference state. The results are summarized in table III. As noted above for the continuum
theory the reference configuration has lower elastic energy. However when microscopic segregation is
accounted for in the discrete elastic model a segregated configuration is seen to lower elastic energy
over both the reference state and a random mixture of θ0 = 0.5 (the continuum equivalent). It is
in particular worth noting that the elastic energy predicted for the continuum case is a factor of
two smaller than the discrete case. This is due to the fact that the discrete alloys have longitudinal
variations in the concentration profile and hence have an induced strain field in the substrate that
decays slowly. This slow decay of the strain field particularly in the case of random mixtures was
observed previously in [29] for the ball and spring model. The homogeneous continuum case however
has zero strain in the substrate leading to a significantly lower elastic energy in comparison to the
random mixture.

It is also clear that the total elastic energy significantly increases as the length scale of the pattern
decreases. This indicates that intermixing actually increases the elastic energy for this ball and
spring model in the setting of strain thin films.
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VII. CONCLUSIONS

We have considered the behavior of the elastic energy of the binary alloys using both an atomistic
model (ball and spring) and density-functional theory. Our ball and spring calculation indicates
that finely mixed alloys have more elastic energy than those that are more coarsely mixed. This
is due to the presence of microscopic strain. The more finely mixed the alloy becomes the more
difficult it is for it to elastically relax (the system is frustrated). The important consequence of these
observations is that intermixing will actually increase the strain energy of alloy and not lower it as
predicted by continuum theories without enthalpic contributions. One may speculate that this is an
artifact of the ball and spring model but calculations with DFT support our conclusions.

We mention that some of the difficulties faced using continuum models can be somewhat mitigated
by including an elastic component to the enthalpy of mixing. However, this would be quite challeng-
ing since we have shown that the elastic energy of an alloy is in fact dependent on the microscopic
rearrangements of the atoms – information typically lost in continuum models. In many applica-
tions the atomic arrangement is constantly changing both its scale and the degree of anisotropy,
making it difficult to assess the elastic energy in terms of average values of the composition. Simply
put, the elastic energy of a material cannot be determined by the alloy concentration alone - much
more information is needed. One possibility currently being explored is the use of something like an
H-measure but with length scale information.
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