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We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals
equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev.
E 92, 033019 (2015)] is extended for the particular case of three degrees of freedom. We assume
heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction
waves describing the evolution of the foil display plateaus in density and temperature due to a
phase transition from the single phase to the two-phase regime. The hydrodynamic equations are
expressed in a dimensionless form and the solutions form a set of universal curves, depending on
a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by
calculating how the plateau length, density, pressure, temperature, velocity, internal energy and
sound speed vary with dimensionless initial entropy.

I. INTRODUCTION

The Warm Dense Matter (WDM) regime is reached
when the density and the temperature are approximately
in the range of 0.1 to 10 times the solid density, and 0.01
eV to 10 eV, extended up to 50 eV by some authors[1, 2].
WDM conditions can occur naturally [3] or artificially,
e.g., by heating thin foils with intense lasers[3–5] or ion
beams[5–8]. When the heating time is much shorter than
the hydrodynamic time and the energy deposition is vol-
umetric, the foils can be assumed first to be uniformly
and instantaneously heated, and then to expand from a
high temperature solid or liquid state to a lower temper-
ature vapor state. We focus our study near the critical
point - the point beyond which there is no distinction
between phases. The boundary between the vapor phase
and the liquid phase as a function of density and tem-
perature is still under investigation for many materials,
such as refractory metals[9], and, for some materials, is
in the WDM regime.

In previous experiments under similar settings, con-
stant density plateaus had been inferred theoretically[10–
15]. In Ref. [16], such plateaus of constant density (and
pressure, temperature, energy density, velocity) during
the phase transition from a single-phase to the two-
phase regime are found in van der Waals (VDW) flu-
ids with an arbitrary number of degrees of freedom. In
the present paper, we extend the semi-analytical formal-
ism of Ref. [16] for the specific case of a VDW equa-
tion of state (EOS) with three degrees of freedom sup-
plemented with the Maxwell construction: we use Rie-
mann’s solution[17, 18] in 1D to describe the dynamics
of the heated target, modeled by a semi-infinite slab of
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material that initially extends from z = −∞ to z = 0.
This effectively restricts the scope of this paper to the
early stage of the foil expansion before the rarefaction
waves from both sides of a given thin foil meet, coined as
the simple wave regime in Ref. [19]. In addition to its
mathematical simplicity, the chosen EOS displays two-
phase behavior, and has successfully modeled various real
condensed matter systems qualitatively, e.g. the struc-
ture and properties of molecular liquids, liquid metals
and crystals, their freezing and melting, and their critical
behaviors[20]. With three degrees of freedom, the VDW
EOS also corresponds to a monatomic gas at low density
and does not yield rarefaction shockwaves[16, 18, 21–23].
Nevertheless, the quantitative application of the VDW
EOS must be checked and several directly measurable
quantities can help us confirm, improve or reject the
VDW model.

The solutions of our model equations form a set of
universal curves, depending on a single parameter: the
dimensionless initial entropy. We characterizes the evo-
lution of plateaus for various initial entropies, and our
semi-analytic results are numerically tested against the
1D planar Lagrangian hydrodynamic code DISH[24].
These studies are useful for developing a qualitative un-
derstanding of heated foils expanding through a phase
change, as well as for benchmarking codes that encom-
pass more realistic EOS. In order to make a concrete
connection to the physical values of density and tem-
perature, we describe an algorithm in Appendix A that
links the dimensionless quantities characterizing the rar-
efaction waves (e.g., the length of plateaus and ratios of
initial density to plateau density) to physical variables.

mailto:albert.yuen@berkeley.edu
mailto:barnard1@llnl.gov


2

II. HYDRODYNAMICS OF THE VAN DER
WAALS FLUID

A. Equation of state: the Van der Waals model

The fluid is modeled by the VDW EOS with three de-
grees of freedom[25], in contrast to the arbitrary number
of degrees of freedom in Ref. [16], meaning that only the
rarefaction waves of case 3 and 6 of Ref. [16] out of the
eight possible cases will be encountered:

p =
ρkT

Amamu(1− bρ)
− aρ2, (1a)

s =
k

Amamu
ln

(
Amamu

1− bρ
ρλ3

)
, (1b)

c2s =
∂p

∂ρ

∣∣∣∣
s

=
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3

kT

Amamu

1

(1− bρ)2
− 2aρ, (1c)

ε =
3

2

kT

Amamu
− aρ, (1d)

where p, ρ, T , s and cs are respectively the pressure, den-
sity, temperature, entropy and sound speed of the fluid.
A is the mass number of the atomic species of the fluid,
k the Boltzmann constant, mamu the atomic mass unit.
λ = h/(2πAmamukT )1/2 is the de Broglie wavelength. a
and b are the VDW constants of the EOS[26, 27]. Fol-
lowing Ref. [16], the problem is treated more generally
by scaling all quantities by the critical or characteristic
parameters of a given material under investigation, and
are denoted with a tilde ˜ (e.g ρ̃). The critical density
ρc, pressure pc and temperature Tc are

ρc =
1

3b
, pc =

1

27

a

b2
and

kTc
Amamu

=
8

27

a

b
, (2)

and the characteristic sound speed, energy density and
entropy are c2s,0 = pc/ρc, εc = ε(ρc, Tc) = a/(9b) and
sc = s(ρc, Tc).

From Eqs. (1) and (2), the dimensionless VDW equa-
tions yield

p̃ =
p

pc
= 8

ρ̃T̃

3− ρ̃
− 3ρ̃2, (3a)

s̃ =
s− sc

k/(Amamu)
= ln

(
3− ρ̃

2ρ̃
T̃ 3/2

)
, (3b)

c̃2s =
c2s
c2s,0

= 40
T̃

(3− ρ̃)2
− 6ρ̃, (3c)

ε̃ =
ε

εc
= 4T̃ − 3ρ̃. (3d)

For isotherms T̃ < 1, the regime of hydrodynamical
instability where ∂p̃/∂ρ̃|T̃ < 0 is assumed to be in equi-
librium state using the Maxwell construction[28].

B. Hydrodynamics and dimensionless solutions

In Ref. [16], and following Ref. [17, 18], assuming a neu-
tral and non-viscous fluid without mass source or sink,
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FIG. 1. (Color online) (ρ̃, T̃ ) diagram of isentropic ex-
pansions. The grey dashed curve represents the Maxwell-
constructed binodal. The full lines are isentropes, all starting
from ρ̃ = 2.7 and initial temperature T̃0 = 1.8, 3.5, 6.8, 13
and 26, representing entropies s̃0 = −2 (dark blue), −1 (light
blue), 0 (black), 1 (light brown) and 2 (dark brown).

it was shown that the equations governing the dynamics
of a 1D Eulerian fluid in Cartesian coordinates at time
t and axial coordinate z can be transformed using the
self-similar variable ξ = z/t and the relevant asymptotic
conditions. Scaled by the characteristic parameters, this
yields the dimensionless hydrodynamical equation

ξ̃(ρ̃) = −Ĩ(ρ̃)− c̃s(ρ̃). (4)

Here, ξ̃(ρ̃) = ξ(ρ)/cs,0, Ĩ(ρ̃) = I(ρ)/cs,0 and c̃s(ρ̃) =

cs(ρ)/cs,0 where I(ρ) =
∫ ρ
ρ0

cs(ρ
′)

ρ′ dρ′. Eq. (4) is solved for

the isentropes s̃0 = −2, −1, 0, 1 and 2 at initial density
ρ̃ = 2.7. Following Eq. (3b), this is equivalent to initial

temperatures T̃0 = 1.8, 3.5, 6.8, 13 and 26. These isen-
tropes in the (ρ̃, T̃ ) diagram are displayed in Fig. 1. We
can distinguish two types of rarefaction waves: If s̃0 ≤ 0,
the fluid enters the two-phase regime from a liquid state
(referred as case 3 in Ref. [16]). If s̃0 ≥ 0, the fluid en-
ters the two-phase regime from a gaseous state (referred
as case 6 in Ref. [16]). The density, pressure, tempera-
ture, fluid velocity, fluid mass energy and sound speed
profiles as a function of ξ̃ are solved semi-analytically us-
ing Mathematica[29] and compared numerically against
the 1D planar Lagrangian hydrodynamic code DISH[24].
The semi-analytical and numerical results almost per-
fectly overlap, and are plotted in Fig. 2 (with an ex-
panded version in Fig. 3). Except for the sound speed
profile, the profiles display plateaus whose length are ex-
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clusively function of the s̃0. This is not surprising as
the plateaus arise precisely because of the discontinu-
ity of the sound speed between its value c̃+s,b = c̃s(ρ̃

+
b )

at the vicinity of the binodal in the single-phase regime
and c̃−s,b = c̃s(ρ̃

−
b ) at the vicinity of the binodal in the

two-phase regime. Here, the variables with subscript
“b” are their values at the binodal. This discontinuity is
due to the Maxwell construction (∂p̃/∂ρ̃|T̃ is no longer a
smooth function of ρ̃ at ρ̃ = ρ̃b) and, from Eq. (4), yields

∆ξ̃b = c̃+s,b − c̃
−
s,b. A graphical depiction of the disconti-

nuity of the sound speed as a function of s̃0 is shown in
Fig. 4. An interesting feature of the isentropic curves in
Figs. 2 and 3 is the sole dependency of the shape of these
curves on s̃0, and that, in addition to this property, the
values of the parameters at the binodal draw a continuous
function of s̃0 (except for c̃s, as previously mentioned),
as shown in Fig. 5. This property can also be graphically
observed in the (ρ̃,T̃ ) diagram in Fig. 1 when isentropic
curves cross the Maxwell-constructed binodal: increasing
the initial dimensionless entropy s̃0 from a negative value
means that, at the interception point, the density ρ̃b de-
creases and the temperature T̃b, at first, increase. These
trends continue until s̃0 = 0 is reached, i.e. at the critical
point. Further increasing s̃0 further decreases ρ̃b but now
also decreases T̃b along the binodal. The evolution of the
pressure at the binodal p̃b parameterized by s̃0 is similar
to the evolution of T̃b, also with a maximum occurring at
the critical point. The internal energy density ε̃b, which
includes a potential energy term in addition to the kinetic
energy (temperature) term, maximizes at higher entropy
than s̃0 = 0, i.e. lower density than the critical density
ρ̃ = 1. The velocity at the binodal ṽb (and hence the ve-
locity of the plateau region when it exists) monotonically

increases as s̃0 increases. The length of the plateau ∆ξ̃b
monotonically decreases to 0 with increasing s̃0. Heuris-
tically, the sound speed in the single phase at the vicinity
of the binodal, denoted c̃+s,b, gets larger as s̃0 decreases

(getting closer to the ρ̃ = 3 limit which represents the
upper limit of the density for a VDW fluid) whereas the
sound speed in the two phase regime at the vicinity of
the binodal, denoted c̃−s,b, gets smaller, since the isobars
are flatter, and the isentropic curves are relatively shal-
low. The difference in sound speed should be greatest
at low entropy (as can be seen from fig. 5), and there-

fore ∆ξ̃b should decrease with increasing s̃0, meaning the
widest plateaus ∆ξ̃b will be observed at the lowest initial
entropy.

III. DISCUSSION

This analysis is applicable to any VDW fluid (here,
with f = 3 degrees of freedom) as the solutions can be
scaled back to dimensional quantities using the appropri-
ate A, a and b that characterize a given chemical element.
While all equations of state yield a self-similar profile,
only ”cubic” EOS, i.e. when the density expressed as a
function of pressure and temperature is the solution of a

cubic equation in ρ , yield a single set of dimensionless
curves that depends on only one free parameter, here the
initial dimensionless entropy s̃0. A similar characteriza-
tion of trends could be carried out for any specific value
of f .

While such a complete solution set to the problem
should not necessarily be directly applied to any real
specific material, this can lead to insights that are not
obtainable when non-idealizations are included in the
problem (e.g. ionizations or geometrical effects). Qual-
itative trends - e.g., higher initial temperatures results
in shorter plateau regions - can be obtained from our
model. This analysis also allows benchmarking multi-
dimensional fluid codes with more elaborate (but some-
times less intuitive) EOS. We emphasize that our method
of obtaining the initial and critical parameters, should
be used for determining the parameters to be used in the
model when comparing with any real material, but not
necessarily as an absolute way of inferring the critical
point in a particular experiment.

In addition, certain physical quantities can be ob-
tained directly from these measurements, independent
of the assumed EOS. For example, ∆ξb = ∆cs,b where
∆cs,b = cs(ρ

+
b ) − cs(ρ

−
b ) is the difference between the

sound speed in the single phase and in the two-phase
regime at the vicinity of the binodal. Similarly, measur-
ing the extent of ξ̃ in the single phase, ξ(ρ+b ) − ξ(ρ0) =

cs(ρ0) − cs(ρ
+
b ) +

∫ ρb
ρ0
cs(ρ

′)/ρ′ dρ′ , gives some indirect

information about the sound speed in the single phase.
Measurements of ρb directly for various initial temper-
atures allows one to map out the binodal and find the
critical density ρc (e.g., at the maximum of ρb versus ini-
tial temperature). Also, as shown in Ref.[30], the sound
speed as a function of position and density can be in-
ferred from a line integral of the density from a position
z0 with a known sound speed cs(ρ0) to a particular point
z in question as cs = −(

∫ z
z0
ρ dz)/(ρt) + ρ0cs(ρ0)/ρ. Note

that the presence of plateaus in density indicates that
there are discontinuities in the sound speed so care must
be taken so that integrations are not done across discon-
tinuities. From p(z) = p0 +

∫ z
z0
c2s(∂p/∂z) dz where z0 is

a position with a known sound speed and pressure, the
pressure is thus directly inferred on an isentrope (assum-
ing the data is precise enough to compute the integrals).

It is hoped that having specific solutions to the hy-
drodynamic equations for a specific EOS will lend to a
greater understanding of the behaviors of expanding foils
with a more complex EOS.
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FIG. 2. (Color online) The isentropes from Fig. 1 are represented and follow the same color notation: As a function of ξ̃, (a)

fluid density profile ρ̃, (b) fluid pressure profile p̃, (c) fluid temperature profile T̃ , (d) fluid energy density profile ε̃, (e) fluid
velocity profile ṽ and (f) fluid sound speed profile c̃s (note the discontinuity of the sound speed at the binodal). In each plot,
an initial density ρ̃0 = 2.7 is assumed for practical reasons, but each curve can in principle be extended to the left, reaching
an asymptotic value of 3. The dots represent the numerical calculations using the 1D planar Lagrangian hydrodynamic code
DISH. A expanded representation of this figure can be found in Fig. 3
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Appendix A: ALGORITHM DETERMINING THE
CRITICAL AND INITIAL PARAMETERS

We developed an algorithm to determine the critical
and initial parameters (three unknowns: ρc, Tc and T0)
from the measurement of four quantities (ρ0, ρb, the

length in ξ̃ of the plateau at the binodal ∆ξb, the length
of the fluid in the dense single phase ∆ξd) obtained from
a single density profile ρ(z) at a certain time t of an
isentropically expanding fluid of known mass number A.
Measurement of multiple profiles provides a redundant
check on the applicability of the VDW model to the fluid
under investigation and/or better accuracy in the un-
knowns to be determined. Similar algorithm can be eas-
ily developed for a single pressure, temperature, energy
density or velocity profile.

A density profile ρ(z) for a time t can be readily trans-
formed into a density profile ρ(ξ) of the self-similar vari-
able ξ = z/t. From the ρ(ξ) profile, we extract the four
input parameters for our algorithm: ρ0, ρb, ∆ξb = ξ2−ξ1
and ∆ξd = ξ1 − ξ0 where ξ0 = ξ(ρ0), ξ1 = ξ(ρ+b ),

ξ2 = ξ(ρ−b ).

The density profiles in the (ρ, ξ) plane and in the (ρ̃, ξ̃)
plane differ only by a multiplying factor in ξ and a multi-
plying factor in ρ such that ρ = ρ̃ρc and ξ = ξ̃cs,0. Those
are important features that yield the following properties:

• A given density profile in the (ρ, ξ) plane is asso-
ciated to a unique dimensionless density profile in
the (ρ̃, ξ̃) plane, and vice versa.

• A point A(ρA, ξA) in the (ρ, ξ) plane possesses a

unique image Ã(ρ̃Ã, ξ̃Ã) in the (ρ̃, ξ̃) plane, and vice
versa.

• If A, B, C, D are points in the (ρ, ξ) plane,

and Ã, B̃, C̃, D̃ their images in the (ρ̃, ξ̃) plane,

the following ratios are conserved: ρA
ρB

=
ρ̃Ã
ρ̃B̃

and

ξA−ξB
ξC−ξD =

ξ̃Ã−ξ̃B̃
ξ̃C̃−ξ̃D̃

.

A dimensionless density profile is therefore an image
of a dimensional density profile if and only if they have
the same ratios

Rρ =
ρb
ρ0

=
ρ̃b
ρ̃0

and Rξ =
∆ξb
∆ξd

=
∆ξ̃b

∆ξ̃d
. (A1)

Fig. 5 shows that ρ̃b and ∆ξ̃b are functions of only s̃0,
and ∆ξ̃d is a function of only s̃0 and ρ̃0. This implies
that Rρ and Rξ are both functions only of s̃0 and ρ̃0. We
can therefore trace curves of constant Rξ and Rρ in the
(ρ̃0,s̃0) space as shown in Fig. 6.

The algorithm decomposes into seven steps:

1. Fetch one (ρ, z) profile of hydrodynamical expan-
sion at a given t.

2. Transform the (ρ, z) profile into a (ρ, ξ) profile using
the self-similar parameters ξ = z/t and store ρ0, ρb,
∆ξd and ∆ξb.

3. Compute the ratios Rρ and Rξ.

4. Find ρ̃0 and s̃0 at the intersection of the Rρ and Rξ
curves in the (ρ̃0,s̃0) diagram (see Fig. 6).

5. Extract ∆ξ̃b from Fig. 5.

6. Compute the critical density

ρc = ρ0/ρ̃0, (A2)

the critical temperature

kTc =
8

3

(
∆ξb

∆ξ̃b

)2

Amamu. (A3)

7. Compute the initial temperature

kT0 = kTc

(
2ρ̃0

3− ρ̃0
es̃0
) 2

3

. (A4)
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FIG. 5. (Color online) For each value of s̃0 can be associated at the binodal a unique value of (a) fluid density ρ̃b, (b) fluid

pressure p̃b, (c) fluid temperature T̃b, (d) fluid energy density ε̃b, (e) fluid velocity ṽb and (f) plateau in ξ, denoted as ∆ξ̃b.
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FIG. 6. (Color online) In the (s̃0,ρ̃0) diagram, we traced the
curves of constant ratios Rρ = 0.89, 0.6, 0.2, 0.02, 0.002 and
Rξ = 0.45, 0.1, 0.01, 0.001. A given Rρ curve intersects with
a given Rξ curve only once. The blue area is the space where
the fluid is already in the two-phase regime at the initial point.
The curves Rρ = 0.89 and Rξ = 0.45, found in Appendix B,
intersect at s̃0 = −3.01 and ρ̃0 = 2.70, represented by the
black dot point.

Appendix B: TEST OF THE ALGORITHM

We assume that we are provided a single density profile
as in Fig. 7, recorded at t = 631 ps after the beginning
of the expansion caused by a rarefaction wave. We have
generated this profile using the DISH code. We suppose
that what is known is that EOS is a standard VDW EOS
with the atomic mass number A = 26.98.

We can easily transform the ρ(z) profile of Fig. 7 into
a ξ(z) profile and we can extract

ρ0 = 2.18 g.cm−3 and ρb = 1.93 g.cm−3 (B1)

as well as

∆ξb = 7.2×103 m.s−1 and ∆ξd = 1.6×104 m.s−1. (B2)

Their ratios from Eq. (A1) can therefore be readily com-

puted:

Rρ = 0.89 and Rξ = 0.45. (B3)

Using Fig. 6, the corresponding dimensionless density
and entropy of the isentropic expansion associated to the
rarefaction waves are

ρ̃0 = 2.70 and s̃0 = −3.01. (B4)
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FIG. 7. (Color online) A single density profile generated by
the DISH code to test the algorithm of Appendix A. The
input parameters are revealed in the end of Appendix B to
determine how accurate the algorithm is.

For s̃0 = −3.01, we extract ∆ξ̃ = 6.75 from Fig. 5, and
therefore, Eqs. (A2), (A3) and (A4) yield:

ρc = 0.80 g.cm−3, Tc = 0.87 eV, and T0 = 0.81 eV. (B5)

In order to produce Fig. 7 with the DISH code, we en-
tered as input the critical density ρc,input = 0.80 g.cm−3,
the critical temperature Tc,input = 0.90 eV and the ini-
tial temperature T0,input = 0.84 eV. This represents a
negligible error for the density calculations, and an error
of 4% or less for the temperature calculations, mostly at-
tributed to finite difference errors in the DISH code when
generating Fig. 7.
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