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Hydrophobic PMMA colloidal particles, when dispersed in oil with a relatively high dielectric
constant, can become highly charged. In the presence of an interface with a conducting aqueous
phase, image charge effects lead to strong binding of colloidal particles to the interface, even though
the particles are wetted very little by the aqueous phase. In this paper, we study both the behavior of
individual colloidal particles as they approach the interface, and the interactions between particles
that are already interfacially bound. We demonstrate that using particles which are minimally
wetted by the aqueous phase allows us to isolate and study those interactions which are due solely
to charging of the particle surface in oil. Finally, we show that these interactions can be understood
by a simple image-charge model in which the particle charge q is the sole fitting parameter.

I. INTRODUCTION

Understanding the behavior of colloidal particles at
fluid interfaces is a long-standing [1] and actively studied
problem in soft condensed matter physics [2–5]. Exten-
sive experimental and theoretical work has been carried
out on interactions between particles that are partially
wetted by both fluids, that is, systems where the equilib-
rium contact angle θC falls in the range 0◦ < θC < 180◦.
As noted by Pieranski [6], the presence of a fluid inter-
face can lead to a charge asymmetry in the vicinity of
each wetted particle, and hence to interactions which are
dipolar in form. Indeed, the r−4 force law characteris-
tic of dipole-dipole repulsion has been observed in many
experiments [7–9].

However, various aspects of the interactions between
interfacial particles are still not well-understood [10]. For
instance, interfacial colloids may form repulsive crystals
or fractal aggregates [11], or may self-assemble into more
complex mesoscopic structures [12]. The interactions re-
sponsible for this collective behavior are typically very

sensitive to the protocol used to prepare the samples
[13, 14], are highly non-uniform [15], and are strongly
time-dependent [14].

To explain these complicated interactions, different au-
thors have proposed various modifications or extensions
of Pieranski’s simple model. These include mechanisms
for interparticle attraction, such as from inhomogenous
charge distribution on the particle surface [16], and inter-
particle repulsion, for example by charging of the particle
surface in oil [14, 17]. Finite-ion-size effects in the aque-
ous phase have been proposed to explain the anomalous
dependence of the interparticle force on salt concentra-
tion [18], while irregular pinning of the contact line on
the colloid surface introduces anisotropic capillary forces
between particles [19, 20]. Moreover, since all these ef-
fects can in principle occur at the same time in the same
sample, it is difficult to disentangle them.

In this paper, we report measurements of the interac-
tions between colloidal spheres at an oil/aqueous phase
interface in a system with two useful properties. First,
the spheres are embedded almost entirely in the oil phase
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FIG. 1. (Color online) (A) Once bound to the interface, non-
wetting colloids repel electrostatically. (B) Optical micro-
graphs of a single run of an experiment to probe the repulsive
force between pairs of interfacial colloids, each with a diam-
eter d = 1.1 µm. (i) & (ii) Two interfacial particles, more
than 20 µm away from any others, are identified using a par-
ticle tracking algorithm, and (iii) automatically dragged to
a pre-assigned location using laser tweezers. (iv) The par-
ticles are released from the tweezers, and move freely along
the interface. Their trajectores (shown in red) are recorded
throughout.

and are wetted very little, or not at all, by the aqueous
phase. Second, the oil has a dielectric constant which is
large compared to that of typical hydrocarbon oils, and
so can harbor mobile charges. These properties allow
us to isolate and explore how the interparticle interac-
tions are influenced by electrostatic charges on the par-
ticles’ surfaces. Similar systems have been studied pre-
viously [21], particularly for the insights they offer into
the proliferation and dynamics of topological defects in
two-dimensional curved spaces [22]. By elucidating the
nature of the interactions in this system, we also hope to
cast new light on these phenomena.

We study two different aspects of the behavior of col-
loids in this system: the approach and binding of indi-
vidual particles to the oil/aqueous phase interface, and
the repulsive force between interfacially bound colloids.
We show that both sets of observations can be quantita-
tively described by a simple electrostatic model in which
the aqueous phase plays the role of a conducting sub-
strate, and the particle charge q is the only adjustable
parameter. This model is shown schematically in Fig.
1(A).

II. MATERIALS

Our experimental system is composed of poly(methyl
methacrylate) (PMMA) spheres, dispersed in oil, in

the vicinity of a glycerol/water mixture (“the aqueous
phase”).

1. Preparation of Glassware & Sample Chambers

The glass we use to store the particles and to construct
sample chambers is sonicated for 10 s in 5 wt % Contrad
70 detergent, followed by sequential rinsing in de-ionized
water, acetone and isopropanol. The glass is then blown
dry with an N2 sprayer and placed in an oven at 70 ◦C for
at least 15 min prior to use. We note the following excep-
tion: the sample chamber we use in the experiment de-
scribed in Section V B consists of a glass capillary tube of
internal dimensions 100 µm × 2 mm × 5 cm (VitroTubes)
which is ultrasonicated in Millipore water for 10 s, and fi-
nally dried in an oven at 70 ◦C for 2 h. Where necessary,
we use a glycerol buffer phase to ensure that the oil never
comes into contact with the Norland optical adhesive we
use to seal the samples.

2. Fluid Phases

The aqueous phase consists of 10 mM NaCl in a 70 wt %
glycerol solution, while the oil phase consists of a 5:3:2
v/v mixture of cyclohexyl bromide (CHB), hexane and
dodecane. To prevent ionic contamination of the oil
phase, we filter and store it according to the protocols
described in Refs. [23] and [21]. Using the formula given
in [24], we estimate that this oil has a relative dielec-
tric constant εr = 4.2, which is much lower than water
(εr ≈ 80), but significantly higher than alkanes such as
decane (εr ≈ 2). Theoretical estimates [25] indicate that
an oil with εr = 4, in contact with a water reservoir, will
reach an equilibrium ionic concentration with a Debye
screening length λD of approximately 50 µm, which is far
greater than the length scales probed in our experiments.

3. Colloidal Particles

The PMMA microparticles are sterically stabilized
with covalently bound poly(12-hydroxystearic acid) [27].
Such particles have a surface charge that might be caused
by adsorption of positively charged species resulting from
the decomposition of CHB [23], chemical coupling of an
amine catalyst during particle synthesis [28], or some
combination of these mechanisms. In some of our experi-
ments, we use spheres that are fluorescently labeled with
absorbed rhodamine 6G dye [29]. We find that dyeing
the particles does not affect their measured interactions.
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FIG. 2. (Color online) Horizontal and vertical slices of a con-
focal micrograph of a single PMMA sphere electrostatically
bound to the neck of a capillary bridge droplet. Top Left:
Schematic of the geometry of the particle and interface. The
curvature of the capillary bridge is exaggerated for clarity.
Main Figure: The dashed white curves show the result of an
edge-finding routine designed to measure the contact angle.

For this particle, θC = 180◦+0◦

−9◦ .

III. MEASUREMENT OF THE CONTACT
ANGLE θC

To verify that our particles remain entirely immersed
in the oil and are not wetted by the aqueous phase,
we measure their contact angle directly by fluorescent
confocal microscopy. We do this by preparing a low-
concentration dispersion of PMMA particles of mean di-
ameter 2.6 µm in oil, and flow the dispersion into a chan-
nel containing several capillary bridges of the aqueous
phase. To create these capillary bridges, we first use a
sprayer to deposit droplets (of typical diameter 10 µm to
100 µm) of the aqueous phase on a cover slip. We then
place the cover slip, droplet side down, on Dura-lar spac-
ers of thickness 25 µm which have been placed on a micro-
scope slide. The larger droplets come into contact with
the microscope slide, and spontaneously form capillary
bridges. We use a two-channel Leica TCS SP5 II confo-
cal microscope, with a 63× NA 1.4 oil-immersion objec-
tive lens to simultaneously image the particles and the
aqueous phase. For these studies, the aqueous phase is
fluorescently labeled by replacing some or all of the NaCl
with fluorescein sodium salt. Since the oil and aqueous
phases are refractive-index matched to within approxi-
mately 1%, optical artifacts arising from the curvature
of the interface are minimized.

As shown in Fig. 2, some of the particles bind to the
neck of a capillary bridge, presumably by electrostatic
forces. Using inbuilt edge-detection algorithms from the
commercial software package Mathematica, we identify
the edges of the capillary bridge and the colloidal par-
ticle. The contact angle is calculated from these data.
A typical confocal slice, overlaid with the results of the

edge-finding routine, is shown in Fig. 2. For our system,
we measure the best-fit contact angle of the particles to
be in the range 171◦ to 180◦, consistent with the results
of Ref. [21]. All measurements are consistent with a con-
tact angle of 180◦.

IV. COLLOID-INTERFACE INTERACTION

We probe the interaction of individual colloidal spheres
with a flat, horizontal oil/aqueous phase interface by
measuring their trajectories as they move through the oil
phase toward the interface. Because the particles move
at speeds up to 80 µm s−1, too fast to track with confo-
cal microscopy, we measure their trajectories with dig-
ital holographic microscopy. In this technique, an inci-
dent monochromatic plane wave scatters from a spheri-
cal colloidal particle. Using the apparatus described in
Refs. [26] and [20], we digitally record the image that
results from interference of the scattered light with the
incident plane wave [30, 31]. Fitting the interference
pattern predicted by Lorentz-Mie theory to the recorded
hologram [32] gives the particle’s three-dimensional po-
sition with 3 nm precision over a 50 µm× 50 µm× 50 µm
volume at time intervals as low as 1 ms. Since the oil
and aqueous phases have well-matched refractive indices,
we fit the data using functions appropriate for scattering
from a dielectric sphere immersed in a medium of uniform
refractive index [33]. To avoid interference from multi-
ple particles in the same image, PMMA-in-oil dispersions
are prepared at volume fractions below 10−6. As well as
position data, the holographic measurements yield esti-
mates for the diameters of the particles, with nanometer
precision, and their refractive indices, which can be used
for consistency checks. The colloidal particles we use for
these and all subsequent studies have a mean diameter
d = 1.08 µm and polydispersity 5%.

To understand the observed trajectories of the parti-
cles as they approach the interface (Fig. 3), we construct
an equation of motion involving the electrostatic force
and drag. Because the aqueous phase contains dissolved
salt ions that act as free charges, we treat it as a good
conductor. A sphere of charge q whose center is at height
z above a flat conducting surface is attracted towards its
image charge with a force [34]

Fz(z) = − q2

16πεrε0z2
. (1)

Because the motion is overdamped, the speed with
which the sphere approaches the interface is given by

vz(z) =
Fz(z)

γ⊥(z)
, (2)

where γ⊥(z) is the viscous drag coefficient for motions
perpendicular to the fluid-fluid interface located in the
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FIG. 3. (Color online) (A) The colored trajectories are obtained by digital holographic microscopy of seven different d = 1.1 µm
colloidal particles approaching the oil/aqueous phase interface. For each trajectory, we have set t = 0 as the time of the
attachment event, and z = 0 as the position of the fluid interface. The charged particles are strongly attracted to the interface,
achieving speeds of up to 80 µm s−1. For comparison, these particles have a sedimentation velocity of 0.04 µm s−1. We have also
plotted (in black) the trajectory of a d = 1.6 µm PMMA particle in a system where the oil phase consists of pure decane [26].
In the absence of CHB, the particle is far less charged, and approaches the interface much more slowly than in the presence of
CHB. The red and gray disks indicate the sizes of the colloidal particles, to scale on the z-axis. (B) Plot of the velocities of
two of the trajectories, as a function of distance from the interface. The error bars indiate the expected width of the velocity
distribution, calculated from the bulk diffusion constant D0. For each data set, the best fits of the model given by Eqs. (1), (2)
and (3) are also shown.

plane z = 0. Lee and Leal [35] find that
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(3)
where λ = µaq/µoil is the ratio of dynamic viscosities
of the two fluid phases and γ0 = 3πµoild is the Stokes
drag on a sphere far from any boundaries. For our
system, µaq = 23 mPa s (from tabulated values) and
µoil = 1.7 mPa s (from our measurements of the parti-
cle diameter and diffusion constant in bulk oil) so that
λ = 14. We estimate D0, the 3D diffusion constant
of the particles far from any boundaries, by measuring
D‖(z), the diffusion coefficient parallel to the interface.
We calculate D‖(z) from those parts of the trajecto-
ries where z > 2 µm. From the hydrodynamic theory
in Ref. [35], we estimate that the error in approximat-
ing D0 by D‖(z > 2 µm) is around 6 %. We then use
the fluctuation-dissipation relation, γ0 = kBT/D0, to
obtain the drag coefficient at the absolute temperature
T = 293 K. A typical value for the spheres in this study
is γ0 = 17 nN s m−1.

Applying the model consisting of Eqs. (1), (2) and (3)
to the data in Fig. 3 yields good agreement with the mea-
sured velocities for a mean sphere charge q = 530± 30 e,
where e is the elementary charge, and the uncertainty is
given by the standard error of the mean.

A priori, we cannot exclude the possibility of the pres-
ence of significant amounts of (positive or negative) sur-
face charge σ on the oil/aqueous phase interface [21],
which would require including an extra force qσ/εrε0 on
the right-hand side of Eq. (1). Treating σ as a fit param-

eter in this expanded model yields as an upper bound
|σ| < 0.2 e /µm2, but neither improves the quality of
the fits nor significantly affects our estimate of the par-
ticle charge q. We therefore omit σ from the model. We
also neglect the gravitational force because, over the mea-
sured range of z, it is negligible compared to the image-
charge interaction: |Fgrav| < 0.02 |Fz|.

These measurements establish that the force draw-
ing the PMMA spheres to the interface is consistent
with image-charge attraction and provide an estimate of
the single-sphere charge. We next investigate how that
charge influences the interaction between spheres at the
interface.

V. PAIR INTERACTION OF INTERFACIAL
COLLOIDS

In this section, we describe the results of three inde-
pendent experiments for measuring the force between in-
terfacially bound colloidal particles as a function of inter-
particle separation r. The results are all consistent with
an electrostatic model in which the charge q on a single
sphere is 570± 30 e, which is in turn consistent with the
result described in the previous section.

We treat the colloidal particles as spheres of uniform
surface charge sitting directly above the aqueous phase,
which, as in the previous section, plays the role of a con-
ducting substrate. As shown in Fig. 1(A), pairs of spheres
are repelled by each other’s charges, but are attracted to
their neighbors’ image charges. All our measurements
take place in the regime where interparticle separations



5

-1.6

-0.8

0

0.8

1.6
-4 -2 0 2 4

y
(μ
m
)

x (μm)

A

3 4 5 6 7 8 9 10

-0.1

0.0

0.1

0.2

r (μm)

Δ
r
(μ
m
)

B
3 4 5 6 7 8 9 10

0.0
0.5
1.0
1.5
2.0
2.5
3.0

r (μm)

V
r
(μ
m
s-
1
) C

3 4 5 6 7 8 9 10
0.00

0.02

0.04

0.06

0.08

r (μm)

D
r
(μ
m
s-
2
)

D
3 4 5 6 7 8 9 10
0

100

200

300

400

r (μm)

F
r
(f
N
)

E

FIG. 4. (Color online) Stages in the analysis of the data from
the catch-and-release experiment to probe the repulsive force
between a specific pair of interfacial colloids. (A) Overlay of
180 post-release trajectories of a single pair of colloidal parti-
cles. At each instant, the positions are plotted in the center-
of-mass frame. (B) Frame-to-frame radial displacement, plot-
ted as a function of center-to-center separation r. (C) Radial
velocity, obtained by binning and averaging the data in B. (D)
The radial diffusion constant Dr(r) is obtained from the vari-
ance of data in each bin. The dashed line is a guide to the eye,
and highlights the r-dependence of Dr, which we attribute
to hydrodynamic interaction between the particles. We ob-
tain the radial drag coefficient γr(r) by using the fluctuation-
dissipation relation, γr(r) = kBT/Dr(r). (E) The radial force
is found by multiplying the velocity by the drag coefficient,
Fr(r) = γr(r)Vr(r).

are large compared to the colloid diameter, but small
compared to the Debye length in the oil phase, so that
d2 � r2 � λ2D. In this limit, the net interaction force,
Fr(r), between pairs of spheres with center-to-center sep-
aration r takes a dipolar form,

Fr(r) = − q2

4πεrε0

d

dr

(
1

r
− 1

(r2 + d2)1/2

)
' 3B

r4
, (4)

where the force constant 3B is related to the particle
charge by B = q2d2/8πεrε0.

A. “Catch-and-Release” Laser Tweezer
Experiments

Our first measurement of the repulsive force between
a pair of interfacial particles proceeds by forcing the par-
ticles close together with a pair of optical tweezers and
then releasing them. We record and analyze the resulting
trajectories to find the interparticle force, as illustrated
in Fig. 4.

For these experiments, and also those of Section V C,
we prepare samples that contain many small (diameter
100 µm to 500 µm), almost-flat interfaces that are isolated
from each other. To make these interfaces, a cover slip is
immeresed in a bath of KOH-saturated isopropanol for
1 h prior to undergoing the treatment described in Sec-
tion II 1. We use a sprayer to deposit droplets of the
aqueous phase onto the cover slip, which is then incor-
porated into the construction of a capillary channel. Fi-
nally, the channel is filled with the particle dispersion and
sealed with Norland optical adhesive. Following this pro-
tocol, each droplet of the aqueous phase forms a roughly
spherical cap on the glass surface, with a contact angle of
1◦ or less. The resulting interface is flat enough to allow
bright-field imaging of interfacial particles, which adsorb
to the interface because of the electrostatic attraction de-
scribed in Section IV. Effectively random factors, such as
how far a given droplet is from the entrance of the capil-
lary channel, influence how many particles are deposited
on each interface. Thus, within a in a single sample cell,
we obtain many isolated interfaces, each with a different
interfacial density.

To measure the interparticle force, we first identify
an interface at sufficently low particle density that only
two spheres are in the field of view of the microscope.
A particle tracking algorithm then locates the spheres
[36, 37]. Once located, the spheres are confined in holo-
graphic optical traps projected at their position (“catch”)
[38–40]. The holographic trapping system is created
with a 1064 nm laser (IPG Photonics YLR-10-1064-
LP) whose wavefronts are modified using a computer-
controlled liquid-crystal spatial light modulator (Holoeye
Pluto). The resulting light pattern is relayed to an objec-
tive lens (Nikon Plan Apo, NA 1.45 100×, oil immersion)
that focuses the traps into the sample. The traps drag
the particles towards one another until they reach a pre-
assigned minimum distance, at which point the traps are
instantaneously displaced tens of microns in the direction
perpendicular to the imaging plane, allowing the particles
to move freely along the interface (“release”). The trajec-
tories of the particles are recorded by video microscopy,
and the coordinates of the centers of the particles, r1
and r2, are measured using publicly available tracking
routines [37, 41]. This procedure, shown in Fig. 1(B),
is fully automated, and, for a given pair of particles, is
repeated as many as several hundred times.

Once a particle is released from the optical traps, its
motion results from a combination of interaction with
the other particle, and diffusion. For two subsequent
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FIG. 5. (Color online) Main Image: Confocal micrograph of
PMMA particles bound to a glycerol/water interface. This
image is a single snapshot taken from a 1 h movie, with an
average particle density of 0.005µm−2. Left Column: A se-
ries of plots showing: (i) g(r), from all frames of the movie;
(ii) the potential of mean force w(r) = −kBT log g and the
pair potential U(r). We use the Ornstein-Zernike equation
to obtain U(r) from g(r); (iii) the radial force, obtained from
U(r) by numerical differentiation.

frames, the displacement of the particles along the radial
direction in the center-of-mass reference frame is

∆r(t) = [r(t+ τ)− r(t)] · r̂(t), (5)

where r(t) is the instantaneous separation at time t,
r(t) = r2(t)− r1(t), and τ = 16.7 ms is the time interval
between video fields. The relative velocity, vr(r) = ∆r/τ ,
as well as the separation-dependent drag coefficient in
the radial direction γr(r), is found by combining the
data from multiple releases, and plotting ∆r as a func-
tion of interparticle separation r. The data are divided
into bins along the r-axis, as shown in Fig. 4, and the
interparticle force is obtained by using the overdamped
equation of motion, Fr(r) = γr(r)vr(r) [36, 42, 43]. The
results of 10 such experiments, on different pairs of par-
ticles, are shown in Fig. 7(A). Fitting Eq. (4) to this
data gives q = 580± 30 e, which is consistent with the
value obtained from the colloid-interface experiments in
Section IV.

B. Pair Correlation Function Experiments

In a second experiment to measure the pair interac-
tion, we measure the pair correlation function g(r) of a
system of interfacial particles at low areal density ρ. We
use the Ornstein-Zernike equation from liquid state the-
ory, with the hypernetted chain approximation, to obtain
the pair potential U(r) from g(r) [44, 45], and finally cal-
culate Fr(r) by numerical differentiation. To sample g(r)
at the low densities this method requires, we first half-fill
a capillary tube with the aqueous phase. We then place

the filled end of the capillary tube into a sample vial con-
taining the particle dispersion. As the oil flows into the
tube, thin patches of the aqueous phase are left behind
on the top and bottom glass surfaces. These patches,
held in place by pinning of the contact line, are typically
0 µm to 2 µm thick, and millimeters in diameter. We are
thus able to image regions of uniform density as large as
0.3 mm2, and which contain hundreds of particles. We
use a Leica TCS SP5 II confocal microscope, mounted
with a 10× air objective lens, to collect movies which are
typically 1 h to 2 h in length. Using publicly available
software [41], we find the positions of the particles in
each frame and obtain g(r) for each movie. Fig. 5 shows
a snapshot of a typical sample, together with the stages
of the anaysis.

To estimate the error in finding the force in this man-
ner, we perform a series of Monte-Carlo simulations of
point particles interacting via a set of known interaction
potentials. We choose the interaction potentials and den-
sities in the simulations so that they produce pair corre-
lation functions similar to those observed in the experi-
ments. From each simulation, we calculate g(r), and then
apply the Ornstein-Zernike method described above to
obtain U(r) and Fr(r). We compare the Fr(r) obtained
from g(r) to the Fr(r) curve calculated directly from the
potential that we use in the simulation. The error ∆Fr is
given by the difference between these two values. Since
the fractional error ∆Fr/Fr does not depend strongly on
r, ρ, or the parameters describing the interaction poten-
tial, we take it to be constant, ∆Fr/Fr = 0.5. This value
is assumed when plotting error bars such as those shown
in Fig. 5.

Fig. 7(B) shows the results of applying the Ornstein-
Zernike inversion procedure to samples of interfacial col-
loids at two different areal densities. For each sample,
we repeat the measurement one, two and four days af-
ter preparation to confirm that the results for g(r) are
time-independent, and thus reflect equilibrium proper-
ties. Fitting this data to Eq. (4) gives q = 540± 30 e,
which is consistent both with the value obtained from
the colloid-interface interaction experiments in Section
IV and with other pair interaction experiments described
in this section.

C. Crystal Elasticity Experiments

Our third approach for measuring the pair interaction
takes advantage of the fact that, when confined to an in-
terface at sufficiently high areal density, colloidal mono-
layers form a hexagonally-ordered solid phase, which is
stable over time-scales of many weeks [46]. This colloidal
solid is soft enough that thermal fluctuations of the par-
ticle positions can be measured using video or confocal
microscopy. From the resulting trajectories, we can esti-
mate the crystal’s bulk modulus, K, and shear modulus,
µ. These elastic constants are related to the crystal’s in-
teraction parameter, Γ, which yields the pair potential
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shown in panel A. For clarity, the magnitude of the displacements is exaggerated by a factor of 5. Also shown is the Voronoi
tesselation, computed from the average particle positions. (C) Trace of the strain tensor, εxx(r, t)+εyy(r, t), calculated from the
displacement field shown in panel B. (D) Probability distribution function of the dilatation strain (∆A/A) for three different
sub-region sizes Lb/L. Solid curves are Gaussian fits to the data. (E) We obtain elastic moduli of K = 40 kBTµm−2 and
µ = 6 kBTµm−2, which, via Eqs. (6), give Γ = 305 ± 35. Thus, for an interparticle separation of 4.3 µm, the interparticle force
is Fr = 110 ± 30 fN.

at the mean interparticle separation a [47, 48]. Unlike
the previously discussed measurements, which yield func-
tional forms for the separation-dependent interaction, in-
teraction measurements based on lattice elasticity require
us to assume a functional form. However, since this mea-
surement takes place at high areal density, it can confirm
the pair-wise additivity of the interactions.

To determine the interparticle force and the elastic
constants, we first measure the instantaneous strain and
rotation. For a displacement field u(r, t) at position r
and time t, the instantaneous strain and rotation tensors
are defined as

εij(r, t) =
1

2
[∂iuj(r, t) + ∂jui(r, t)] and

θij(r, t) =
1

2
[∂iuj(r, t)− ∂jui(r, t)] ,

respectively, where i, j ∈ {x, y}. Adapting these defini-
tions to include a displacement field u defined at a dis-
crete set of lattice points and times, we use the lattice
calculus methods described in the Appendix to calculate
the strain and rotation tensors from the measured set of
particle positions.

For a region of area A, the dilatation strain is given by

∆A(t)

A
=

1

A

∫
A

[εxx(r, t) + εyy(r, t)] d2r,

and the local rotation is

∆θ(t) =
1

A

∫
A

θxy(r, t) d2r.

If we assume equipartition of energy, the variances in
these quantities in a box of side length Lb are related to
the finite-size bulk and shear moduli K(Lb) and µ(Lb)
by [48]

Var

{
∆A(t)

A

}
Lb

=
kBT

A [K(Lb) + µ(Lb)]
and

Var{∆θ(t)}Lb
=

kBT

2Aµ(Lb)
.

The thermodynamic limits of the elastic constants are
obtained by the finite-sized scaling procedure [49] shown
in Fig. 6(E).

The elastic moduli are related to the potential en-
ergy U(r) = Br−3 of the particles’ pair repulsion at the
nearest-neighbor separation, r = a. In terms of the di-
mensionless interaction parameter Γ = B(πρ)3/2/kBT ,
we expect, in the high-density limit [50],

Γ =
a2

0.3461 kBT
µ and Γ =

a2

3.461 kBT
K. (6)

Thus, each elastic constant provides a measurement of
Γ. We take the average of these measurements to be
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our estimate for Γ, and half their difference to be the
corresponding uncertainty ∆Γ. Finally, we estimate the
nearest-neighbor interaction force Fr(a) = 3Ba−4 =
3kBTΓ(πρ)−3/2a−4.

We confirm the accuracy of our implementation of this
protocol through molecular dynamics simulations per-
fomed using the HOOMD-blue suite [51–53]. For param-
eter values similar to those of the experiment, our analy-
sis of the particle trajectories accurately reproduces the
interaction parameter Γ and the interparticle force Fr.

Fig. 7(C) shows the results of applying this analysis
to five different samples. We restrict our data collection
to crystals that have lattice constants between a = 3 µm
and 5 µm. Crystals with a . 3 µm do not satisfy the
far-field assumption r2 � d2, while those with a & 5 µm
do not have high enough density to justify the use of
Eq. (6). Fitting Eq. (4) to the plotted data, we find that
the charge q = 590± 20 e. As Table I shows, this value
is consistent with the other pair interaction experiments,
and, within two standard deviations, is also consistent
with the results of the colloid-interface experiments.

In our experiments, we have observed the behavior
of specific pairs of particles far away from any others
(tweezer experiments), as well as systems of many par-
ticles in both the low density (g(r) experiment) and the
high density (crystal elasticity experiment) limits. The
fact that the measured charge is consistent in all these
cases implies that the interaction is pairwise additive over
the range of interparticle separations explored by our ex-
periments. This contrasts with other systems of colloidal
particles dispersed in oil [54], and may have implications
for understanding the origin of the surface charge on the
particles.

VI. CONCLUSIONS

In this work, we study the behavior of a system of
charged colloids in the vicinity of a fluid interface. We
show that, in the absence of wetting by the aqueous
phase, this behavior is governed by electrostatics alone:
individual colloids interact with the interface via image-
charge attraction, while particles that are already inter-
facially bound interact with their neighbors as charge-
image charge dipoles. Our model, in which the parti-
cle charge q is the only fit parameter, is consistent with
data from the four independent experiments we have per-
formed.

In our system, interactions between interfacial parti-
cles are pairwise-additive, are constant over time-scales
of weeks, and are homogenous enough to allow the for-
mation of defect-free crystals over length-scales of tens
of lattice spacings. The system is thus well-suited to
the study of problems in fundamental condensed mat-
ter physics, for example the phase behavior of repulsive
particles in 2D [55, 56], or the structure and dynam-
ics of topological defects in curved spaces [22, 57, 58].
Moreover, we can now hope to use our knowledge of elec-
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FIG. 7. Log-log plots of the results of three experiments to
find forces between interfacial colloids. (A) Results of the
catch-and-release laser tweezer experiment, for 10 pairs of in-
terfacial particles. (B) Results of finding the interparticle
force via the pair potential g(r), for two samples at different
areal densities. (C) Results of experiments where we found
the interparticle force via the elastic moduli of 2D colloidal
crystals. Each data point corresponds to a different video of a
fluctuating lattice. (D) The data from panels A, B and C are
divided into bins. For each data set, the mean in each bin is
plotted. Error bars indicate the spread of the data in a given
bin: standard deviation for data sets A and C, maximum de-
viation from the mean in the case of B. The dashed line is a
fit of all the data to Eq. (4), which gives q = 570 ± 30 e.

trostatic interactions in systems of interfacial colloids to
better understand the behavior of more complex systems,
such as those with partial wetting.

q (e)

colloid-interface experiment 530 ± 30
laser tweezer experiment 580 ± 30

g(r) experiment 540 ± 30
crystal elasticity experiment 590 ± 20

TABLE I. Particle charge found in each of the four experi-
ments described in this paper.
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Appendix: Finding Strain and Rotation Tensors
from Particle Trajectories

Here we outline how we use a discretized version of
the divergence theorem from vector calculus to the cal-
culate the strain and rotation tensor from the particle
trajectories obtained from video microscopy.

We first define the particle’s equilibrium position. Af-
ter subtracting uniform drift, we still need to eliminate
effects which are due to slow expansion, compression or
rotation of the lattice, as well as the long-wavelength fluc-
tations which are characteristic of 2D solids [59]. To do
this, we use a moving average of the particle’s position
using time window which is typically 20 times the relax-
ation time of an individual particle, as computed from the
mean square displacement. At each frame of the movie,
the displacement u(α) of particle α is calculated relative
to this moving average.

Once we obtain the displacement field u for a given
frame of the movie, we need to calculate the strain and
rotation tensors, which requires taking derivatives of u.

In order to do this, we use the Voronoi construction to
partition the field of view into cells associated with each
lattice site. This construction provides a well-defined set
of nearest neighbors for each particle, which does not
change over the course of the movies. For an arbitrary
vector field v, the matrix of partial derivatives ∂ivj(α) of
particle α can be calculated by using a discrete version of
the divergence theorem [60]. This works as follows: for
every particle β that neighbors α, the particles share an
edge of a Voronoi cell, which we label (α, β). For each
edge, we define the vector v(α, β) as the average of v(α)
and v(β), while the normal vector n̂(α, β) and the edge
length `(α, β) are given by the geometry of the Voronoi
cell. Using this notation, the divergence of v at particle
α is given by

∇ · v(α) =
1

A(α)

∑
β n.n.α

`(α, β) (v(α, β) · n̂(α, β)) ,

where A(α) is the area of the Voronoi cell of particle
α, and the sum is taken over all particles β which are
nearest neighbors to particle α. For appropriate choice
of v, the components of the strain and rotation tensors
can be found at each lattice site. For instance, εxx =
∂xux = ∇ · v, where v = (ux, 0).
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