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Abstract 

Analysis of temperature dependence of structural relaxation time τ(T) in supercooled liquids 

revealed a qualitatively distinct feature - a sharp, cusp-like maximum in the second derivative of 

log τα(T) at some Tmax. It suggests that the super-Arrhenius temperature dependence of τα(T) in 

glass-forming liquids eventually crosses over to an Arrhenius behavior at T<Tmax, and there is no 

divergence of τα(T) at non-zero T. Tmax can be above or below Tg, depending on sensitivity of 

τ(T) to change in liquid’s density quantified by the exponent γ in the scaling τα(T) ~ exp(A/Tρ-γ). 

These results might turn the discussion of the glass transition to the new avenue – the origin of 

the limiting activation energy for structural relaxation at low T.   
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1. Introduction 

The structural relaxation in glass-forming liquids usually shows Arrhenius-like behavior at high 

temperatures, τα(T) = τ0exp(E∞/T), but becomes super- Arrhenius  at lower temperatures [1,2]. 

Moreover, the steepness of the temperature dependence of log(τα) vs 1/T increases sharply with 

cooling (Fig.1a), meaning that the activation energy for structural relaxation, E(T), increases with 

decreasing T. This suggests that the relaxation time and activation energy might diverge at some 

finite, non-zero temperature, indicating existence of an underlying phase transition at T < Tg [2]. 

Attempts to resolve this fundamental question of τα(T) divergence from detailed analysis of 

experimental data thus far provided different conclusions [3-6]. The authors of [3] found no 

evidence for the divergence of the structural relaxation time. In ref. [4] it was shown that the 

divergent signature of τα disappears below Tg in amber. On the other hand, detailed analysis of 

the relaxation time in poly(vinyl acetate) revealed the VFT-like behavior of τα extends far below 

Tg (at least by 4 orders) [5,6].  

To describe τα(T) various functions were proposed. The most common are three parameter 

functions: Vogel-Fulcher-Tammann (VFT) function 

                                      τα = τ0exp(B/(T-TVFT) [7-9];                                               (1) 

double-Arrhenius [10] 

                                   τα = τ0exp[(B/T)exp(E/T)],                                                      (2) 

 Bässler-Avramov’s [11,12]  

                                        τα = τ0exp(C/Tα)                                                            (3)  

and parabolic [13] 
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                                       τα = τ0exp[(J/T0)2(T0/T-1)2]                                            (4)   

functions.  They are based on various phenomenological models, e.g. free-volume [14] and 

configurational entropy [15], elastic [16], Random First Order Transition (RFOT) [17] and 

facilitation [18] models, etc. These models either predict the underlying phase transition with 

diverging relaxation time at finite T (e.g. free volume, entropy based Adam-Gibbs and RFOT), or 

predict no divergence of τα(T) for any T except at T = 0 K. These functions fit the temperature 

variations of structural relaxation time reasonably well. In some materials they provide good 

description in the entire temperature range above Tg, e.g., VFT function fits τα(T) in polymers or 

glycerol very well at all T. However, they give different predictions on the divergence of τα(T). 

This divergence would correspond to the divergence of the size of the cooperatively rearranging 

regions in the Adam-Gibbs approach [15] or of the correlation radius in the Random First Order 

Theory [17]. Even if there is no divergence of the relaxation time at non-zero T, still there is a 

question does activation energy E(T) diverges as temperature goes to zero (as suggested by e.g. 

double-Arrhenius equation (2))? 

To have deeper understanding of the temperature dependence of τα(T) and to discriminate 

between various models one should look on more subtle features of the τα(T) behavior. Recent 

developments in experimental techniques, especially in broadband dielectric spectroscopy, 

provide highly accurate experimental data that can reveal these subtle changes in τα(T). Here we 

present new analysis of the temperature dependence of viscosity or τα of supercooled liquids 

based on their second derivative. We show that at least in some supercooled liquids there is a 

qualitatively distinct feature in the second derivative of τα(T) that resembles a cusp-like 

singularity with a sharp maximum. This maximum is not predicted by any of the discussed above 

3-parameter functions. Presented analysis suggests that the equilibrium τα(T) turns to Arrhenius-
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like behavior also at low temperatures, so there is no divergence of τα(T) or E(T) at a finite 

temperature. The activation energy, in contrast, approach some constant value apparently related 

to the limited activation energy required for structural relaxation. 

 

2. Derivative Analysis 

As a first example, we consider the classical glass forming liquid salicylic acid (salol) [19]. The 

structural relaxation time of salol can be fit reasonably well by several functions discussed above 

(Fig.1a). The first derivative of logτα over Tg/T presents the apparent activation energy that 

increases monotonically with temperature decrease (Fig. 1b).  However, the second derivative of 

the experimental data reveals a sharp peak at a temperature Tmax = 255 K (Fig.2a).  A few other 

independent data for τα(T) of salol [20-22] also reproduce this cusp-like peak in the second 

derivative. For example, the second derivative of the structural relaxation time of salol measured 

by a different group [20] (Fig. 2a) exhibits the same peak at the same Tmax (with accuracy better 

than 1K). Similar behavior can be found in some other glass-forming systems where the 

sufficiently accurate data on the relaxation time or viscosity are available [23, 24, 25].  For 

example, the second derivative of logτα(T) exhibits the sharp maximum in phenylphthalein 

dimethyl ether (PDE) and polychlorinated biphenyl with chlorine content 62% (PCB62)  (Fig.3); 

and the second derivative of the logη for the covalent-bonding B2O3 [25] also exhibits maximum 

at Tmax ~ 630K (Fig. 4).  

However, there are not so many data with accuracy required for the second derivative analysis. 

The dimensionless second derivative of log10τ or log10η over Tg/T has the amplitude about a few 

hundred, up to 600 (Figs. 2-6). Experimental data on the relaxation time have errors that are 



5 
 

reflected in some scattering of the data points of τ(T). Taking derivatives greatly increases the 

scattering. A simple estimation can be done based on about 20-30 experimental data points in the 

interval 0.5 < Tg/T < 1. The typical interval between the data points Δ(Tg/T) in this case is about 

0.02- 0.03 that will enhance the error of logτ, Δlogτ, in the second derivative by a factor of about 

~103. If one wants the resulting error to be, e.g., only 10% of the actual value of the second 

derivative, then the error Δlog10τ ≈ (log10e)Δτ/τ ≈ 0.43Δτ/τ should be less than a few percent. The 

analysis of large amount of published data revealed that the scattering of the second derivative 

points in most cases is too high to provide any conclusive results.  

Analysis of a broad number of glass forming liquids with sufficiently accurate data revealed 

some systems that do not exhibit the peak in the second derivative of logτ in supercooled state. 

They include hydrogen-bonding liquids, polymers and room-temperature ionic liquids (RTIL). 

As examples, we show the second derivative of log10τα in glycerol and propylene carbonate (PC) 

(Fig.5), and in tri-cresylphosphat (m-TKP), ethanol, polyvinylacetate (PVAc) and [bmim][NTf2] 

(Fig.6). 

3. Discussion 

We note, that the second derivative of logτα over Tg/T is proportional to the first derivative of the 

apparent activation energy  

                                           Ea = dlnτα/d(1/T)                                        (5)                   

The maximum in the second derivative means that the rate with which Ea  is growing upon 

cooling drastically changes behavior at Tmax: The rate increases with decreasing temperature at T 

> Tmax, while it sharply decreases with further cooling below Tmax.  In logarithmic scale, the peak 

in the second derivative of logτα can be described by two linear regimes with positive and 

negative slopes and intersection at T = Tmax (Figs.2-4). It means that log10[(log10τα)"] = a + 
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b(Tg/T) where a and b are some constants, b >0 at T > Tmax and b < 0 at T < Tmax. This 

corresponds to Arrhenius behavior of (log10τα )" with the activation energy changing sign at Tmax:  

                                     (log10τα)" = A1exp(E1/T) at T>Tmax                         (6a)   

                                     (log10τα)" = A2exp(-E2/T) at T<Tmax.                       (6b) 

For salol, A1=7.8*10--3, A2=3.91*103, E1 = 2803K, E2 = 2337K.  The apparent activation energy 

Ea , Eq. (5),  can be obtained by integrating (log10τα)":  

௔ܧ                  ൌ ଵܤ ൅ ஺భTౝమ୪୬ଵ଴ாభ exp ቀாభ்ቁ ,                ܶ ൐ ௠ܶ௔௫                           (7a) 

௔ܧ                   ൌ ଴ܧ െ ஺మ ೒்మ୪୬ଵ଴ாమ exp ቀെ ாమ்ቁ ,            ܶ ൏ ௠ܶ௔௫                          (7b)  

where B1 and E0 are constants, B1 = E∞ - A1Tg
2ln10/E1 ≈ E∞. Eqs.( 7a), (7b) predict that there are 

two Arrhenius regimes: One at high temperatures (with Ea = E∞ which is well documented [30]), 

and another one at low temperature (Ea = E0). The activation energy rises with cooling at 

intermediate temperatures and then saturates at some level. A characteristic temperature interval 

for the decaying exponential in Eq. (7b) is ΔT ~ Tg*(Tg/E2) ~ 20K for salol, i.e. the respective 

interval is Δ(Tg/T) ~ 0.1. At such distance from Tmax, behavior of τα(T) becomes close to the 

Arrhenius again. We note that this low-temperature Arrhenius behavior is related to the 

equilibrium supercooled liquid and is different from the Arrhenius behavior below Tg observed 

in non-equilibrium glass-formers. Similarly, the slowdown of the rate of increase of τα at 

lowering temperature below Tmax (Fig.1b) occurs at temperatures where τα is still short enough 

(~10-4 s) and the liquid is in equilibrium, so a systematic error that leads to such behavior is 

unlikely.      

It is important to emphasize that the maximum in the second derivative challenges all the 

discussed above traditional 3-parameter fitting functions. They produce a monotonic second 
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derivative without any peak (some examples are shown in Fig.3). Thus they all failed to 

reproduce accurately the temperature variations of (logτα)" in these liquids even qualitatively in 

this temperature range. However, there is a four-parameter function derived by Cohen and Grest 

(CG) [31] in the free-volume percolation model of the glass transition that has the maximum in 

the second derivative of logτα: 

              logଵ଴ሺ τఈ/τ଴ሻ ൌ ଶ஻்ି బ்ାඥሺ்ି బ்ሻమା௔்   .                                               (8) 

Here T0 may be both higher and lower than Tg, depending on material. The parameter a is 

determined by the anharmonicity of the intermolecular potential. It is known that the CG 

function fits very well the experimental data for τα(T) and η(T) in various glass-formers at all T 

[31,32] . This is not surprising because the CG function has an additional parameter in 

comparison with the VFT function. The latter is the limiting case of the CG function at a →0. 

The second derivative of the CG function over inverse temperature indeed has a maximum at 

௠ܶ௔௫ ൌ బ்ଵି ೌమ೅బ   ,                                                     (9)  

although it is not as sharp as the experimental one (Figs. 2-4). Thus, the position of the peak of 

the second derivative can be determined by simple fitting experimental τα(T) or η(T) to the CG 

function (Eq.(8)). Since the ratio a/T0 is small, ~0.01÷0.1 (Refs. [31,32]), for practical purposes 

T0 gives a good estimate of Tmax with accuracy of a few percent.    

As it was mentioned in Section 2, some supercooled liquids do not show the peak in the second 

derivative of τα(T) (Figs.5,6). Fit to the CG function (Eq. (8)) gives T0 ~160K for glycerol which 

is below its Tg (Fig.5a). This may explain why there is no peak in the second derivative of logτα 

in the supercooled glycerol and some other glass-formers: the peak is expected to be at 
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temperatures below Tg, where the equilibrium supercooled state cannot be reached 

experimentally. As one of the consequences, a single VFT or other 3-parameter functions 

mentioned above can fit τα(T) of glycerol and other materials with T0  below Tg reasonably well 

in the entire temperature range of supercooled state. This explains the well-known fact that τα(T) 

in  polymers [33], RTIL [29] and some hydrogen-bonding materials [26] can be fit well by a 

single VFT function, while many molecular liquids require at least two VFT functions, one for 

low temperatures and another one for high temperatures [19]. We emphasize that the proposed 

here existence of the maximum in the second derivative of τα at Tmax (~ T0) below Tg is a 

speculation based on the fit to the CG function and is not confirmed experimentally. The only 

justification of this point is that in all cases, when the CG fit provides T0 > Tg and the data are 

good enough to analyze the second derivative, there is the maximum at Tmax ~ T0. It would be 

important to perform an experiment when a parameter of a glass-former or external conditions, 

such as pressure, can be varied in order to change the ratio T0/Tg  from  T0/Tg <1 to  T0/Tg > 1 and 

track the evolution of the respective peak  of the second derivative of logτα. We note that the CG 

fit in the case of propylene carbonate estimates T0 ~ Tg (Fig.5). Although the peak is not resolved 

(Fig. 5b), the data are consistent with a possible peak at T~Tg.  

The critical question is what controls the position of Tmax (~ T0) with respect to Tg? The exact 

physical meaning of the temperature Tmax is not clear, but in the CG model Tmax ~ T0 =T1 +a/4 ~ 

T1, where T1 is a parameter showing the sensitivity of the anharmonic part of the inter-particle 

potential to changing volume [31]. Thus, the stronger anharmonicity of the potential depends on 

volume, the higher will be Tmax with respect to some reference material temperature, such as 

melting or glass transition temperature. Thus, the ratio Tmax/Tg might correlate with the 

sensitivity of the structural relaxation time  to changing volume. The dependence of the 
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structural relaxation in glass-forming liquids on volume V can be characterized by the exponent γ 

of the so-called thermodynamic scaling [34,35]:  

                                                      τ(T) = τ0exp(A/TVγ)                                  (10) 

The larger is γ the stronger is the dependence of τα on volume. Analysis of γ and T0 obtained 

using CG fit revealed that the ratio T0/Tg indeed increases with increasing γ (Fig. 7). These data 

suggest that T0 > Tg in glass-formers with γ ≥ 3.5÷ 4, which are mostly molecular liquids. The 

peak of the second derivative can be experimentally detected only in such liquids.  Materials 

with γ < 3.5 (hydrogen-bonding materials, many polymers, RTILs) have T0 ≤ Tg. In these 

materials the peak is predicted to be at temperatures where the supercooled liquid falls out of 

equilibrium, and thus the peak cannot be observed experimentally. 

The presented analysis suggests the following scenario: (i) Glass-forming liquids exhibit 

Arrhenius-like temperature dependence of the structural relaxation time (viscosity) at high 

temperatures; (ii) at intermediate temperatures the apparent activation energy for structural 

relaxation Ea(T) increases upon cooling, and τα(T) exhibits super-Arrhenius behavior; (iii) this 

increase, however, slows down upon further cooling and (iv) eventually Ea(T) reaches a limiting 

value, leading to a low-temperature Arrhenius behavior of τα(T) with a constant activation energy 

E0. Unfortunately, the low-temperature Arrhenius regime in pure form is not observable due to 

rather long relaxation time required (see e.g. Fig.1b for salol). We want to stress here that this 

low-temperature Arrhenius is expected in equilibrium supercooled liquid. It should not be 

confused with the non-equilibrium Arrhenius behavior usually observed at T < Tg.  

In the Adam-Gibbs [15] and RFOT [17] theories, the activation energy is proportional to the 

volume of the cooperatively rearranging region (CRR). The crossover to the low-temperature 
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Arrhenius regime means that the size of CRR does not diverge with cooling, and instead, after 

initial growth eventually saturates at some maximum value. Recently, the low-temperature 

Arrhenius regime was predicted in a string model [36]. In this model CRR corresponds to strings 

comprised of fast moving molecules. Applying the theory of living polymers to the strings, the 

authors showed that the string length increases upon cooling, but will saturate at some limited 

length at lower temperatures. This would correspond to the limited size of CRR, and 

consequently, of the activation energy.  In elastic models [16] the low-temperature Arrhenius 

behavior corresponds to the limiting value of shear modulus. In any case, regardless the 

microscopic mechanism, the activation energy E cannot grow to infinitely large value and will 

have its limit that depends on the material. Indeed, there should be a limiting energy cost for a 

molecule to make a relaxation motion in a supercooled liquid.  Thus relaxation in any glass-

forming liquid eventually will become Arrhenius-like upon cooling and no divergence of time 

scale at finite T should be expected.  

According to Fig. 2, the third order derivative, i.e., the slope of (logτα)", has a finite jump at Tmax 

in salol, and, respectively, the fourth order derivative is infinite at Tmax.   In the Adams-Gibbs 

thermodynamic theory of glass transition logτα/τ0 = const/TSc(T) [15] where Sc(T) is the 

configurational entropy. Thus, Sc(T) should have infinite fourth order derivative at Tmax. This 

formally means that the system experiences a subtle fourth order phase transition at Tmax. At this 

point we do not have a clear physical picture of the nature of this transition. We speculate that at 

decreasing temperature the collective relaxation eventually acquires such high activation energy 

and CRR size that at T < Tmax either CRR size is limited by the mechanism of relaxation, as in 

the string model [36], or another channels of relaxation with limited collectivity have equal or 

higher rate.  
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We note that the peak in B2O3 (Fig.4) looks different from all other cases – it is strongly 

asymmetric. It is known that B2O3 exhibits a structural transformation above Tg, with increasing 

number of B3O6 boroxol rings at the expense of BO3 triangular units [37]. We cannot exclude 

that the observed maximum in (log10η)" in B2O3 (Fig. 4) is related to this structural change. 

However, observation of the maximum in the second derivative of several other liquids (Fig.2, 

3), and a correlation of T0/Tg with the scaling parameter γ point to a more general nature of the 

transition.  

The temperature Tmax at which the increase in E(T) starts to slow down, differs with respect to Tg 

for different materials and it may be lower or higher than Tg depending on sensitivity of 

structural relaxation to change in volume (density) (Fig.7). Thus there are systems where 

crossover to the low-temperature Arrhenius behavior is visible (e.g. salol, PDE, PCB65, B2O3), 

but there are systems where this should happen only at T < Tg. This explains why attempts to 

analyze divergence of τα(T) at finite T in various systems [3-6] may produce different results: 

There are systems (apparently with high γ) where no divergence can be obvious at T ~ Tg, while 

this regime cannot be achieved in other systems, where Tmax< Tg.    

4. Conclusions 

In conclusion, the second derivative of the temperature dependence of the structural relaxation 

time and viscosity in some supercooled liquids exhibits a sharp maximum. Such a maximum is 

not predicted by traditional three-parameter functions suggested for description of τα(T). Thus, 

these functions are missing important qualitative feature of the glass transition. This behavior of 

the second derivative suggests that the super-Arrhenius dependence of τα(T) should eventually 

cross over to an Arrhenius regime at further cooling and there is a limiting value for the 

activation energy required for structural relaxation. The crossover to this low-temperature 
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Arrhenius regime can be both above and below Tg, apparently depending on the sensitivity of the 

structural relaxation of the material to change in volume. This provides a hint to parameters that 

might define the maximum activation energy for structural relaxation of the liquid. Employing 

this approach might help to reveal many other peculiarities of dynamics in Soft Matter.         
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Table 1. Some parameters of the glass-formers used in the paper.  

 

 Tg, K T0, K γ Ref. τα or η Ref. γ 

sorbitol 268 233±10 0.16 38 39 
glycerol 186 177±15 1.8 40,43 39 
1-propanol 99 96±5 1.89 41 42 
propylene glycol 168 167±8 2.5 43 44 
3-fluoroaniline (FAN) 172 187±6 2.7 45 46 
dibuthylpthalate 176 156±2 3.2 47 48 
propylene  carbonate 159 153±8 3.7 43 39 
OTP 244 274±2 4 49 39 
Cresolphthalein dimethylether  
(KDE) 

314 358±1 4.5 24 39 

Phenolphthaleine-dimethyl-ether        
(PDE) 

294 317±2 4.5 23 39 

salol 221 250±1 5.2 19 39 
polychlorinated biphenyl    PCB42 225 257±2 5.5 24 39 
BMPC  1,1'-bis(p-methoxy phenyl) 
cyclohexane 

243 287±1 39 27 39 

polychlorinated biphenyl    PCB62  
chlorine content 62% 

274 328±1 8.5 24 39 

BMMPC  1,1'-di(4-methoxy-5-
methyl phenyl) cyclohexane 

263 314±2 8.5 24 39 

[bmim][NTf2] 181 152±4 2.85 29 50 
      
1,2 polybutadiene (PB) 253 233±8 1.9 44 44 
polystyrene (PS) 366 356±38 2.5 51 52 
polypropylene glycol (PPG) 202 182±15 2.5 53 39 
polyvinylacetate (PVAc) 302 278±4 2.6 28 39 
diglycidylether of bisphenol A 
(DGEBA) 

254 260±10 2.8 32 39 

1.4 polyisoprene (PI) 202 182±6 3 54 39 
poly(methyl phenyl siloxane)  
(PMPS) 

243 261±2 5.6 55 39 

      

PMMA 379 303±54 1.8 56 57 
PMMA decamer 288 240±14 2.8 57 57 
PMMA tetramer 240 205±4 3.2 57 57 
PMMA trimer 210 193±4 3.7 57 57 
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Figure captions 

Fig. 1. (Color online) log10τα (a) and d log10τα /d(Tg/T) (b) of salol (symbols). Data for τα  are 

from Ref. [19]. Fits of τα by VFT (dotted line), Mauro et al [10] (dashed line) and Cole-Grest 

(solid red line) functions are shown. 

 

Fig. 2. (Color online)  a). Second derivative of log10τα over Tg/T in salol (solid squares). Smooth 

solid red line is the second derivative of the Cohen-Grest function (Eq.(4)) fit of log10τα. Dashed 

magenta line is the second derivative of the Mauro et al [10] fitting function, dotted line - the 

second derivative of the VFT function. The blue solid line is the second derivative of the 

independent set of data in salol [20]. b). The same (except the data of [20]) with the vertical axis 

in log-scale. Straight solid lines are the guides for an eye. 

 

Fig. 3 (Color online) a). Second derivative of log10τα over Tg/T in phenylphthalein dimethyl ether 

(PDE) (symbols). Data for τα  are from Ref. [23]. Red solid line is the second derivative of the 

Cohen-Grest function fit of τα. b). The same for polychlorinated biphenyl with chlorine content 

62% (PCB62). Data for τα  are from Ref. [24]. c) and d) are the respective data in the logarithmic 

scale (symbols) and lines present linear approximations (Eq. (2)). 

 

Fig. 4 (Color online) a). Second derivative of log10τα over Tg/T in B2O3 (solid squares). Solid red 

line is the second derivative of the Cohen-Grest function (Eq.(4)) fit of log10τα. Dashed blue line 

is the second derivative of the Mauro et al [10] fitting function, dotted line - the second 
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derivative of the VFT function. (b) the same plot as (a) but in log scale. The data for τα  is from 

Ref. [25]. Straight solid lines are the guides for an eye. 

 

 

Fig. 5. (Color online)  (a) Second derivative of log10τα over Tg/T in glycerol (symbols). Data for 

τα are from Ref. [26]. Solid red line is the second derivative of the Cohen-Grest function (3) that 

fits τα. (b) The same for propylene carbonate, data for τα are from Ref. [23]. 

 

Fig. 6 (Color online) a) Second derivative of log10τα over Tg/T in tri-cresylphosphat (m-TKP) 

(symbols). Data for τα is from Ref. [27]. Solid line presents the second derivative of the Cohen-

Grest function that fits τα. The same for: b) ethanol (data for τα from Ref. [23]; c) 

polyvinylacetate (PVAc, data for τα from Ref. [28]); and d) room-temperature ionic liquid 

[bmim][NTf2] (data for τα from Ref. [29]). 

 

Fig. 7. (Color online) Correlation between γ and (T0-Tg)/Tg. Non polymeric materials (triangles, 

in increasing γ order): sorbitol, glycerol, propylene glycol, 3-fluoroaniline (FAN), 

diglycidylether of bisphenol A (DGEBA), dibuthylpthalate, propylene carbonate, ortho-terphenyl 

(OTP), cresolphthalein dimethylether (KDE), phenolphthaleine-dimethyl-ether (PDE), salol, 

cyclohexane polychlorinated biphenyl (PCB42), 1,1'-bis(p-methoxy phenyl) cyclohexane 

(BMPC), polychlorinated biphenyl (PCB62), 1,1'-di(4-methoxy-5-methyl phenyl) cyclohexane 

(BMMPC). 
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Polymers (squares): 1.2 polybutadiene (PB), polystyrene (PS), polypropylene glycol (PPG), 

polyvinylacetate (PVCa), 1.4 polyisoprene (PI), polymethyl phenyl siloxane (PMPS); 

polymethyl methacrylate (PMMA) with different molecular weight (circles). The data and 

references are in the Table 1.  
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Fig. 3 
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Fig. 4 
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Fig.  5 
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Fig. 6 
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