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Abstract

We show the effects of simulated supersonic granular flow made up of smooth particles passing
over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying
shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges
and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments
and shock standoff distance for disk impediments. We vary granular flow parameters including
upstream volume fraction, average upstream velocity, granular temperature, and the collision co-
efficient of restitution. Both wedges and disks have been used in the aerospace community as
prototypical impediments to flowing air in order to investigate the fundamentally different shock
structures emanating from sharp and blunt bodies, and we present these results in order to increase

the understanding of the fundamental behavior of supersonic granular flow.
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I. INTRODUCTION

The phenomenon of shock waves in granular media [1-8] is well known and has been under
study for some time. Granular media in certain density ranges behave as gases [9], and as
such allow the propagation of shock waves from disturbances traveling at speeds greater
than the characteristic sonic velocity of the granular gas. Shock waves and their structure
are of great interest to the aerospace engineering community as the location of shock waves
on aerodynamic bodies can have a large effect on the figures of merit for aerospace vehicle
design [10]. Historically, the study of shock waves has provided an experimental tool for
testing theoretical descriptions of the structure and movement of air and other fluids. We
undertook the following research in order to more fully understand the effect of various
granular flow parameters on shock structures in a granular flow and to organize this data in
a way useful to us and to other researchers interested in investigating supersonic granular

flow models.

The granular materials literature [11, 12] describes a class of granular shock waves in which
the force of gravity plays a large role in the development and characteristics of the shock
wave and Hékonardéttir, et. al. [13] theoretically describe “Mach-Beta-Theta” relations for
oblique shock waves in granular materials in which the Froude number serves as an analog
to the Mach number in typical gas oblique shock wave calculations. The influence of gravity
is important in many applications of granular materials and therefore must be taken into
account where appropriate; these shock waves are characterized by a hydraulic jump, or a

change in the height of the granular material.

In contrast to hydraulic jump shock waves, Rericha [1] describes the Hele-Shaw arrange-
ment for observing shock waves in granular flows. The Hele-Shaw arrangement results in a
two-dimensional flow in which the average flow direction (upstream of the development of
the shock wave) is parallel to the direction of gravity and the shock wave that is observed
consists not of a hydraulic jump, but a rapid change in flow conditions in the spatial domain.
In the Hele-Shaw arrangement, the gravitational force is not key to the development of the
shock wave but does affect its shape. In granular Hele-Shaw flow, the force of gravity serves
to accelerate the flow and can be computationally removed in simulations and shock waves
will still develop. In this paper, we will focus on the two-dimensional Hele-Shaw geometry,

and thus the shock waves described will consist of spatial changes in flow conditions and



not jumps in the height of the granular material. We are interested in the Hele-Shaw ar-
rangement because there does not currently exist analogs to typical fluid Mach-Beta-Theta
relations for the resulting shock waves and because this type of flow closely approximates

two-dimensional fluid flow.

The two-dimensional granular flow geometry of interest in this paper has been studied
both computationally and experimentally using a vertical Hele-Shaw cell [1] and using chutes
to accelerate granular material over a horizontal surface [14]. The literature also describes
both numerical and experimental studies into the flow of granular systems over various
obstacles [15-17]; the numerical components of these simulations tend to use models which
attempt to describe the experimental observations as completely as possible. In contrast,
the goal of this paper is to investigate the response of granular gas systems to obstacles, and
to investigate the resulting shock waves under a certain set of assumptions about granular
systems. The work presented is in the same vein as that presented by Buchholtz and Poschel
[18] in their paper detailing both the computational issues inherent in, and the results of,

modeling the interaction of granular streams with obstacles.

II. GRANULAR MODEL

In order to investigate the granular parameters which affect granular shock wave loca-
tion, an idealized model of granular systems was chosen and computationally simulated.
The granular system under study is a two dimensional system consisting of monodisperse
spherical (2-D disk) particles of a given radius. Particles were allowed to collide with each
other and with structures placed in the simulation space; in general, these structures were
modeled using impermeable line segments, hereafter called “barriers” and served to impede
granular motion. Collision both between particles and between a particle and a barrier were
modeled using well known techniques used extensively in granular studies [19]. Because
all collisions are assumed to take place between smooth bodies and there is no transfer of
tangential motion or rotational motion between bodies, the angular momentum of each in-
dividual particle is conserved in the collision process; the simulation described is therefore

a true two dimensional simulation which does not include a rotational degree of freedom.



A. Granular State Evolution

The granular simulation used to produce the results discussed in this paper is a deter-
ministic, event-driven simulation which tracks the state of each particle in the system. The
simulation is propagated by traversing an event tree which associates information concerning
potential collisions (both particle-particle collisions and particle-barrier collisions) with the
simulation time parameter at which the collision occurs. The event tree is initially popu-
lated at the beginning of the simulation. The simulation is provided with an initial particle
state which is generated using an outside program; in most cases, the initial simulation
state is specified using a custom MATLAB script. The simulation reads the initial state
of the granular system and calculates an initial event tree by examining each particle in
the simulation individually, calculating the time of the collision of the particle of interest
with other particles in a user-defined area around the particle of interest, and placing each
of these collisions in the event tree. Because the event tree associates collision information

with collision time, the earliest occurring collision is easily determined.

Assuming that the earliest occurring collision happens at a time t. after the current
simulation time ¢,, the states of the particles involved in the collision are modified to reflect
the motion of the particles over the period from ¢, to t. as well as the instantaneous change in
the velocity of the particles due to the collision. The states of the other particles in the system
are changed to reflect the time change from ¢, to t.. Consistent with the most important
assumption of granular systems, the granular particles interact with each other only through
contact and not at a distance through gravitational or electrical forces. Therefore, the
trajectory of a particle between collisions is dependent only on the external force acting on
the system. Typically the external force is either zero or a constant (such as gravity), and
the particle updating scheme involves the solution of an algebraic equation; determining the
future state of a system of particles for which the algebraic form of the trajectory is known
eliminates the need to computationally solve the differential equations of motion. For the

simulations presented in this paper, the external forces are set to zero.
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B. Simulation Algorithm

The code used to simulate the granular system described in this paper is an event-
driven algorithm in which events (i.e., the collision of a particle with another particle or a
boundary) are detected and ordered by the time until occurrence. The simulation can be
broken down into four main steps: initialization, state modification, collision response, and
collision detection. The first step, initialization, involves setting up the initial state of the
particles in the simulation. For this research, a custom external script written in MATLAB
was used to place particles in the simulation space such that the particles do not initially
overlap. The number of particles placed in the simulation space is dependent on the user-
specified volume fraction of the simulation. The initial velocities of the particles are sampled
from a normal distribution of velocities resulting in a user-specified granular temperature
(which is related to variance of the granular velocities). The particle velocities in the flow
direction are also adjusted such that the average flow velocity is a user-defined multiple of

the speed of sound (Mach number).

The barriers present in the simulation space are also defined during the initialization
process. The simulation space is bounded by barriers in a square configuration. The sides
of the square are impenetrable to the particles while the top and bottom boundaries are
periodic; particles pass through the outflow boundary and are moved to the inflow boundary
creating the circular effect needed to run the simulation for an indeterminate amount of
time. The velocities of particles moved from the top boundary to the bottom boundary are
resampled in order to ensure that the upstream flow conditions are consistent throughout
the simulation; any “memory” of the flow condition after impinging on other particles or

barriers are erased when a particle is moved back to the inflow boundary.

The final step in the initialization process is the initial population of the event list. The
event queue is modeled as a C++ Standard Template Library Map structure, which acts as
an associative array and orders elements in a tree-like structure. The event queue is ordered
by the time at which the detected collisions occur, thus the soonest occurring collision is
easily found. The event queue is initially populated by examining each particle in the
simulation and calculating the times at which the distance between the particle of interest
and other particles in the simulation is equal to the sum of the particle radii; the process is

similar for the detection of particle-barrier collisions. In order to decrease the computational



expense associated with determining collision times, only the particles within a user-specified
neighborhood of the particle of interest are tested for possible collisions; when examining
whether a particle is going to collide with other particles, the most likely candidates for
collision are the particles close to the particle of interest. The user-specified neighborhood
size will henceforth be known as the collision search radius.

After the simulation is initialized and the initial event queue is populated, the simulation
identifies the soonest-occurring collision. The states of the particles in the simulation are
changed to reflect the passage of time t. — t, and a collision handling algorithm is applied
to the particles (or particle) participating in the collision. The collision handling algorithm
[19] takes into account the coefficient of restitution of the collision, the properties of the
particles, and the relative particle velocities to calculate the total impulse applied to each
particle. The collisions are modeled as instantaneous changes in velocity, therefore, after the
velocity impulse is calculated, the change is immediately applied to each particle velocity in
each direction.

Because the velocities of the particle or particles involved in a collision change in both
magnitude and direction, the collisions associated with those particles are no longer valid
after the collision. Therefore, for each particle involved in a collision, it is necessary to both
remove the associated collisions from the event queue and to repopulate the queue with new
collisions that result from the new trajectory of the particle. The collision detection routine
is therefore applied to the particles involved in the collision and the detected collisions are
placed in the event queue. At this point, the simulation process is repeated by applying
the collision handling algorithm to the soonest-occurring collision. The simulation continues

until the simulation time reaches a user-defined maximum.

III. SHOCK WAVE DETECTION

Integral to the research discussed herein is the computational identification of the shock
front position in the simulation space. Measuring the shock wave location is accomplished
by monitoring the flow properties at points within the simulation and identifying changes in
flow properties that correspond to shock waves. In order to monitor the flow properties as
the simulation propagates, a measurement step is inserted into the algorithm and the mea-

surements must be performed periodically. In practice, the measurement step is performed



at specific time intervals and the quantities measured include the particle volume fraction,
the local average velocity in each direction, the local granular temperature, and the local
Mach number. These quantities are calculated and stored as the simulation runs, and at

the end of the simulation they are output for further post-processing.

Each of the quantities of interest are granular analogs to continuum properties. Because
granular materials consist of a collection of particles, a process which maps the state of
the granular system to continuum properties must be defined. In the simulation used in
this research, this process involves spatial averaging of the granular state properties in
order to estimate the volume fraction, average velocity, granular temperature, and local
Mach number. The spatial averaging process makes use of a regular grid of points in the
simulation space around which continuum variables are measured and at which continuum
data are specified. The measurement step consists of identifying the particles located within
a user-defined area around each of the grid points and using the state of each of the identified
particles to determine the value of the desired quantity. In order to increase computational
efficiency, the area around each point in which particles used in the continuum calculations

are located is a square subspace of a user-defined side length centered at the point of interest.

The volume fraction measured is the two dimensional volume fraction, and is simply

Sor?
5

- (1)

UV =

where r; is the radius of a given particle and A is the area of the subspace in which the
particles are located. The local average velocities are given by calculating the average of
the velocities of the particles in the subspace of interest in each coordinate direction. The
local granular temperature, T, is calculated by measuring the variance in the velocities of

the particles within the subspace of interest using the equation in Ref. [20].

1

T=—
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where D is the dimension of the simulation space (2 in our case), v is the speed of each
particle in the subspace of interest, v is the velocity of the particle, and quantities enclosed

by an angle bracket are averaged over particles in the subspace. From Ref. [21], the granular

7



temperature is used to calculate the granular speed of sound c.

B 2 v ox
C_\JTX<1+3X+X8V> (3)

where y, which is a correction factor to the equation of state, is given by
x=1+2(1+¢e)G(v) (4)

and G, the radial distribution function, is given by

Gv) = ll - (”)%/3]1 (5)

Vm

as suggested by Goldshtein, et al. [2]. The random close packing volume fraction for disks
22], v, is set to be 0.82 for the simulations performed. Mach number is defined as the ratio
of the local average speed to the local speed of sound, i.e. Mach Number (Mach) = |v|/c
where c is the local speed of sound as defined in Eq. 3.

In order to use the above equations to estimate the desired quantities computationally,
the particles in the user-defined area around a given point are identified using a nearest-
neighbor test. The volume fraction and average velocities are the most direct computations.
The results of these computations are used in the calculation of granular temperature, local
sound speed, and local Mach number, all of which are stored in separate layers of a data
array of dimension N x N x M where N is the number of measurement grid points on each
axis of the simulation space and M is the number of separate quantities to be measured at
each point.

Local continuum quantities measured at one particular time using the techniques de-
scribed make up a noisy data set. Spatial trends in the quantities of interest can be better
determined by averaging the quantities measured at a particular point over time. In order
to accomplish the desired time averaging, the N x N x M data array is updated at regular
intervals by adding quantities measured at the current time to the sum of the quantities
measured at all previous times. The time averaging process decreases the contribution of
transient noise in the continuum data, and thus is appropriate for evaluating steady-state
spatial structures in the granular flow data such as shock waves emanating from an obstacle
located in a granular flow. Figure 1 shows a dramatic change in the time-averaged volume

fraction through the simulation space for supersonic granular flow over a wedge. We note
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FIG. 1. (Color Online) Granular Simulation Results: Time-averaged volume fraction for granular
flow over a wedge. The color (shading) indicates the local average volume fraction as calculated at
each grid point. The granular flow impinges on a wedge with a 10° half-angle. The largest volume

fraction is concentrated around the upper and lower surface of the wedge.

that variation in color (non-uniformity in shading upstream) prior to impact suggests that
energy in the flow is decreasing; however, we feel it to be small compared to the energy
decrease at the shock. If this were not the case, we feel that there would be a noticeable

volume fraction gradient between the “inlet” and the area that is affected by the shock wave.

Because of the relatively large size of the constituents of a granular flow, oblique granular
shock waves tend to have a discernible structure on a larger scale than fluid shock waves,
most of which are considered to form over a vanishingly small distance scale. The thickness
of a granular shock structure necessitates a method of determining the location of the shock
wave. In order to approximate the locations of the shock waves presented in this paper,
the data is first smoothed using a low pass filter. The data along lines perpendicular to the

obstruction causing the shock wave is then isolated from the two dimensional data. The
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FIG. 2. (Color Online) An example of the shock-detection scheme along a given normal to the
surface of the wedge shown in Fig.1. Both the data along the line and the two lines composing the
minimum-error interpolation are shown. The intersection of the two interpolation lines is assumed

to be the location of the shock wave.

process of determining the shock wave location along the normal line involves determining
the point at which the data can be described as changing from relatively flat and constant
to sloped. In order to find the transition point in the data, a two-part segmented linear
regression is performed. The transition point between one linear segment and the other
linear segment is taken to be the location of the shock wave. Both the data taken along
the normal and the results of the segmented regression are shown in Fig. 2. The measured

location of a shock wave over a wedge structure is shown in Fig. 3
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IV. OBSERVED SHOCK PATTERNS

A. Flow Past a Wedge

Granular fluid flow impinging on a wedge shaped obstacle provides an interesting case
study for the investigation of the supersonic properties of granular materials. Fluid flow
past a wedge, especially in the supersonic regime, is a phenomenon that has been extensively
studied in the world of aerodynamics. Under a broad range of flow conditions, the shock
wave location resulting from supersonic flow over a wedge has a closed-form solution which
has been confirmed experimentally [10]; such a result shows the power of the theoretical
tools used to describe fluid flow. We explore supersonic granular flow over a wedge in order

to compare and contrast standard fluid flow with supersonic granular fluid flow.

As discussed by Rericha [1, 20], the behavior of granular shock waves over a wedge has
many similarities to shock waves arising from typical fluid flow. Both supersonic fluid and
granular flow over a wedge result in the development of a shock wave emanating from the
tip of the wedge and stretching at an angle through the flow; such shock waves are known
as oblique shock waves in fluid mechanics. Figure 1 shows an example of the behavior
of the steady-state time-averaged flow variables for a supersonic granular system flowing
over a wedge. Oblique shock waves in fluid dynamics are characterized by the angle they
form with respect to the average direction of fluid flow; therefore, we characterize granular
oblique shock waves using the shock angle as the figure of merit. We calculate a linear
regression of the predicted shock wave location shown in Fig. 3 and use the linear fit to
generate an estimate of the oblique shock wave angle. We examine the response of the
shock wave angle to the granular flow velocity, the granular temperature of the flow, the
coefficient of restitution which characterizes collisions, and the volume fraction of the flow.
When examining each of the listed variables, we hold the other variables constant at the
default value given in Table I. The simulation space measures 1 meter on each side and the
wedge length is held constant at 0.3 meters. Monodisperse particles of radii 0.001 meters

constitute the simulated granular system.

Figure 4 shows the variation of the measured shock angle as the flow speed changes. Both
the actual average flow speed (in meters per second) and the Mach number of the upstream

flow are shown. The flow speed with the greatest variation in measured shock wave location
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FIG. 3. (Color Online) Granular Simulation Results: The measured location of a shock wave over
a wedge structure with a 10° half-angle using two-part segmented linear regression. The color
(shading) indicates the local average volume fraction as calculated at each grid point. The largest

volume fraction is concentrated around the upper and lower surface of the wedge.

TABLE I
Volume Fraction (v) 0.03
Coefficient of Restitution (e) 0.9
Flow Velocity (v) 0.55 m/s
Granular Temperature (7T) 0.01 m?/s?

corresponds to a flow Mach number of approximately 0.51. The shock detection algorithm
described above is sensitive to changes in the spatial distribution of particles in the two
dimensional simulation space; such a change in distribution occurs whenever the granular
fluid flow speed is in the compressible range (considered to be at Mach numbers above 0.3

for typical fluids). We therefore interpret the erratic behavior and large margin of error
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FIG. 4. (Color Online) The variation in oblique shock angle as a function of wedge angle and average
flow velocity. Shock wave detection at Mach 0.51 is interpreted as an artifact of compressible flow,
where shock waves are not fully formed, hence the large margin of error and erratic behavior.
When viewing this figure in grayscale, note that at a wedge angle of 10°, the curves proceed as

follows from top to bottom: v = 0.3,0.2,0.45,0.6,0.9,0.1 m/s, respectively.

associated with the shock detection at Mach 0.51 to the fact that the flow is compressible at
this flow speed, but shock waves are not fully formed. At a Mach number of approximately
1, the measured oblique shock angle has a generally increasing trend with respect to wedge
angle, but has a larger measured error at each wedge angle than is found for higher Mach
numbers. The measured oblique shock angles increase with increasing wedge angle and
decrease with increasing Mach number; each of these effects mirrors the behavior of typical
fluids. For the purpose of comparison to typical fluids, however, the oblique shock angle in
granular materials is much less sensitive to the flow velocity than the oblique shock angle in
air; this phenomenon has been noted by Wassgren, et. al. [23] and commented on further

by Bharadwayj, et. al. [24].
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FIG. 5. (Color Online) The variation in oblique shock angle as a function of wedge angle and
coefficient of restitution (e). When viewing this figure in grayscale, note that at a wedge angle of

10°, the curves proceed as follows from top to bottom: e = 1.0,0.9,0.8,0.7,0.6, 0.5, respectively.

Figure 5 shows the measured oblique shock wave angle over a wedge as the coefficient of
restitution describing collisions is varied. We note that the oblique shock angle is much more
sensitive to the coefficient of restitution than it is to the actual flow velocity. The coefficient
of restitution represents a mechanism by which the granular system can experience a decrease
in momentum (and therefore energy), and an analog for this in the world of fluid flow is
dynamic viscosity; in fact the conservation of momentum is one of the fundamental principles
required to formulate the Navier-Stokes equations describing fluid flow and dynamic viscosity
is often included in this formulation. The loss of energy characteristic of granular flow is
a result of inelastic collisions, and Fig. 5 shows the effect of increasingly inelastic collisions
on the bulk behavior of the granular system. For lower coefficients of restitution, the shock
wave develops closer to the wedge and for higher coefficients of restitution, the shock wave

develops farther from the wedge. Note that the problem of granular collapse, the clustering of
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FIG. 6. (Color Online) The variation in oblique shock angle as a function of wedge angle and
granular temperature. When viewing this figure in grayscale, note that at a wedge angle of 10°,

the curves proceed as follows from top to bottom: T' = 0.05,0.01,0.5,0,0.001 m?/s2, respectively.

granular gas constituents often observed in simulations with lower coefficients of restitution
[25], is overcome by the periodic nature of the inflow and outflow boundaries. Particle
velocities are resampled as they are moved from the outflow to the inflow boundary, and

thus the average upstream energy distribution varies little.

Because of the periodic nature of the simulation boundary conditions, particles which
lose energy as a result of collisions gain energy when they are reintroduced to the simulation
and the simulation avoids the problem of granular collapse or large-scale spatial segregation
of particles as has been observed in some granular flow regimes.

Figure 6 shows the variation of the measured oblique shock angle as the initial granular
temperature is varied. The granular temperature is a measure of the variance in the particle
velocity in each direction. An upstream granular temperature of zero is possible for particle

velocities that are all equal; a granular temperature of zero results in an infinite Mach number
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and thus an interesting condition at which to investigate the upper bound of supersonic flow
velocities. Figure 6 shows that the measured oblique shock angle is largely insensitive to the

initial granular temperature.

Figure 7 shows the variation of the oblique shock angle as the initial volume fraction of
the granular flow is varied. The state of a granular material is highly dependent on volume
fraction, and granular systems typically behave as gases at low volume fractions, and as
solids at relatively high volume fractions. In the area between gases and solids, the behavior
of granular systems is dependent on both the volume fraction and factors such as the rate of
energy loss in granular collisions typically characterized by parameters which describe the
collision frequency and the average rate of energy addition to the system, among others [26].

Figure 7 shows that the measured oblique shock wave angle is somewhat sensitive to the
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initial volume fraction. Comparing Fig. 7 to Fig. 6 and Fig. 5, we observe that the initial
volume fraction has a stronger effect on the measured oblique angle than initial granular
temperature, but a weaker effect than coefficient of restitution. We also observe that the
error associated with the oblique shock measurements for lower volume fractions is greater

than the corresponding error associated with higher volume fractions.

B. Flow Past a Disk

The flow of a granular system over a two-dimensional disk provides information about
the structure of detached granular shock waves. The formation of shock waves due to
supersonic blunt bodies has been of interest to the aerodynamics community since the early
days of supersonic flight; the historical significance of bow shocks in the development of
ballistic missiles is detailed by Anderson [27] and is a common story in the lore of supersonic
aerodynamics. We show the development of the granular analog to supersonic flow impinging
on a two-dimensional disk. An example of the resulting bow shock is shown in Fig. 8. Again
we note that variation of color (non-uniformity in shading upstream) prior to impact and
maintain that it is small compared to the energy decrease at the shock. We parameterize
the bow shock using two figures of merit: the distance between the disk and the shock wave
in the direction of the average flow (known as the standoff distance) and the angle that the
shock forms with the average flow direction outside of the neighborhood of the disk.

Figure 9 shows that the standoff distance decreases with increasing upstream average flow
velocity, but is relatively insensitive to the size of the disk obstructing flow. We note that
this is to be expected since as long as the disk radii are sufficiently small, the results should
approximate a continuum theory, and hence show a relatively flat variation with respect to
the radius of the disk.

Figure 10 shows that the standoff distance tends to increase with increasing coefficient
of restitution. As with the oblique shock angle in the case of the wedge, a coefficient of
restitution of 1.0 results in behavior that deviates from the behavior of systems with lower
coefficients of restitution (see Fig. 5). Completely elastic collisions result in standoff distances
that generally increase rather than remaining constant with increasing particle size. The
error associated with the standoff distance calculation tends to increase with increasing

coefficient of restitution. Particles impacting both the impinging disk and other particles
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FIG. 8. (Color Online) An example of a bow shock resulting from supersonic granular flow past
a disk. The estimated shock position shown by the shock detection algorithm is shown. As in
Figs. 1 and 3, color (shading) indicates the local average volume fraction as calculated at each grid
point The largest volume fraction is concentrated just upstream of the disk and the lowest volume

fraction follows immediately downstream.

in the flow leave the collision with much more energy than those with lower coefficients of
restitution; thus the shock wave generated by the disk has a larger spatial range with larger
coefficients of restitution.

Figure 11 shows the behavior of the standoff distance as upstream granular temperature
is varied. Since upstream granular temperature has a large effect on the Mach number of
the system, the resulting Mach number of the flow is also shown. As in the case of flow
over a wedge, monodisperse particle velocities result in a granular temperature of zero and,
therefore, a flow of infinite Mach number; infinite Mach number flows provide a theoretical
boundary to shock behavior. Figure 11 shows that as the granular temperature increases,

the Mach number also increases and the measured standoff distance decreases. As with
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FIG. 9. (Color Online) The variation in standoff distance as a function of disk radius and upstream
average velocity. When viewing this figure in grayscale, note that at a disk radius of 0.06 m, the

curves proceed as follows from top to bottom: v = 0.1,0.2,0.3,0.45,0.9,0.6 m/s, respectively.

variations in both coefficient of restitution and velocity, the standoff distance is not sensitive

to disk size.

Figure 12 shows that the standoff distance increases with increasing volume fraction,
which agrees with experiment [28]. For low volume fraction, which behave like rarefied
gases, the standoff distance increases slightly with increasing disk size. For high volume
fractions, the standoff distance slightly decreases with increasing disk size, but the error
associated with determining the shock wave location increases drastically. We posit that
this increase in shock wave error is due to the less gas-like behavior of the granular system

as volume fraction increases.
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FIG. 10. (Color Online) The variation in standoff distance as a function of disk radius and coef-
ficient of restitution. When viewing this figure in grayscale, note that at a disk radius of 0.06 m,

the curves proceed as follows from top to bottom: v = 1.0,0.9,0.8,0.7,0.6,0.5 m/s, respectively.

V. CONCLUSIONS

The study of granular systems has been of interest both because of the theoretical chal-
lenges of describing such systems and because of their myriad practical applications. This
paper seeks to use a simple model of granular systems in order to investigate the behavior
of supersonic granular flow over two types of impediments: wedges, which lead to the devel-
opment of oblique shock waves, and disks, which lead to the development of detached bow
shock waves. We vary the upstream volume fraction, the upstream granular temperature,
the average upstream velocity, and the coefficient of restitution describing the collisions
characterizing the granular system to examine the effect of these variations on the oblique
shock wave angle (for flow past a wedge) and the standoff distance of detached bow shock

waves (for flow past a disk). The results of the research presented indicate that for flow past
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FIG. 11. (Color Online) The variation in standoff distance as a function of disk radius and upstream
granular temperature. When viewing this figure in grayscale, note that at a disk radius of 0.06 m,

the curves proceed as follows from top to bottom: v = 0.001,0.01,0.05,0.5,0 m/s, respectively.

a wedge, the oblique shock wave angle is strongly affected by the coefficient of restitution
characterizing collisions in the granular system; however, unlike for typical gas systems, the
average upstream flow velocity (and thus Mach number) and the granular temperature do
not strongly affect the oblique shock wave angle. These observations are consistent with
experimental observations; however, it is important to note that shocks may be non-unique
for the same upstream conditions and wedge angles [5, 7]. This will need to be considered
for future studies. The oblique shock wave angle is also influenced by the upstream volume
fraction, although the influence of volume fraction is less than that of coefficient of restitu-
tion. Similar results are found in the standoff distance for bow shock waves; the upstream
volume fraction of the system and the coefficient of restitution have strong effects on the
standoff distance, while granular temperature and upstream average flow velocity do not

have large effects.
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FIG. 12. (Color Online) The variation in standoff distance as a function of disk radius and coef-
ficient of restitution. When viewing this figure in grayscale, note that at a disk radius of 0.06 m,

the curves proceed as follows from top to bottom: v = 0.01,0.001,0.03,0.05,0.1 m/s, respectively.

The work presented in this paper represents preliminary results in our study of the physics
of granular gases, particularly the physics of shock waves in granular systems. We expect
that the data presented in this paper can be used to test theories of granular gases, perhaps to
help reconcile observed differences between experimental observations and granular theories
[29]. The results presented in this paper can also be used to investigate models of air flow

which use event-driven simulations similar to the one used to describe simplified granular

flow.

22



VI.

ACKNOWLEDGEMENTS

ACKNOWLEDGMENTS

We gratefully acknowledge support from the National Aeronautics and Space Admin-

istration and the North Carolina Space Grant Consortium. We would also like to thank

Ro

dney Metoyer for his assistance with preparing the figures used in this paper.

[1] E. Rericha, C. Bizon, M. Shattuck, and H. Swinney, Physical Review Letters 88, 14302

(2001).

[2] A. Goldshtein, M. Shapiro, and C. Gutfinger, Journal of Fluid Mechanics 316, 29 (1996).

[3] J. Bougie, S. Moon, J. Swift, and H. Swinney, Physical Review E 66, 51301 (2002).

[4] A. Benjamin and B. Source, Physics of Fluids 20, 056601 (2008).

[6] X. Cui and J. M. N. T. Gray, Geophysical Research-Earth Surface 112, F04012 (2007).

[6] C. G. Johnson and J. M. N. T. Gray, Journal of Fluid Mechanics 675, 87 (2011).

[7] J. M. N. T. Gray and X. Cui, Journal of Fluid Mechanics 579, 113 (2007).

[8] A. W. Vreman, M. Al-Tarazi, and J. A. M. Kuipers, Journal of Fluid Mechanics 578, 233

(2007).

[9] H. Jaeger, S. Nagel, and R. Behringer, Reviews of Modern Physics 68, 1259 (1996).

[18]

J. D. Anderson, Fundamentals of Aerodynamics, 4th ed. (McGraw-Hill, New York, 2001) ISBN
978-0072373356.

J. Gray, Y. Tai, and S. Noelle, Journal of Fluid Mechanics 491, 161 (2003).

P. Heil, E. Rericha, D. Goldman, and H. Swinney, Physical Review E 70, 060301 (2004).

K. Hakonardéttir and A. Hogg, Physics of Fluids 17, 077101 (2005).

Y. Amarouchene and H. Kellay, Physics of Fluids 18, 031707 (2006).

M. Chiou, Y. Wang, and K. Hutter, Acta mechanica 175, 105 (2005).

A. Levy and M. Sayed, Physics of Fluids 19, 023302 (2007).

A. Soleymani, P. Zamankhan, and W. Polashenski Jr, Applied Physics Letters 84, 4409
(2004).

V. Buchholtz and T. Poschel, Granular Matter 1, 33 (1998).

23



[19] H. Herrmann and S. Luding, Continuum Mechanics and Thermodynamics 10, 189 (1998).

[20] E. Rericha, Shocks in Rapid Granular Flows, Ph.D. thesis, University of Texas at Austin
(2004).

[21] S. B. Savage, Journal of Fluid Mechanics 194, 457 (1988).

[22] S. Torquato, B. Lu, and J. Rubinstein, Journal of Physics A: Mathematical and General 23,
L103 (1990).

[23] C. Wassgren, J. Cordova, R. Zenit, and A. Karion, Physics of Fluids 15, 3318 (2003).

[24] R. Bharadwaj, C. Wassgren, and R. Zenit, Physics of Fluids 18, 043301 (2006).

[25] J. Rajchenbach, Advances in Physics 49, 229 (2000).

[26] S. Esipov and T. Poschel, Journal of Statistical Physics 86, 1385 (1997).

[27] J. Anderson, in Computational Fluid Dynamics, edited by J. F. Wendt (Springer Berlin Hei-
delberg, 2009) pp. 3—14.

[28] J. Boudet, Y. Amarouchene, and H. Kellay, Physical Review Letters 101, 254503 (2008).

[29] A. Goldshtein, A. Alexeev, and M. Shapiro, Granular Gas Dynamics , 187 (2003).

24



