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Disordered jammed packings under confinement have received considerably less attention than
their bulk counterparts and yet arise in a variety of practical situations. In this work we study binary
sphere packings that are confined between two parallel hard planes, and generalize the Torquato-
Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010)] to obtain
putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity
over a large range of plane separation distances H , small to large sphere radius ratio α and small
sphere relative concentration x. We find that packing characteristics can be substantially different
from their bulk analogs, which is due to what we term as “confinement frustration”. Rattlers in
confined packings are generally more prevalent than those in their bulk counterparts. We observe
that packing fraction, rattler fraction and degree of disorder of MRJ packings generally increase with
H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity
of certain values of H are due to associated discontinuous transitions between different jammed
states. When the plane separation distance is on the order of two large-sphere diameters or less, the
packings exhibit salient two-dimensional (2D) features; when the plane separation distance exceeds
about thirty large-sphere diameters, the packings approach three-dimensional (3D) bulk packings.
As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to
what we call “size-disparity” frustration. We find that at intermediate α and when x is about 0.5
(50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that
is based on the number density fluctuations in the direction perpendicular to the hard walls. We
also apply the local volume-fraction variance σ2

τ (R) to characterize confined packings and find that
these packings possess essentially the same level of hyperuniformity as their bulk counterparts. Our
findings are generally relevant to confined packings that arise in biology (e.g., structural color in
birds and insects) and may have implications for the creation of high-density powders and improved
battery designs.

PACS numbers: 81.05.Rm 61.50.Ah 05.20.Jj

I. INTRODUCTION

Frictionless hard-sphere packings in three-dimensional
Euclidean space R

3 has a venerable history because this
idealized model captures the salient structural features
of many complex systems such as liquids [1–3], crystals
[4], glasses [2–5], colloids [6], granular media [6, 7], het-
erogeneous materials [6, 8–10], and powders [11–13]. A
packing in d-dimensional Euclidean space R

d is defined
as a large collection of nonoverlapping solid objects (par-
ticles). The packing fraction φ is the fraction of space
R

d covered by the particles. During the last decade, the
well-known Kepler conjecture that the densest way to
pack equal-sized spheres in R

3 is the face-centered-cubic
(fcc) lattice (or its stacking variants) was finally proven
[14]. Equal-sized hard-sphere systems in thermodynamic
equilibrium exhibit a first-order liquid-solid phase tran-
sition [1, 15] at the freezing point. Upon the most rapid
compression of a hard-sphere liquid beyond the freezing
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point, the system falls out of equilibrium and follows the
metastable branch, whose end state is presumably the
MRJ state in the infinite-volume limit [2, 3, 16–20].

Roughly speaking, MRJ packings [16, 17] are mechani-
cally stable packings with maximal disorder. Specifically,
they contain a subset of strictly-jammed (i.e., mechani-
cally stable) particles (backbone) that allow no simulta-
neous collective motion of the particles and non-volume-
increasing strains of the system boundary, with the un-
jammed remainder (rattlers) imprisoned by the backbone
and possess minimal order, as measured by a variety of
order metrics [16, 17, 20–23]. MRJ packings can be con-
sidered to be prototypical glasses [17, 24, 25] because
they are maximally disordered nonequilibrium structures
and perfectly rigid with unbounded elastic moduli [26].
Three-dimensional MRJ packings of equal-sized spheres
have a packing fraction φMRJ ≈ 0.639 [16, 19, 20, 27], and
an isostatic backbone [20, 23], implying that the back-
bone possesses the minimum number of particle contacts
required for strict jamming. It is important to note that
the MRJ state is a mathematically well-defined state that
is distinguishable from the more ambiguous random close
packing state [17, 20], especially in two dimensions [28].
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Sphere packings with a polydispersity in size have a
richer phase diagram than their monodisperse counter-
parts and enable a greater control of their structural char-
acteristics, such as density and degree of order. Polydis-
perse sphere packings have served as structural models
for a variety of solid states matter including high temper-
ature and pressure phases of various binary intermetallic
and rare-gas compounds [29, 30], alloys [31], solid propel-
lants [32], concrete [33], and ceramics [34]. It has been
recently suggested that the packing fraction at which the
viscosity of hard-sphere suspensions diverges is closely
related to the MRJ density [35]. Also, confined MRJ
binary packings are relevant in the evolution of parti-
cle segregation in dense granular flow [36]. Using the
Torquato-Jiao (TJ) packing algorithm [19], Hopkins et al.
[23] have shown that MRJ packings of binary spheres can
achieve anomalously large packing fractions with a range
of rattler concentrations. This structural tunability ca-
pability has implications for the design of novel granular
low-porosity powders [32–34].

Finite disordered jammed packings have received con-
siderably less attention than their bulk counterparts,
whether confined or not. Recent studies have investi-
gated finite densest local sphere packings without bound-
aries in both two and three dimensions [37, 38]. More-
over, other studies have shown that boundaries mod-
ify local and large-scale packing arrangements, affecting
the associated macroscopic properties of the materials
as well [39–43]. Our focus in this work is confined dis-
ordered packings since they provide many open funda-
mental questions (as detailed subsequently below) and
arise in practice. In planar fuel cell electrode materials,
the particle packings are confined in one direction and
in the vicinity of maximally randomly jammed (MRJ)
states [44]. Spatial constraints also arise in many pack-
ing problems in biology, including packings of organelles
within cells [45, 46], packings of living cells that com-
prise a variety of tissues [6, 47–49], natural photonic
structures consisting of dense disordered arrangements
of chitin nanoparticles [50], and the spatial distribution
of cancer cells among healthy cells [51–54].

Quasi two-dimensional hard-sphere packings [55] are
packings that are confined in one direction with a length
scale on the order of a few to tens of particle sizes. Much
of the previous work on confinement focused on the study
of equal-sized hard spheres in equilibrium trapped be-
tween two parallel hard planes with plane separation dis-
tances up to five sphere diameters [40–42]. These equilib-
rium studies have shed light on many fundamental ques-
tions such as freezing, glass formation, and the transition
of systems between two and three dimensions [39–42].
Various exotic phases not observed in their bulk counter-
parts were shown to arise, including buckled monolayer,
rhombic bilayer, adaptive prism phases, etc.

Desmond and Weeks [56] have investigated confined
“random close” packings of a 50-50 binary mixture of
spheres with a small to large sphere radius ratio of 5/7
in both two and three dimensions. Their findings quali-

tatively demonstrate that the presence of confining walls
significantly alters packing characteristics, including sub-
stantially lowering packing fractions and inducing layered
structures in the vicinity of the hard walls. However,
as the authors pointed out themselves, it is not clear
if their algorithm produced mathematically well-defined
MRJ states that are mechanically stable; more specifi-
cally, the packings generated by their algorithm could be
at most collectively jammed, i.e., no collective motion of
any subset of particles exists that can lead to unjamming
of the packing in a non-deforming container [26, 57].
In this work, we focus on the generation and analysis of

high-fidelity isostatic MRJ binary hard-sphere packings
that are confined between two parallel hard planes sepa-
rated by a distance H [58]. We consider binary packings
since almost all real systems possess some degree of par-
ticle size disparity. The packing characteristics depend
on H , small to large sphere radius ratio α, and small
sphere relative concentration x [23, 59]. In the bulk case,
the TJ sequential linear programming algorithm [19] has
been shown to produce high-fidelity MRJ packings that
are strictly jammed and isostatic [19, 20]. Here we gen-
eralize the TJ algorithm [19] to obtain for the first time
putative MRJ packings that are exactly isostatic over a
large range of plane separation distances H , sphere size
ratios, and compositions. Note that isostatic packings
confined between two parallel hard planes possess 3NB+1
particle-particle and particle-plane contact pairs, which
we will discuss in more details in Sec. II. Some open fun-
damental questions that we wish to address in the present
study are the following:

• How do confined MRJ binary sphere packings differ
structurally from their bulk counterparts? For ex-
ample, are they isostatic as in the bulk case [23] or
are they hyperstatic? Are rattlers more prevalent
when MRJ packings are confined relative to their
bulk counterparts?

• What are good order metrics and structural de-
scriptors to identify and characterize true MRJ
states for confined binary sphere packings?

• How do packing fractions, rattler fractions and or-
der metrics vary as functions ofH for binary sphere
packings at different α and x?

• How do confined MRJ packings transition between
two and three dimensions?

Our findings shed light on aspects of these open ques-
tions. Specifically, we find that the rattler fractions of
confined packings are generally higher than those of their
bulk counterparts. We introduce an order metric ψ (de-
fined in Sec. III), which is based on the number density
fluctuations in the direction perpendicular to the hard
walls, to quantify the order of packings. We observe that
packing fraction, rattler fraction and disorder of MRJ
packings generally increase with H , though exceptions
exist. We also observe that when H is on the order
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of two large-sphere diameters or less, the packings ex-
hibit salient two-dimensional (2D) features; when H ex-
ceeds about thirty large-sphere diameters, the packings
approach three-dimensional (3D) bulk packings. We find
that at intermediate α and x, the disorder of packings is
maximized for a given H , as measured by the aforemen-
tioned order metric ψ. In addition, the confined systems
tend to have more backbone spheres with fewer contacts
relative to their bulk counterparts, which decrease with
H and exhibit smaller density fluctuations compared to
corresponding Poisson point processes. Our findings in
general are relevant to confined packings that arise in
biology (e.g., structural color in birds [60] and insects
[50, 61]) and may have implications for the creation of
high-density powders [32–34] and improved battery de-
signs [44].
The rest of the paper is organized as follows: In Sec.

II, we discuss the generalized TJ algorithm employed to
generate confined packings and the relation to determine
isostaticity for these packings. In Sec. III, we employ
various statistics and structural descriptors to character-
ize confined MRJ binary hard-sphere packings. In Sec.
IV, we offer concluding remarks, and propose directions
in which our work might be related and extended.

II. SIMULATION PROCEDURE

In this section we first discuss the generalized TJ se-
quential linear programming algorithm [19] that we will
employ to generate confined packings. In our previ-
ous work [19, 20, 23, 62, 63], the task of generating
dense packings of hard particles was formulated as an
optimization problem called the adaptive shrinking cell
(ASC) scheme. The objective function is taken to be
the negative of the packing fraction φ. The positions
and orientations of the particles of fixed sizes as well as
the deformation and compression/expansion of the peri-
odic simulation box are the optimization design variables.
The ASC optimization problem can be solved using var-
ious techniques, depending on the shapes of the particles
[19, 20, 62, 63]. In the case of sphere packings in the
vicinity of a jamming basin [27], the objective function
and impenetrability constraints can be exactly linearized.
This enables one to exploit the efficient TJ sequential
linear programming algorithm that enables one, in prin-
ciple, to generate strictly jammed bulk sphere packings
that are ordered as well as disordered, including such iso-
static MRJ packings [19, 20, 23, 64]. Here we generalize
the TJ algorithm to take into account confinement and
apply to produce MRJ packings of binary spheres at dif-
ferent H , α, and x. It is noteworthy that although in
this work the generalized TJ algorithm is employed to
generate disordered jammed packings, it can be readily
applied to produce confined hyperstatic ordered pack-
ings by tuning key parameters, such as the use of small
number of particles and increasing the influence sphere
radius [19, 59]. Periodic boundary conditions are applied

to a fundamental cell containing N spheres in directions
parallel to the fixed hard walls, allowing simulation box
to deform and shrink on average in these directions, as
shown schematically in Fig. 1.

FIG. 1. (Color online) Schematic illustration of the gener-
alized TJ algorithm to generate confined MRJ binary hard-
sphere packings. Periodic boundary conditions are applied
to a fundamental cell in directions parallel to the fixed hard
walls separated by H , allowing simulation box to deform and
shrink on average in these directions.

The number of independent components for the strain
tensor ǫ applied to the fundamental cell is reduced due
to the confinement and ǫ possesses the following form:

ǫ =





ǫ11 ǫ12 0
ǫ12 ǫ22 0
0 0 0



 , (1)

Also, in the direction perpendicular to the planes, addi-
tional constraints are applied such that the spheres do
not move beyond the impenetrable planes. Specifically,
the following objective function is employed for the linear
program:

min Tr(ǫ) = ǫ11 + ǫ22, (2)

where ǫ is a strain tensor that deforms and shrinks on
average the fundamental cell in directions parallel to the
confining planes. The adaptive fundamental cell is de-
scribed by a generating matrix Λ:

Λ =





λ11 λ21 0
λ12 λ22 0
0 0 λ33



 . (3)

The quadratic nonoverlap constraints between spheres
are linearized locally to give:

Λ · rλ
ji · ǫ ·Λ · rλ

ji +∆x
λ
i ·G · rλ

ji

+∆x
λ
j ·G · rλ

ij

≥ 1

2
[(σi + σj)/2− r

λ
ji ·G · rλ

ji],
(4)

where σi, x
λ
i and ∆x

λ
i are the diameter, local coordinate

(in the lattice coordinate system) and local displacement
of sphere i, rλ

ij = (xλ
j +∆x

λ
j )− (xλ

i +∆x
λ
i ) is the relative
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displacement from sphere i to sphere j, and G = Λ
T ·Λ

is the Gram matrix of the lattice Λ. The constraints that
spheres cannot move beyond the fixed hard walls can be
expressed as:

σi
2λ33

≤ (xλi )3 + (∆xλi )3 ≤ 1.0−
σi

2λ33
. (5)

A. Isostatic Conditions for Confinement

We establish the relation to determine isostaticity for
packing of hard spheres confined between two paral-
lel hard planes separated by a distance H . For con-
fined packings of frictionless spheres in R

3, there are
3(NB − 1) + 1 = 3NB − 2 degrees of freedom associ-
ated with translating the spheres (up to uniform transla-
tions of the whole packing under periodic boundary con-
ditions in parallel directions), where NB is the number
of (jammed) backbone spheres. The simulation box is al-
lowed to deform for strict jamming in parallel directions
and thus there are three additional degrees of freedom
associated with straining the fundamental cell, totaling
Fs = 3NB − 2 + 3 = 3NB + 1 degrees of freedom that
must be constrained. Since the nonoverlap constraints
are inequality constraints, Fs + 1 of them are required
to satisfy isostaticity. Since the system volume cannot
increase, the first constraint is Tr(ǫ) ≤ 0. Therefore, the
number of other constraints provided by particle-particle
and particle-plane contact pairs should be equal to the
number of degrees of freedom, i.e., the number of particle-
particle and particle-plane contact pairs M should be

M = 3NB + 1. (6)

Note that this number is different from the bulk case,
where isostatic strictly-jammed sphere packings should
possess 3NB + 3 particle-particle contact pairs [20].

III. RESULTS

We first provide some general remarks about jammed
particle states in the confined space between two par-
allel planes separated by H . Not surprisingly, confined
jammed packings are generally structurally distinctly dif-
ferent from their bulk counterparts, especially when H is
not much larger than the characteristic particle size σ,
which is defined as the average sphere diameter. This is
because certain local particle configurations found in bulk
packings are inconsistent with local configurations near
hard walls due to the impenetrability conditions imposed
by walls. We will henceforth refer to this phenomenon as
“confinement frustration”.
Moreover, confined packings present additional sub-

tleties because the nature of the jammed states depend
on H in a nontrivial way. For example, a jammed state
for a fixed value ofH does not necessarily remain jammed
upon an infinitesimal change in H via infinitesimal local

particle rearrangements; the packing can undergo discon-
tinuous transitions between jammed states as H varies
across these critical values of H , which involve dramatic,
finite global rearrangements of the particles, as schemat-
ically shown in Fig. 2. These transitions lead to discon-
tinuities in packing characteristics of the jammed states,
as we will see later.

FIG. 2. (Color online) Schematic illustration of the structural
changes of the jammed states in the confined space between
two parallel hard planes separated by H as H varies. For cer-
tain ranges of H , jammed packings remain jammed through
small local rearrangements of the particles as H varies, as
shown in the upper panel. However, in the vicinity of certain
values of H , a jammed packing can undergo a discontinu-
ous transition to reach a dramatically different jammed state
upon small changes in H , as shown in the lower panel.

For each combination of H , α, and x, at least ten
MRJ binary sphere packings are obtained from random
sequential addition (RSA) initial conditions [6] at low
initial packing fractions 0.1 ≤ φinit ≤ 0.3. The number
of spheres N in the fundamental cell is chosen such that
the length scale of the generated MRJ packing in direc-
tions parallel with the hard walls is at least of the order
of ten large sphere diameters. This criterion is used to
suppress finite-size effects in the directions where peri-
odic boundary conditions are applied [56]. Specifically,
at small H , N is chosen to be 1000; while at large H ,
N is chosen to be 4000. The great majority of pack-
ings that we produce using the generalized TJ algorithm
are exactly isostatic according to formula (6), although a
small percentage at certain values of H , α, and x include
one or two more particle-particle and particle-plane con-
tacts than the number corresponding to isostaticity, pre-
sumably because the numerical tolerance of the simula-
tions were not sufficient to distinguish between proximity
and contact. Figure 3 shows two representative packings
obtained in our simulations: a 1000-sphere packing at
H/σ = 5.0, α = 2/3, x = 0.5 close to the equal-sized
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sphere case and a 4000-sphere packing at H/σ = 20.0,
α = 0.2, x = 0.97 with a large size contrast. It can be
clearly seen that both configurations are disordered and
densely packed, distinct from those confined crystalline
phases reported previously [40–42]. Moreover, in both
cases the hard walls induce contacting layered structures
that locally pack inefficiently.

(a)

(b)

FIG. 3. (Color online) Boundaries modify local and large-
scale packing arrangements, for example inducing layered
structures in their vicinity and leading to packing inefficiency.
Here we present two such examples. (a) Representative MRJ
binary packing of 1000 hard spheres at α = 2/3 and x = 0.5
confined between two parallel hard planes at H/σ = 5.0. (b)
Representative MRJ binary packing of 4000 hard spheres at
α = 0.2 and x = 0.97 confined between two parallel hard
planes at H/σ = 20.0.

For packings at different H , α, and x, we compute
their averaged packing fractions φMRJ(H ;α, x) and rat-

tler fractions NR/N(H ;α, x), where NR is the num-
ber of rattlers in a packing with N spheres. In Fig.
4 we plot φMRJ and NR/N as functions of H at
(α, x) = (1.0,−), (2/3, 0.5), (0.2, 0.95), (0.2, 0.97), respec-
tively. We find that generally φMRJ increases with H
in terms of the overall trend and approaches the bulk
value when H is of the order of thirty large-sphere diam-
eters, as finite-size and boundary effects become negligi-
ble. Note that the bulk value of φMRJ is 0.639 [19, 20]
for the monodisperse case and 0.785 [23] for α = 0.2 and
x = 0.97. We find that rattlers in confined packings are
generally more prevalent than in their bulk counterparts
[19, 20, 22, 23, 65], which is induced by hard boundaries.
As H increases, the rattler fraction gradually decreases
to the bulk value, e.g., roughly 1.5% in the monodisperse
MRJ case [20] and 14.4% in the binary case of α = 0.97,
x = 0.20 [23].

It is noteworthy that at certain combinations of α
and x, there are local maxima and minima in φMRJ

and NR/N as H varies, for example the local maxima
for φMRJ and minima for NR/N at H/σ = 15.0, α =
0.95, x = 0.20 and H/σ = 20.0, α = 0.97, x = 0.20. This
is due to the aforementioned discontinuous transitions.
Note also that the fluctuations of φMRJ are less signifi-
cant at x = 0.97 compared to x = 0.95. This is because
when the size contrast is large, H/σS is much larger than
H/σL (σS and σL are the diameters of the small and large
spheres, respectively), and the hard walls affect the large
spheres substantially more than the small spheres. As
a result, as the number of small spheres increases, i.e.,
x increases, the effects of the hard walls on the pack-
ing structures become less significant, and φMRJ depends
relatively less sensitively on H .

In addition, as the size contrast increases, the rattler
fraction dramatically increases. This is due to “size-
disparity” frustration, i.e., in this binary system, it is
not possible for a subset of spheres with the same size,
surrounded by spheres with another size, to be arranged
into an inherent structure (mechanically stable configu-
rations at the local maxima in the density landscape) of
the corresponding single-component system. This size-
disparity frustration induces more rattlers relative to the
monodisperse case, e.g., an increase as high as about 91%
in the rattler fraction at H/σ = 15.0, α = 0.2, x = 0.97
compared to the corresponding monodisperse case. To
sum up, one can see that φMRJ and NR depend sensi-
tively on H , α and x for H comparable to sphere sizes.

In order to further characterize the packings, we com-
pute the number density profiles ρ(z) [39, 56] as a func-
tion of the height z for different values of H , α, and x.
Specifically, we divide the space available to the sphere
centers into Nz vertical bins (i.e., in the z direction that
is perpendicular to the planes), and count the number of
sphere centers that fall into each bin at different height
z, respectively. Here we choose Nz to be 50 such that
the results do not vary sensitively upon perturbing the
thickness of the bins, and do not lose local information
as well. In Fig. 5 we plot the density profiles ρ(z) of
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FIG. 4. (Color online) Plot of the average packing fraction
φMRJ and rattler fraction NR/N as functions ofH/σ obtained
at various α and x, where σ is the average sphere diameter.
Each data point in the plot is obtained by averaging over
10 packings (vertical bars represent one standard deviation).
(a) α = 1.0 (equal-sized spheres). (b) α = 2/3, x = 0.5.
(c) α = 0.2, x = 0.95. There is a sudden drop of NR/N
at H/σ = 15.0, which is due to a discontinuous transition
between two jammed states upon small changes in H in the
vicinity of this dimensionless height. (d) α = 0.2, x = 0.97.
There is a sudden drop of NR/N at H/σ = 20.0, which is
due to a discontinuous transition between two jammed states
upon small changes in H in the vicinity of this dimensionless
height.

monodisperse (i.e., equal-sized) hard-sphere packings at
various H as examples. For all values of H shown in Fig.
5, there are two major peaks adjacent to the two hard
walls corresponding to the two contacting layers and a
few smaller peaks in the interior of the packings, whose
intensities decrease with increasing H . This indicates
increasing disorder as H increases, which is due to de-
creasing confinement frustration.

In Fig. 6 we plot the density profiles ρ(z) of binary
hard-sphere packings at α = 2/3 and x = 0.5 for cer-
tain values of H . Similar behaviors could be observed
in these binary systems as in their monodisperse coun-
terparts. Interestingly, we can observe two split peaks of
contacting large and small spheres adjacent to the hard
walls. We note that at the same H the density profiles of
the binary systems appear to be flatter than those of the
monodisperse systems, implying increasing disorder due
to the aforementioned size-disparity frustration. We will
be able to quantify the order of the system in more details
as we introduce an order metric later. It is noteworthy
that from Figs. 5 and 6, we can see that when the plane
separation distance is of the order of two large-sphere di-
ameters or less, the packings possess layered structures,
which are salient 2D features; when the plane separation
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FIG. 5. (Color online) Density profiles of confined equal-sized
hard-sphere packings at various H/σ, where σ is the average
sphere diameter. (a) H/σ = 2.0. (b) H/σ = 4.5. (c) H/σ =
5.0. (d) H/σ = 30.0.

distance exceeds about thirty large-sphere diameters, the
packings approach 3D bulk packings and exhibit rela-
tively flat density profiles, which is due to the decreasing
confinement frustration.
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FIG. 6. (Color online) Density profiles of confined binary
hard-sphere packings at various H/σ at α = 2/3 and x = 0.5,
where σ is the average sphere diameter. (a) H/σ = 2.0. (b)
H/σ = 5.0. (c) H/σ = 30.0.

Based on density fluctuations in the direction perpen-
dicular to the hard walls, we define an order metric ψ to
quantify the order of packings:

ψ =
1

H − σL − 2δ

∫ H−σL/2−δ

σL/2+δ

(ρ(z)− ρ̄)2

ρ̄2
dz, (7)

where σL is the diameter of the large sphere, δ is chosen
as a small quantity (relative to σL) to exclude the layers
in contact with the two hard walls, ρ(z) is the particle
density at height z, and ρ̄ is the particle density averaged
over different heights z excluding the layers in contact
with the hard walls. In Fig. 7 we plot the computed
ψ as a function of H at different α and x. As one can
see, the packings generally become more disordered, as
H increases due to decreasing confinement frustration.
There are local maxima and minima in ψ as H varies
across certain critical values at certain values of α and x,
which is due to aforementioned discontinuous transitions.

0 5 10 15 20 25 30 35
H/σ

0

1

2

3

4

ψ

0 5 10 15 20 25 30 35
H/σ

0
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0.8

1
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(a) (b)
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FIG. 7. (Color online) Plot of the order metric ψ as a function
of H/σ obtained at various α and x, where σ is the average
sphere diameter. Each data point in the plot is obtained
by averaging over 10 packings (vertical bars represent one
standard deviation). (a) α = 1.0 (equal-sized spheres). (b)
α = 2/3, x = 0.5. (c) α = 0.2, x = 0.95. (d) α = 0.2, x = 0.97.

After looking at various statistics as H varies at dif-
ferent α and x, we investigate the effects of size contrast
and composition on the packings at given H in details.
In Fig. 8(a), we plot φMRJ and rattler fraction NR/N as
functions of α at H/σ = 5.0 and x = 0.5. We find that
φMRJ reaches a maximum at about α = 0.4, which is re-
lated to the fact that at such α, most small spheres par-
ticipate in the backbone and fill the interstices between
the large spheres, leading to efficient packings. However,
NR/N decreases monotonically with α as size-disparity
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frustration decreases. This trends are similar to those
observed in bulk counterparts [23]. In Fig. 8(b), we
plot φMRJ and NR/N as functions of x at H/σ = 5.0
and α = 2/3. We find that in the range of x studied,
φMRJ increases monotonically as x increases since more
small spheres are available to fill the small “voids” left by
the large spheres, and NR/N reaches a maximum near
x = 0.5 due to maximized size-disparity frustration, as
mentioned earlier. Note that if x were to increase beyond
the range currently investigated, we would expect φMRJ

to eventually reach a maximum, similar to the behav-
iors reported in previous studies of other binary systems
[59, 66, 67], though this remains to be verified by future
simulations.
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FIG. 8. (Color online) (a) Plot of the average packing fraction
φMRJ and rattler fraction NR/N as functions of α obtained at
H/σ = 5.0 and x = 0.5, where σ is the average sphere diame-
ter. Each data point in the plot is obtained by averaging over
10 packings (vertical bars represent one standard deviation).
(b) Plot of the average packing fraction φMRJ and rattler
fraction NR/N as functions of x obtained at H/σ = 5.0 and
α = 2/3, where σ is the average sphere diameter. Each data
point in the plot is obtained by averaging over 10 packings
(vertical bars represent one standard deviation).

Furthermore, we compute and plot in Fig. 9(a) the

order metric ψ defined in Eq. 7 as a function of α at
H/σ = 5.0 and x = 0.5. We find that in this case the
minimum of ψ occurs at about α = 2/3 as α varies. This
is because at small α, large spheres possess relatively
large exclusion volumes empty of other sphere centers,
leading to large fluctuations in ρ(z); while at large α, lay-
ered structures are favored, which possess large density
fluctuations in the direction perpendicular to the planes
as well. In Fig. 9(b), we plot ψ as a function of x at
H/σ = 5.0 and α = 2/3. We find that the minimum of ψ
occurs at about x = 0.5 as x varies, implying maximized
disorder due to favorable mixing entropy.



9

0.2 0.4 0.6 0.8 1
α

0

0.2

0.4

0.6

0.8

1
ψ

(a)

0.2 0.4 0.6 0.8
x

0.2

0.3

0.4

0.5

ψ

(b)

FIG. 9. (Color online) (a) Plot of the order metric ψ as a
function of α obtained at H/σ = 5.0 and x = 0.5, where σ
is the average sphere diameter. Each data point in the plot
is obtained by averaging over 10 packings (vertical bars rep-
resent one standard deviation). (b) Plot of the order metric
ψ as a function of x obtained at H/σ = 5.0 and α = 2/3,
where σ is the average sphere diameter. Each data point in
the plot is obtained by averaging over 10 packings (vertical
bars represent one standard deviation).

Subsequently, we employ more structural descriptors
to further characterize the packings. In Fig. 10 we plot
the detailed contact distributions of backbone spheres
for two representative cases: H/σ = 5.0, α = 2/3, and
x = 0.5, and H/σ = 20.0, α = 0.2 and x = 0.97. We
find that in both cases most jammed small spheres have
4 particle-particle and particle-plane contacts, similar to
the corresponding bulk cases [23]. However, a small per-
centage of small spheres possess more than 6 contacts

and there are two separate peaks in the contact distribu-
tion of jammed large spheres at H/σ = 20.0, α = 2/3,
and x = 0.5, which are different from the bulk cases [23].
Also, the percentages of jammed small and large spheres
that possess few contacts in these confined packings are
higher than their bulk counterparts [23], which decrease
with H . These phenomena are caused by the aforemen-
tioned confinement frustration, which modify the local
arrangements near the hard walls.

(a) (b)

(c) (d)

FIG. 10. (Color online) Histograms depicting the average
fractions of jammed spheres with specified numbers of con-
tacts for H/σ = 5.0, α = 2/3, and x = 0.5 [(a) and (c)], and
H/σ = 20.0, α = 0.2 and x = 0.97 [(b) and (d)], where σ is
the average sphere diameter. Plots (a), and (b) each repre-
sent the average over 10 packings of the fractions of jammed
small spheres with specified contact numbers, and plots (c),
and (d) each represent average fraction for the jammed large
spheres.

The local volume-fraction variance σ2
τ (R) [68, 69] in a

spherical observation window has been employed in our
previous work to characterize bulk packings [68–73]. Here
we extend the application of this descriptor to confined
packings, with the constraint that the radius of the win-
dow R should not exceed half of the plane separation
distance H , i.e., R ≤ H/2. The volume-fraction variance
is sampled by randomly placing observation windows in
the system under the constraint that the windows should
be entirely within the confining space. We also com-
pute σ2

τ (R) for the bulk counterparts of these confined
packings for comparison. Note that if a system is hyper-
uniform, its local volume-fraction variance σ2

τ (R) should
decay faster than R−d (where d is the dimension), i.e.,
in three dimensions the scaled local volume-fraction vari-
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ance 103(R3ρ)σ2
τ (R) should decrease as R approaches in-

finity [69–71]. We find that these packings possess essen-
tially the same local volume-fraction variance σ2

τ (R) as
a function of R as that of their bulk counterparts, which
reflect effectively the same level of hyperuniformity, as
shown in Fig. 11 [74]. Note that a disordered hyper-
uniform system is an exotic amorphous state of matter
whose local volume-fraction fluctuations asymptotically
decay faster than the reciprocal of the volume of the ob-
servation window, which the decay associated with typi-
cal disordered systems. The hyperuniform decay rate im-
plies that the local volume fraction approaches the global
value φMRJ anomalously fast [69–73]. Nonetheless, these
results for σ2

τ (R) demonstrate that hyperuniformity ap-
pears to be a signature of MRJ packings, whether they
exist in the bulk or under confinement. 1 1.5 2 2.5 3

Rρ1/3
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1

1.5
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3 (R

3 ρ)
σ τ2 (R
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(a)
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3 (R
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σ τ2 (R
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α = 2/3, x = 0.5, H/σ = 5.0
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α = 2/3, x = 0.5, bulk

(b)

FIG. 11. (Color online) Scaled local volume-fraction variance
103(R3ρ)σ2

τ (R) as function of the window radius R for con-
fined hard-sphere packings in (a) monodisperse case and (b)
binary case of α = 2/3, and x = 0.5 at H/σ = 5.0, 20.0
and their bulk counterparts. Note that 103(R3ρ)σ2

τ (R) de-
creases as R increases, i.e., σ2

τ (R) decays faster than R−3,
implying hyperuniformity [69–71]. Moreover, these confined
packings possess essentially the same local volume-fraction
variance σ2

τ (R) as their bulk counterparts, which reflect es-
sentially the same level of hyperuniformity.

IV. CONCLUSIONS

In this paper, we generalized the TJ sequential linear
algorithm to generate exactly isostatic putative MRJ bi-
nary hard-sphere packings confined between two parallel
hard planes over a large range of plane separation dis-
tances H , small to large sphere radius ratio α and small
sphere relative concentration x. We observe that these



11

confined packings generally possess structural character-
istics that are distinctly different from their bulk coun-
terparts, including lower packing fractions, higher rattler
fractions, as well as varying degrees of disorder and par-
ticle contacts. This is due to what we call confinement
frustration. We find that an order metric ψ, which is
based on the number density fluctuations in the direc-
tion perpendicular to the hard walls, is a useful measure
of the degree of order/disorder. By employing the lo-
cal volume-fraction variance σ2

τ (R), we find that these
packings possess essentially the same level of hyperunifor-
mity as their bulk counterparts. We also observe that the
packing characteristics depend sensitively on H , α and
x for H smaller than thirty large sphere diameters due
to the effects of confinement frustration, size-disparity
frustration and discontinuous transitions. We have also
observed that the packings gradually transition from ones
with 2D-like layered structures to 3D bulk systems as H
increases from two to thirty large sphere diameters.

The dependence of packing density on the confine-
ment size has important practical implications in various
powder technologies, where density is crucial to mate-
rial properties and fabrication cost [32–34]. By looking
at how the packing fraction changes with plane separa-
tion distance H in our simulation, we acquire knowledge
about how the thickness of depositing layers affect the
density and associated mechanical and transport proper-
ties of the resulting structures given the starting mate-
rials in powder technologies. In particular, we find that
small-sized particles are favored to suppress the pack-
ing inefficiency caused by boundary and finite-size effects
and they should be used to guarantee high density and
superior material performances. When producing struc-
tures that have a dimension comparable to particle sizes,
extremely large percentage of small particles should be
mixed with a tiny percentage of large particles to sup-
press the density variance of individual samples caused

by small errors in the thickness of depositing layers. Also,
our findings could be potentially useful in battery ap-
plications, e.g. solid oxide fuel cell electrode materi-
als. When the length scale of the shortest dimension is
less than about thirty particle diameters, boundary and
finite-size effects should be taken into account when we
evaluate and tailor the macroscopic properties and per-
formance of the electrode materials. In future work, we
will investigate the optimal thickness, particle size ratio
and composition that optimize the electrochemical prop-
erties of electrode materials such as maximizing reaction
rate, ionic and electronic conductivities. In addition, we
might be able to design novel photonic structures and
devices by tailoring the size distribution of nanoparticles
in finite particle packings [50] according to information
acquired in our simulations.
Besides the packings of binary hard spheres confined

between two parallel hard planes we have studied in this
work, there are many other interesting packing prob-
lems in confined space that remain to be investigated
[75–77]. For example, while bulk MRJ packings of non-
spherical particles that span a wide range of shapes, in-
cluding ellipsoids [78–80], superballs [81, 82], and poly-
hedra [24, 25, 72, 83] have been studied in detail, nothing
is known about confined MRJ packings of nonspherical
particles. Understanding how confined MRJ packings of
nonspherical particles differ from their bulk counterparts
and confined MRJ sphere packings are outstanding ques-
tions. Extensions of this work to DNA packaging is an
interesting avenue for future research [77].
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