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We study wave propagation in strongly nonlinear 1D diatomic granular crystals under an impact
load. Depending on the mass ratio of the ‘light’ to ‘heavy’ beads, this system exhibits rich wave dy-
namics from highly localized traveling waves to highly dispersive waves featuring strong attenuation.
We experimentally demonstrate the nonlinear resonant and anti-resonant interactions of particles
and verify that the nonlinear resonance results in strong wave attenuation, leading to highly efficient
nonlinear energy cascading without relying on material damping. In this process, mechanical energy
is transferred from low to high frequencies, while propagating waves emerge in both ordered and
chaotic waveforms via a distinctive spatial cascading. This energy transfer mechanism from lower
to higher frequencies and wavenumbers is of particular significance towards the design of novel
nonlinear acoustic metamaterials with inherently passive energy redistribution properties.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd

I. INTRODUCTION

Granular crystals, i.e., periodically packed arrays of
solid particles interacting elastically via nonlinear con-
tacts, have recently become popular test beds for under-
standing fundamental structures emerging within nonlin-
ear wave dynamics, such as traveling waves [1–3], shock
waves [4, 5, 7], discrete breathers [8, 9], and nanoptera
[10]. In these systems, tunable energy transport is of
particular interest. For example, the wave propagation
speed can vary significantly from linear to highly nonlin-
ear regimes by changing the external compression applied
to the granular system [1]. The energy propagation pat-
terns can be tuned from highly localized to modulated or
widely dispersed shapes by introducing local resonances
in constituents [10]. The controllable degree of disorder
also changes the nature of energy attenuation (as has
been shown, e.g., in settings of decorated chains [11] or
strong inertial mismatches [12]), enabling both exponen-
tial and power-law type scenarios [13, 14]. This wealth
of energy transport characteristics stems from the widely
tunable interplay of nonlinearity, discreteness, and het-
erogeneity in such media.

Among the different heterogeneous variants of granu-
lar crystals, an ordered diatomic granular crystal – in
the form of alternating heavy and light particles – is
one of the most prototypical ones [3, 15, 16]. Remark-
ably, this simple dimer lattice shows highly intriguing
energy transport phenomena. Previous studies demon-
strated that diatomic granular chains support various
types of highly localized traveling waves, nonlinear beat-
ing pulses, and highly dispersive waves, depending on
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the mass ratio of the heavy and light beads [3, 15–17].
It is of particular interest that wave attenuation can be
maximized at countably infinite number of mass ratios,
while efficient transmission of energy without attenua-
tion can also occur at another set of countably infinite
number of mass ratios, resulting in highly nonlinear soli-
tary traveling waves. This pertains to the so-called non-
linear resonance and anti-resonance mechanisms [3, 16].
These mechanisms can be intuitively understood when
one considers the traveling wave front and its imme-
diate wave tail as driving and driven systems, respec-
tively. The mass ratios satisfying the resonance and anti-
resonance conditions appear in an interlaced manner as
the relevant parameter is varied. Despite previous the-
oretical/numerical studies on these resonance and anti-
resonance mechanisms, corresponding experimental work
has been extremely limited [18].

Here, we advance considerably forth the experimental
state of the art of the system by enabling a full-field vi-
sualization of the lattice’s dynamics via laser Doppler vi-
brometry. These experimental advances, in turn, lead us
to consider crucial theoretical/numerical aspects, such as
the nonlinear energy transfer mechanisms across length
and time scales. Specifically, we investigate how the res-
onances chiefly disintegrate and transfer energy into sta-
ble periodic modes, leading to extremely efficient nonlin-
ear energy scattering and impact mitigation mechanisms.
The remainder of the energy is partitioned to a wide
range of frequencies and modes, resulting in an appar-
ently chaotic spatial tail dynamics. This set of features
is in sharp contradistinction with the anti-resonance sce-
nario where the energy appears to localize in traveling
wave quanta (i.e., isolated wavepackets).

Our approach towards exploring the energy transfer
mechanisms in granular crystals, in addition to substan-
tial experimental developments, is motivated theoreti-
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FIG. 1: Schematic of experimental setup for measuring non-
linear wave propagation in a diatomic granular crystal. Inset
shows an instrumented sensor particle.

cally by the usefulness of this type of approaches in re-
vealing cascading dynamics in a large variety of other sys-
tems. These include classical and quantum fluids [20, 21],
plasmas [22], and solid structures such as vibrating thin
plates [23–25]. Previous studies tackled the topic of en-
ergy distribution in granular crystals in the context of
tapered and decorated chains [2, 5, 6], disordered set-
tings [4], chains bearing impurities [26], interaction of
waves with their own radiation [27], and that of narrow or
broadband frequency signals with waves stemming from
reflections [28]. Nevertheless, the mechanism of energy
cascading across time- and length-scales has not been
suitably explored yet. We believe that this study will
plant the seeds towards the investigations of such energy
cascading dynamics in granular crystals as well as non-
linear lattice systems more generally.

II. EXPERIMENTAL AND NUMERICAL
SETUP

Figure 1 shows the test setup consisting of a granular
chain, a striker, and a laser Doppler vibrometer (LDV).
The chain is composed of alternating ‘heavy’ and ‘light’
spherical particles (see Table I for the specific numbers of
the heavy and light particles). All particles are made of
chrome steel (E = 210 GPa, ν = 0.29, ρ = 7,810 kg/m3).
The radius of the heavy particles is R = 9.525 mm. We
alter the radius of the light particles to set various mass
ratios for the chain (Table I). We position the smaller
particles on polytetrafluoroethylene (PTFE) rings tied
to stainless steel rods to align the center of mass of all
particles (Fig. 1). We generate nonlinear stress waves in
the granular crystal by impacting one end of the chain
with a striker, which is identical to the heavy particle.
The striker is released from a ramp and attains an impact
velocity of 0.94 ± 0.017 m/s, hitting the first bead which
is a heavy bead with an embedded piezoelectric ceramic
disk at its center (see the inset of Fig. 1). At the time
of impact, this sensor bead generates high voltage, which
triggers our data acquisition system. The other end of

the chain is fixed with a heavy steel wall.
We position the LDV at a slanted angle (45o in this

study) to measure the velocity of a particle in each im-
pact event (Fig. 1). We repeatedly measure the parti-
cle’s velocity by shifting the LDV along the guiding rail
and synchronize the measured data with respect to the
striker’s impact moment to reconstruct the wave propa-
gation profiles. We examine the propagation of waves in
two anti-resonance cases, labeled AR1 (the homogeneous
case, operating as a benchmark) and AR2, and in two
resonance cases, labeled R1 and R2 [3, 16]. Details of
the demensions and mass ratio of each models are sum-
marized in Table I.

We complement these experimental results by numeri-
cal simulations with a discrete element model. The chain
is modeled with point masses, which are connected by
nonlinear springs representing the Hertzian contact be-
tween spheres [29]. The contact force between nth and
(n+ 1)th bead is defined in term of the relative displace-
ment as the following-

F = β[un − un+1]
3/2
+

where β is a contact coefficient which depends on mate-
rial properties and geometry of the two objects in con-
tact. In case of a contact between large and small beads
made of an identical material, the coefficient is defined
as follows:

β =
2E

3(1 − v2)

√
RLRS

RL +RS

where E and v are Young’s modulus and Poisson’s ratio
of the beads respectively, and RL and RS are radius of
the large and small beads, respectively [29].

Therefore, the equations of motion of the diatomic
granular chain can be written as follows:

M2n−1ü2n−1 = β[u2n−2 − u2n−1]
3/2
+ − β[u2n−1 − u2n]

3/2
+ ,

M2nü2n = β[u2n−1 − u2n]
3/2
+ − β[u2n − u2n+1]

3/2
+ .

Here M and u represent the mass and displacement of
particles (odd and even subscripts correspond to heavy
and light beads), β is the contact coefficient between two
particles, and [s]+=max(s, 0), implying that the system
does not support tensile force. We note that the dynam-
ics of this system is fully re-scalable with energy, so for
sufficiently small impulsive excitations the results do not
change qualitatively [3, 16].

The equation of motions of the granular chain are
solved numerically using the Runge-Kutta method with a
10−7s time step. For this numerical simulation, we use a
300-particle chain –although only a fraction of these, typ-
ically 150 are shown in simulations e.g. Fig. 2. The nu-
merical simulation shows accuracy of about 0.004% error
in terms of the total energy conserved during a 20 ms pe-
riod. It should be noted that we neglect material damp-
ing in the numerical simulation in order to focus on the
wave attenuation caused solely by energy re-distribution
in the chain.
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TABLE I: Mass ratio and chain length of each experiment models

Model ID Large bead Small bead Mass ratio Chain length [mm]
diameter [mm] diameter [mm] (number of beads)

AR1 19.050 19.050 1 609.6 (32)
R1 19.050 15.978 0.59 595.5 (34)

AR2 19.050 13.333 0.34 615.3 (38)
R2 19.050 11.839 0.24 605.9 (39)

FIG. 2: Numerical and experimental surface maps for (a, d) AR2, (b, e) R1, and (c, f) R2. The insets in (b) and (c) show
an enlarged view of nonlinear wave beating phenomenon in R1, and regular (I) and irregular (II) forms of wave tail in R2,
respectively. The insets in (d-f) illustrate comparisons of three successive (heavy-light-heavy) particles’ velocity profiles between
numerical (solid blue(heavy) and green(light)) and experimental (dashed red) results.

III. RESULTS AND DISCUSSION

Figure 2 shows numerical and experimental surface
maps of the wave propagation in AR2, R1, and R2. In
Fig. 2(a), the impact leads to the formation of a num-
ber of robust solitary pulses (three of these pulses are
directly visible), which quantize the energy repartition-
ing it primarily into the first one [30, 31]. The exper-
imental results in Fig. 2(d) obtained by the LDV cor-
roborate the numerical simulations, though the tertiary
packet is not distinguishable due to the dissipation in ex-
periments. It should also be noted that Figs. 2(a) and
(d) employ different time and length scales because of
the shorter granular chain used in experiments. In this
anti-resonance case, the traveling waves propagate with
almost constant speeds without shedding energy behind
the leading pulses. The velocities of these wave packets

follow the relationship, V ∼ F
1/6
m , where Fm is the peak

amplitude of the dynamic force. This is the same as the
conventional solitary wave in a homogeneous chain (i.e.,
AR1), which shows a single hump with its wavelength
of ∼5 particles’ diameters [1]. In AR2, the wavelength

is wider than that in AR1 (see Appendix A), and the
heavy and light particles exhibit different velocity profiles
[3]. We experimentally verified the waveform in AR2 as
shown in the inset of Fig. 2(d).

In sharp contrast to anti-resonances, resonances cause
the propagating wave to shed its energy behind in the
form of oscillating tails, thereby attenuating the leading
pulses (see Figs. 2(b) and (c) for R1 and R2, respectively)
[16]. We accurately measured the particle velocity pro-
files in these cases as well (see Figs. 2(e) and (f)). In
R1, the primary wave loses a considerable fraction of its
energy by forming a wave tail oscillating initially in a
regular fashion. However, after approximately 80 par-
ticles, three leading peaks form a wave packet (see the
inset in Fig. 2(b)). These pulses exchange energy among
them as the wave packet propagates in the medium. This
behavior is attributed to the so-called nonlinear beating
phenomenon [16]. We observe that once the nonlinear
beating starts, the energy transfer from the leading wave
packet to the wave tail is substantially reduced, as the
relevant waveform detaches itself from the rest of the
radiative tail. In R2, however, the primary wave con-
tinuously loses its energy to the wave tail. In this case,



4

as well as in that of higher order resonances, the oscilla-
tions of the wave tail retain a very regular structure just
behind the primary wave. They eventually transform to
apparently chaotic forms within the far-field [see region
(I) and (II) in the inset in Fig. 2(c)].

To further investigate the energy dispersion mecha-
nism, we consider the relevant phenomenology in the
Fourier domain. Figure 3(a) shows the frequency spec-
trum of the particles’ velocity profiles in AR2, where the
majority of energy is concentrated in low frequencies. In
R1 (Fig. 3(b)), however, we find that a strong high fre-
quency signal (∼9 kHz) appears, and the magnitude of
the low frequency signal decreases during the primary
pulse’s shedding its energy to the wave tail (around up
to 80 beads). This predominant mechanism of energy
transfer ceases to exist as soon as the nonlinear beating
starts. This represents the fact that the mechanical en-
ergy carried initially by the low-frequency primary pulse
is redistributed to the higher-frequency contained in the
wave tail due to the nonlinear resonance mechanism, but
is subsequently trapped in the beating mechanism with-
out further substantial decay. In R2, this energy transfer
from low to high frequencies happens persistently (see
Fig. 3(c)) owing to the continuous energy shedding to the
wave tail. We can discern in the relevant frequency pat-
terns the presence of regular oscillations in the wave tail
[corresponding to part (I) in the inset of Fig. 2(c)]. Ad-
ditionally, there exists a fraction of the energy deposited
to a wide range of frequencies corresponding to a dis-
persion of the energy in other modes, resulting in the
apparently chaotic oscillations of section (II) within the
inset of Fig. 2(c).

Equally telling as the frequency-domain responses, are
the wavenumber plots in Figs. 3(d-f). In contrast to AR2,
the resonance cases reveal how the energy of the primary
wave at small wavenumbers is converted to a wavenum-
ber around π/2 in the wave tail [see Figs. 3(e) and (f) in
comparison to Fig. 3(d)]. Remarkably, this length scale
corresponds to the length of two sets of heavy and light
beads. We note that the two strong signals near π/2 in
R2 are because of the Fourier transform of mixed signals
from the heavy and light beads in an alternating pat-
tern (Appendix B). This wavenumber trend suggests the
emergence of a definitive periodic traveling wave pattern
that is being excited in association with a periodicity of
two-beads. Such periodic patterns are witnessed exper-
imentally in Figs. 2(e) and (f), and they have also been
studied analytically in dimer chains [17]. Our wavenum-
ber analysis reveals the excitation of these states in a
transient way for R1, until the beating pattern forms. In
R2, contrarily, the pattern is persistent and clearly dis-
cernible in region (I) of Fig. 2(c), enabling the continuous
transfer of energy from the principal wave to the associ-
ated background. Once again in R2, when the wave tail
transforms to chaotic oscillations, the length scale also
spreads out widely as denoted by the speckles in Fig. 3(f).

An alternative diagnostic towards the characterization
of the energy transmission is provided in Fig. 4 under

FIG. 3: Frequency and wavenumber spectra of particles’ ve-
locity profiles in (a, d) AR2, (b, e) R1, and (c, f) R2, obtained
from the analysis of the computational results and illustrating
the presence of cascades associated with the redistribution of
energy among different scales. The wavenumber is calculated
based on the wavelength normalized by the average diameter
of the large and small particles.

various anti-resonance and resonance conditions. Here,
we compare the energy carried by the leading wave packet
after normalizing it with respect to the impact energy
injected by the striker. Here is a brief description of how
we quantify the energy. If we assume that the potential
energy between the two particles in contact is equally
distributed to the two particles, the total energy of the
n-th particle at time t can be defined as follows:

En(t) =
1

2
Mnu̇

2
n +

1

5
β[un−1 − un]

5/2
+

+
1

5
β[un − un+1]

5/2
+

To calculate the energy of the leading wave, we conduct
the summation of the energy for seven particles, which
are wide enough to cover the envelop of the leading pulse
in AR1, AR2, and R2 cases. In R1, however, we add the
energy of nine particles to account for the total energy
of the beating waveform. The total energy of the leading
waves is normalized with respect to the initial excitation
energy, E0 = 1

2M0v
2
0 , where v0 is the impact velocity of

a striker.
In Fig. 4, we observe highly efficient and constant en-

ergy transmission in AR1 and AR2 due to the formation
of solitary pulses. The normalized energy is less than 1
in AR2, which is caused by the trailing solitary waves
generated in the transition region as explained above.
In sharp contrast to such anti-resonance cases, the pri-
mary pulse experiences a fast and dramatic attenuation
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in R1. About 80% of the energy is transferred to the wave
tail within just 3 ms, which corresponds to the time the
wave takes to propagate through the first 80 particles
(see Fig. 2(b)). Hence, the emerging periodic traveling
wave is extremely efficient in rapidly draining the energy
of the leading pulse. However, once the nonlinear beat-
ing pulse is formed, the transfer of energy to the wave
tail is essentially suppressed. On the other hand, in R2,
the reduction of normalized energy is slower compared to
that in R1. Nonetheless, such wave attenuation happens
continuously given the persistence in the latter case of
the periodic traveling wave. As a result, the normalized
energy carried by the primary pulse approaches asymp-
totically to zero. This eventually leads the attenuation
of the primary pulse in R2 to become larger than that in
R1. Higher order resonances share the principal charac-
teristics of R2, as concerns the above phenomenology.

The distinctive energy scattering phenomena between
R1 and R2 stem from the difference in relative motions
of the heavy and light beads. When the particles are
squeezed by the leading wave, light particles move faster
than heavy particles. The disparity between the heavy
and light particles’ motions becomes more evident as the
mass ratio decreases. In R1, the light and heavy beads
move at relatively similar frequencies due to the small dif-
ference in their masses (mass ratio of 0.59). This results
in the fast energy scattering under the facilitated transi-
tion of energy between the heavy and light particles. In
R2, however, the light particles’ motions are much faster
than those of heavy particles due to the small mass ratio
(only 0.24). This results in a slow – but more consistent
– reduction of energy, leading to the higher wave attenu-
ation performance than R1. Given the limited length of
the granular crystal tested in this study, we obtained ex-
perimental data up to ∼0.8 ms (inset of Fig. 4). We find
that the experimental results corroborate the numerical
simulations.

These observations provide us with a complete picture
– in both real and Fourier space, in both time and fre-
quency domains – of how wave attenuation mechanisms
can be achieved on the basis of nonlinear resonance mech-
anisms. This type of process is fundamentally different
from the conventional energy attenuation mechanisms re-
lying on material damping and/or structural deformation
effects. Here, the wave attenuation is achieved by max-
imizing the energy dispersion and redistribution within
the chain of granular particles. The existence of damp-
ing in this system only enhances the wave attenuation.
This is confirmed by our experimental data, where the
energy of the primary pulse attenuates more than that
in numerical simulations (Fig. 4). Moreover, the energy
cascading from low to high frequency and large to small
length scale plays a crucial role in a way partially rem-
iniscent of similar cascading phenomena within fluidic
systems.

FIG. 4: Normalized energy carried by the primary wave
packet in anti-resonances and resonances. Inset shows the
comparison between the experimental and numerical results.
The error bars represent standard deviations based on 5 tests.

IV. CONCLUSIONS

In the present work, we experimentally and numeri-
cally investigated the nonlinear resonance/anti-resonance
phenomena in ordered diatomic granular crystals, and
their connection to highly effective nonlinear frequency
redistribution and cascading of energy across different
scales. We verified the existence of efficient energy trans-
fer mechanisms for resonances, and robust traveling soli-
tary waves for anti-resonances. In particular, we demon-
strated that the nonlinear resonance mechanism can be
highly useful in attenuating impact energy by dispersing
it to the wave tail. In this process, we found an inter-
esting energy transition mechanism, i.e., the low-to-high
frequency energy transfer and large-to-small scale energy
cascading. This low-to-high frequency energy transfer is
a special one as it attains its maximum at nonlinear reso-
nance condition. Moreover, the energy cascades resemble
analogous cascades encountered in turbulent flows, which
shows that acoustic metamaterials such as the granular
diatomic chain considered herein can be tuned to possess
this type of turbulence-like behavior. A dominant role
within this mechanism was revealed to be played by pe-
riodic traveling waves which appear to be excited either
transiently (R1) or permanently (R2). This can offer a
new way to designing nonlinear acoustic metamaterials
based on inherently passive energy redistribution princi-
ples for impact mitigation purposes.
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APPENDIX

A. Wavelength of the solitary waves in diatomic
granular crystals

In this section, we compare the wavelength of the soli-
tary waves in diatomic granular chains at various mass
ratios. We obtain the wavelength values from three dif-
ferent approaches: (1) the analytical method by Porter
et al. [15] (solid blue curve); (2) the numerical simula-
tions via a discrete element method (green squares); and
(3) the experimental results via laser Doppler vibrometry
(red circles) as shown in Fig. 5. In the numerical simula-
tion and experiments, we count the number of particles
(n) having a velocity larger than a threshold value in
a fixed time frame, and determine n + 1 as the wave-
length considering the smoothly decreasing wave edges.
Here, the threshold is set to be 0.1% of the maximum
particle’s velocity. It is to be noted that the wavelength
varies depending on the measurement moment due to the
discreteness of the system, and it can be overestimated at
a small threshold value. Therefore, we process multiple
data points at various time frames for statistical analy-
sis. In the analytic expression, the wavelength is about
five particles’ diameters at mass ratio 1, and it gradu-
ally increases and approaches approximately ten parti-
cles’ diameters as the mass ratio approaches zero. In the
experimental and numerical results, the wavelength in
AR1 is slightly larger than five particle’s diameters. It is
generally known that the wavelength of the conventional
solitary wave (in AR1) is about 5 particles’ diameters.
However, it has also been reported that the wavelength
in AR1 is close to 7 particles’ diameters, if we account
for extremely small wave edges [2]. This can be captured
when we lower the threshold value of detectable wave
velocity significantly.
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FIG. 5: Wavelength of the solitary waves in a diatomic chain
at various mass ratios from AR1 to AR8. The solid curve
represents analytical prediction based on Porter et al. [15].
Green squares and red circles are from numerical simulations
and experiments, respectively.

B. Wavenumber of velocity profiles in the first
(R1) and second (R2) resonances

The high wavenumber components in the nonlinear
resonance R1 and R2, shown in Fig. 3(e) and (f) respec-
tively, correspond to the regular wave tail discussed in
Fig. 2(b) and (c), where ‘heavy’ and ‘light’ beads oscil-
late in an ordered fashion in the near field of the primary
pulse. When we perform Fast-Fourier-Transformation
(FFT) of velocity profiles of all beads (i.e., both heavy
and light ones) in the spatial domain, we observe one or
more wavenumbers symmetric with respect to π/2, which
corresponds to the wave length identical to the 4 parti-
cles’ distance. Here, in the calculation of wavenumber
we use the number of particles, instead of their actual di-
mensions for the sake of simplicity. The symmetry with
respect to π/2 is due to the FFT of a mixed signal com-
posed of two different velocity profiles. For example, the

heavy particles show small amplitude oscillations, while
the light particles show larger amplitude ones due to the
smaller inertia. If we separate the signals into two pro-
files, ‘heavy’ particle’s velocity profile and ‘light’ parti-
cle’s velocity profile (see Fig. 6(a) and (c)), the FFT of
these signals show wavenumbers up to π, because the lat-
tice constant is two particles in this case (see Fig. 6(b)
and (d)). These signals are symmetric with respect to
the central wavenumber π/2 (see Fig. 6 (b) and (d)) due
to the nature of the FFT of real valued-signals. This is
also referred to as a spatial aliasing effect. It is noted
that one is mirrored image of the other. Therefore, if the
wavenumber of the harmonic signal is π/2, we only can
see a single peak at π/2 (Fig. 6(b) and (d)). Otherwise
the FFT shows two peaks in symmetry with respect to
π/2 (Fig. 7(b) and (d)).

In the original signals where the two velocity profiles
are mixed in an alternating pattern, the lattice constant
is a single particle. Therefore, the FFT of this signal
shows wavenumbers up to 2π, and it is symmetric with
respect to π. Interestingly, in this FFT signal of the com-
bined data, the symmetric wavenumbers in the separated
velocity profiles (in the range of 0 to π) appear on the
top of each other in the same wavenumber range, from
0 to π. Therefore, when the oscillations of both ‘heavy’
and ‘light’ particles have a single wavenumber of π/2,
only one wavenumber (π/2) appears in the FFT of the
combined signal within the range from 0 to π. On the
other hand, when they have a same wavenumber which is
other than π/2, double peaks symmetric with respect to
π/2 appear. If the two signals have different wavenum-
bers, the FFT signals show four peaks in symmetry with
respect to π/2.

In the first resonance (R1), the high wavenumber com-
ponent is initially dispersed, and then it is focused around
π/2 as the wave propagates up to about 80 particles. In
the second resonance R2, however, two distinctive lines
continuously appear as the wave propagates, which rep-
resent that the wavenumbers of the heavy and light par-
ticles’ oscillations are similar to each other with a minor
offset from the π/2. Again, this difference between R1
and R2 stems from the difference of relative particles’
motions as we explained in Section-III.
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FIG. 6: Wavenumber analysis in the case that two different profiles with an identical wavenumber of π/2 are mixed together in
an alternating way. Based on the FFT analysis, (b), (d), and (f) show wavenumber of the wave profiles in spatial domains for
(a) heavy beads, (c) light beads, and (e) the mixed data of the two, respectively. In (a) and (c), red curves represent continuous
signals, while blue circles denote the sampled data at particle positions.

FIG. 7: Wavenumber analysis in the case that two different profiles with an identical wavenumber of 0.48π are mixed together
in an alternating way. Based on the FFT analysis, (b), (d), and (f) show wavenumber of the wave profiles in spatial domains for
(a) heavy beads, (c) light beads, and (e) the mixed data of the two, respectively. In (a) and (c), red curves represent continuous
signals, while blue circles denote the sampled data at particle positions.


