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Modeling the quasistatic energy transport between nanoparticles

George Y. Panasyuk∗ and Kirk L. Yerkes
Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433

We consider phononic energy transport between nanoparticles mediated by a quantum particle. The nanopar-

ticles are considered as thermal reservoirs described by ensembles of finite numbers of harmonic oscillators

within the Drude-Ullersma model having, in general, unequal mode spacings ∆1 and ∆2, which amount to dif-

ferent numbers of atoms in the nanoparticles. The quasistatic energy transport between the nanoparticles on the

time scale t ∼ 1/∆1,2 is investigated using the generalized quantum Langevin equation. We find that double

degeneracy of system’s eigenfrequencies, which occurs in the case of identical nanoparticles, is removed when

the mode spacings become unequal. The equations describing the dynamics of the averaged eigenmode energies

are derived and solved, and the resulting expression for the energy current between the nanoparticles is obtained

and explored. Unlike the case when the thermodynamic limit is assumed resulting in time independent energy

current, finite size effects result in temporal behavior of the energy current that evinces reversibility features

combined with decay and possesses peculiarities at time moments t = 2πn/∆1 + 2πm/∆2 for nonnegative

integers n and m. When ∆1,2 → 0, an expression for the heat current obtained previously under assumption of

the thermodynamic limit is reproduced. The energy current between two platinum nanoparticles mediated by a

carbon oxide molecule is considered as an application of the developed model.

PACS numbers: 05.70.Ln, 05.10.Gg, 65.80.-g

I. INTRODUCTION

Understanding the way how heat transfers through micro-

scopic systems (such as nanowires, nanotubes, molecules, or

quantum dots) is one of the most important research directions

in modern physics. This study, however, presents many chal-

lenges due to nonequilibrium nature of the problem and the

necessity to account for quantum properties [1, 2]. Also, due

to size reduction of electronic devices from the macroscale to

nanoscale, a fundamentally new approach to manipulate heat

flow becomes increasingly important [3]. Thus, apart from

a purely academic interest in the problem, research suggests

that nanoscale and molecular systems may be good candidates

for many technological advances, such as thermoelectrics [4–

7], molecular diodes, switches, rectifiers, and quantum heat

transfer in anharmonic junctions [8–11].

There are several approaches to treat heat transport through

microscopic systems. One of them is based on the quantum

Langevin equation. It was used for studying the thermaliza-

tion of a particle coupled harmonically to a thermal reservoir

and other closely-related problems [12–15]. In Refs. [16–19],

the approach was used to explore the steady-state heat cur-

rent and temperature profiles in chains of harmonic oscillators

placed between two thermal baths. The closely related “quan-

tum thermal bath method” is also based on the Langevin dy-

namics [20, 21]. It was successfully used for sampling quan-

tum fluctuations within the framework of molecular dynam-

ics (MD) [20] as well as to reproduce the quantum Wigner

distribution of a variety of model potentials [21] essentially

without any additional computational cost, i.e., without re-

sorting to quantum-mechanical MD [22]. To some extent, a

similar approach is developed in [23] allowing to avoid di-
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rect MD simulation. Based on classical MD, the method em-

ploys a coarse-graining procedure that adopts the statistical-

operator approach [24] and the classical linear response the-

ory [25]. However, it is based on classical mechanics. The

nonequilibrium Green’s function (NEGF) method represent

another and frequently used approach [26]. It was applied,

at first, to calculate electron transport and steady-state proper-

ties of a finite system interconnecting reservoirs that are mod-

eled by noninteracting Hamiltonians with infinite degrees of

freedom [27–29]. Later, the NEGF approach was applied to

phonon transport [30–35]. However, for noninteracting sys-

tems, the Langevin approach reproduces the NEGF results

exactly [1, 36]. In the above-mentioned studies the thermal

reservoirs were considered in the thermodynamic limit, i.e.

having infinitely large number of modes. Recently, a new

method for an exact solution to the Lindblad and Redfield

master equations, which can be considered as an alternative

to the quantum Langevin equation, has been developed [37–

39].

Due to above-mentioned ongoing miniaturization of elec-

tronic devices, size effects, related to finite numbers of atoms

in nanosize components of such devices, become increasingly

important. For this reason, study of size effects in nano-

structured materials occupies an important part of contem-

porary research. While study of size and quantum effects in

electromagnetic response of nanoparticles have a rather long

history (see, for example, Refs [40–44]), systematic investi-

gation of the role of these effects and their influence on ther-

mal properties of small bodies took part only recently. In

Refs. [45–47], static thermodynamic properties of nanostruc-

tures, such as the local structure of the grain boundary in ultra-

nanocrystals, phonon density of states in nanostructures, and

order-disorder transition in nanoparticles were investigated.

In Ref [48], energy transport in a finite linear harmonic chain

was investigated showing the critical role of the on-site pin-

ning potential in establishing quasi-steady-state condition.



In this paper, we investigate finite size effects in the case of

quasistatic energy transfer between two, not identical in gen-

eral, nanoparticles mediated by a quantum particle, such as

a molecule. The nanoparticles and mediator are considered

within the harmonic approximation. Our approach is based

on the generalized quantum Langevin equation and employs

the Drude-Ullersma model for reservoirs’ mode spectra. We

allow for the mode spacing constants ∆1 for the first and ∆2

for the second reservoir to be unequal, which corresponds to

different numbers of atoms in the nanoparticles. The dynam-

ics for the average energies of the eigenmodes for the whole

system consisting of the nanoparticles and mediator on a time

scale max(TH1, TH2) is described. Here TH ∼ ∆−1 is the

Heisenberg time over which the discreteness of reservoir’s en-

ergy spectrum becomes resolvable [15, 49]. Based on this

dynamics, an expression for the energy current between the

nanoparticles in the considered time regime is derived and ex-

plored.

The paper is organized as follows. The model is introduced

in Sec. II, where the generalized Langevin equation is derived

and solved and the eigenmodes of the whole system are found

and investigated. In Sec. III, equations governing the dynam-

ics of the average energies of the eigenmodes are derived and

the expression for the energy current between the reservoirs is

obtained. In Sec. IV, the derived equations are approximately

solved and the resulting time behavior for the average energies

and the energy current is explored. Possible errors associated

with the adopted approximations are analyzed. Finally, Sec.

V provides brief summary to our research.

II. MODEL

The total Hamiltonian of the system under consideration is

similar to that in Refs. [19, 50, 51]:

Htot = H +HB1 +HB2 + V1 + V2. (1)

Here

H =
p2

2m
+
kx2

2
(2)

is the Hamiltonian of the quantum particle (the mediator),

HBν =

Nν
∑

i=1

[

p2νi
2mνi

+
mνiω

2
νix

2
νi

2

]

(3)

are the Hamiltonians of the νth thermal reservoir (ν = 1, 2)

having Nν quantum oscillators (modes), and

Vν = −x
Nν
∑

i=1

Cνixνi + x2
Nν
∑

i=1

C2
νi

2mνiω2
νi

(4)

describe interaction between the mediator and the reservoirs.

In Eq. (2), x and p are the coordinate and momentum opera-

tors and m and k are the mass and the spring constant of the

central particle. In Eqs. (3) and (4), xνi and pνi are the co-

ordinate and momentum operators, whereas mνi and ωνi are

the masses and frequencies of the oscillators for the ith mode

that belongs to the νth reservoir. Finally, Cνi are the coupling

coefficients that describe interaction between the particle and

reservoirs. The last contributions to the right-hand side of (4)

are self-interaction terms, which guarantee that HBν + Vν is

positively defined for each ν.

Using solutions of the Heisenberg equations for the reser-

voirs’ operators

xνi(t) = xνi(0) cos(ωνit) +
pνi(0)

mνiωνi

sin(ωνit) +

Cνi

mνiωνi

∫ t

0

sin[ωνi(t− s)]x(s)ds (5)

and

pνi(t) = mνiẋνi(t) = −mνiωνixνi(0) sin(ωνit) +

pνi(0) cos(ωνit) + Cνi

∫ t

0

cos[ωνi(t− s)]x(s)ds (6)

in the Heisenberg equations for x and p, one arrives at the

quantum Langevin equation

mẍ = −kx(t) + η(t)−
∫ t

0

γ(t− s)ẋ(s)ds− γ(t)x(0), (7)

where

η(t) = η1(t) + η2(t) (8)

is the total noise and

ην(t) =

Nν
∑

i=1

Cνi

[

xνi(0) cos(ωνit) +
pνi(0)

mνiωνi

sin(ωνit)

]

(9)

is the noise coming from the νth reservoir. In the same way,

γ(t) = γ1(t) + γ2(t) (10)

is the friction kernel where

γν(t) =

Nν
∑

i=1

C2
νi

mνiω2
νi

cos(ωνit) (11)

describes interaction of the mediator with the νth reservoir.

The Drude-Ullersma model [14, 15, 52, 53] that we em-

ploy here assumes that in the absence of interaction with the

central particle, each reservoir consists of uniformly spaced

modes and introduces the following frequency dependence for

the coupling coefficients:

ωνi = i∆ν , Cνi =

√

2γνmνiω2
νi∆νD2

ν

π(ω2
νi +D2

ν)
(12)

where i = 1, 2, ...Nν . In Eq. (12), Dν are the characteris-

tic Debye cutoff frequencies, γν are the coupling constants
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between a given reservoir and the mediator, and ∆ν are the

mode spacing constants. Unlike that in Ref. [51], we consider

∆ν as small but finite parameters. Hereafter we assume that

D1 = D2 ≡ D and γ1/m = γ2/m ≡ γ/m ≡ γ̂, (13)

keeping, however, mode spacing constants different. The

numbers N1,2 of the reservoirs’ modes are finite now and we

assume that

Nν =
ωmax

∆ν

∼ D

∆ν

, ν = 1, 2, (14)

where ωmax is the maximum frequency in reservoir’s spec-

trum.

Equation (7) is solved by the Laplace transform [55]:

x(t) = ġ(t)x(0)+
1

m
g(t)p(0)+

1

m

∫ t

0

g(t−s)η(s)ds. (15)

Here ġ ≡ dg/dt,

g(t) = L−1

[

1

z2 + w2
0 + zγ̂(z)

]

=
1

2πi

∫ c+i∞

c−i∞

eztdz

h(z)
, (16)

where L−1 is the inverse of the Laplace transform L, ω0 =
√

k/m is particle’s frequency, and h(z) = z2 + w2
0 + zγ̂(z).

Equations (10) - (11) and (12) result in

γ̂(z) =
1

m
L[γ(t)] =

2γ̂D2z

π
[S̃1(z) + S̃2(z)] (17)

where

S̃ν(z) =

Nν
∑

i=1

∆ν

(ω2
νi +D2)(ω2

νi + z2)
. (18)

Employing the Heaviside expansion theorem, one obtains

g(t) =
∑

n

ez̃nt

h′(z̃n)
, (19)

where h′(z) = dh(z)/dz and z̃n are the roots of h(z). Substi-

tution z̃n = izn with real zn transforms the dispersion equa-

tion to

h(zn) ≡ ω2
0 − z2n +

2γ̂D2z2n
π

[S1(zn) + S2(zn)] = 0, (20)

where

Sν(z) = −S̃ν(iz). (21)

Noticing that h(−z) = h(z), one can rewrite (19) as

g(t) =

N
∑

n=1

sin znt

znĥ(zn)
, (22)

where N = N1 +N2 and

ĥ(z) = 1 +
2γ̂D2

π

2
∑

ν=1

Nν
∑

i=1

ωνi
2∆ν

(ωνi
2 +D2)(z2 − ωνi

2)2
. (23)

A simpler case when ∆1 = ∆2 ≡ ∆ was considered in

[54] where finite sums (21) were approximated by the corre-

sponding series (N1,2 → ∞). In that case, the roots of Eq.

(20) can be found analytically as an expansion over a small

parameter τ∆, where

τ ≡ max(γ̂−1, ω−1
0 , D−1) ≪ ∆−1. (24)

As was shown, it is accurate enough to take into account only

first two terms in the expansion, so

zn = n∆− ψn∆ (25)

with

ψn =
1

π
arctan

[

2γ̂D2ωn

(ω2
0 − ω2

n)(D
2 + ω2

n) + 2γ̂Dω2
n

]

. (26)

Here we again assume that ∆−1
1 and ∆−1

2 are the largest

time parameters in the system:

τ ≪ min(∆−1
1 ,∆−1

2 ). (27)

When ∆1 6= ∆2, we found that the approximation of the fi-

nite sums in (20) by the corresponding infinite series can be,

at best, only qualitatively correct and we drop this approxi-

mation employing correct sums (21) in Eq. (20). It means

that an analytical solution for the roots (eigenfrequencies) is

no longer available and the roots zn of (20) are found numer-

ically here. It is interesting to notice, however, that sums

Zν(zn) =

Nν
∑

i=1

ωνi
2∆ν

(ωνi
2 +D2)(z2n − ωνi

2)2
(28)

in Eq. (23) can be accurately approximated by the correspond-

ing infinite series, so one finds [56]

Zν(zn) ≈
π2

4∆ν(z2n +D2) sin2(πzn/∆ν)
(29)

and

ĥ(zn) ≈
πγ̂D2

2

2
∑

ν=1

1

∆ν(z2n +D2) sin2(πzn/∆ν)
. (30)

It happens because the factor (z2−ωνi
2)2 in the denominator

in (23) acts as the “delta-function” (unlike just (z2 − ωνi
2) in

Sν(z)). Our careful analysis shows that approximation (29)

produces a relative error of the order of O(τ∆ν ) and is small

in accordance to (27).

As we found, the total set of the roots zn, where n = 1, 2,

..., N , can be split into two subsets: z1n with n = 1, 2, ..., N1

and z2n with n = 1, 2, ..., N2:

{zn}Nn=1 = {z1n}N1

n=1

⋃

{z2n}N2

n=1, N = N1 +N2. (31)

Here the roots z1n from the first subset are obtained iteratively

on each interval ((n−1)∆1, n∆1) for n = 1, 2, ...,N1 starting
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with z
(0)
1n = n∆1 and the roots z2n from the second one are

obtained in the same way on each interval ((n− 1)∆2, n∆2)

for n = 1, 2, ..., N2 starting with z
(0)
2n = n∆2. Hence, one can

present the roots of the whole system as

zνn = n∆ν − ψνn∆ν , n = 1, 2, ..., Nν, ν = 1, 2, (32)

where ψνn are usually relatively small: our numerical analy-

sis reveals that ψνn . 0.1 for all zνn ≤ D and γ̂/ω0 ≤ 0.1.

Thus, the first and second subsets of the roots are slightly

shifted from the sets of the uniformly spaced modes that be-

long to the first and second thermal reservoir, respectively, be-

fore connecting them by the central particle.

If N1 = N2 (or ∆1 = ∆2 ≡ ∆), we have only N = N1 =
N2 different eigenmodes instead of 2N1. In this case, each zn
is double degenerate and can be found again by solving Eq.

(20). The degeneracy is removed whenever N2 becomes not

equal toN1, and we return to our general case ∆1 6= ∆2 when

the number of different eigenmodes “jumps” fromN = N1 =
N2 to N = N1 +N2.

III. QUASI-STATIC HEAT BALANCE

As one can easily find (see, for example, [51]), the rate of

change of the averaged energy of νth thermal reservoir is

d

dt

Nν
∑

i=1

〈

p2νi
2mνi

+
mνiω

2
νix

2
νi

2

〉

= −〈Pν〉, (33)

where the angular brackets denote the ensemble averaging and

〈Pν〉 = −
Nν
∑

i=1

Cνi

2mνi

〈pνix+ xpνi〉 (34)

is the work done by the νth reservoir on the mediator [16].

Here xνi = xνi(t), pνi = pνi(t), and x = x(t) are de-

termined by Eqs. (5), (6) and (15), respectively. These so-

lutions, as well as the resulting balance equation (33) are

accurate in frame of the adopted harmonic approximation.

Our goal here is to consider only the quasistatic variations

of nanoparticles’ averaged energies, which happen on a time

scale max(∆−1
1 ,∆−1

2 ) ≫ τ (27), where we assume that

∆1 ∼ ∆2. After substitution (6) and (15) into (34), one

can drop all terms that are proportional to g(t) or ġ(t). In-

deed, as our numerical analysis shows, g(t) differs notice-

ably from zero only on time intervals of the order of τ near

t = 2πn/∆1 + 2πm/∆2 where n,m ≥ 0 are integers, and

we assume (see also the text after Eq. (41)) that these contri-

butions cannot influence nanoparticles’s eigenmode average

energies. Neglecting the g(t) and ġ(t) contributions results in

the following expression for the energy current:

〈Pν〉 = J (1)
ν + J (2)

ν (35)

where

J (1)
ν = − 1

2m

Nν
∑

i=1

Cνi

mνi

[cos(ωνit)

∫ t

0

dsg(t− s)×

〈pνi(0)η(s) + η(s)pνi(0)〉 −mνiωνi sin(ωνit)×
∫ t

0

dsg(t− s)〈xνi(0)η(s) + η(s)xνi(0)〉] (36)

and

J (2)
ν = − 1

2m

Nν
∑

i=1

C2
νi

mνi

∫ t

0

dsg(t− s)×
∫ t

0

dτ cosωνi(t− τ)〈x(τ)η(s) + η(s)x(τ)〉. (37)

As was shown [15], after coupling of a quantum particle to

a thermal reservoir, the whole system comes to equilibrium

after the microscopic time τ . Similar to that, in our case of

two thermal reservoirs having, in general, different tempera-

tures, the quasistatic energy current will be established during

the time τ after connecting the reservoirs by the central parti-

cle [54], and our system will consist of set (31) of eigenmodes

zk. Thus, in general, the averaged energy Eν of the νth reser-

voir will consist of contributions from all the eigenmodes. On

the other hand, it is natural to expect that shortly after connec-

tion of the reservoirs, Eν will be presented mostly by contri-

butions from the νth subset of eigenmodes (32). It will contain

also small contributions from the other subset, which we de-

note as the “ν1th subset”, where ν1 = ν1(ν) = 1 if ν = 2 and ν1
= 2 if ν = 1. The latter contributions will grow slowly for t ≥
0 starting from zero value, because the influence of the central

particle on both reservoirs is small, which is reflected in the

inequality (27). In addition, we consider here only relatively

small coupling constants, when γ̂/ω0 ≤ 0.1. Thus, one can

present Eν as the sum of the eigenmode average energies

Eνk =
~zk
2
nνk, (38)

where nνk is determined by

nνk = 〈a+k ak + aka
+
k 〉ν . (39)

In (39), a+k and ak are the creation and annihilation operators

corresponding to the kth eigenmode and satisfying relations

〈a+k ak1
+ ak1

a+k 〉ν = nνkδk,k1
(40)

and 〈akak1
〉 = 〈a+k a+k1

〉 = 0. Subscript ν in (39) means that, in

general, only a (k dependent) part of the occupation number

contributes to Eνk in (38). Due to the above-mentioned small

influence of the mediator on the nanoparticles, one can assume

that nνk is close to the Bose number

coth(~zνk/2kBTνk), (41)

if zk belongs to the νth subset (zk = zνk) and nνk is very

small if zk belongs to the ν1th subset (zk = zν1k) shortly
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after the connection. Here Tν are initial temperatures of the

nanoparticles. Thus, in accordance to our assumption, sup-

ported in Sec. IV, for t > 0 all the quantities Eνk and nνk

vary slowly, changing unnoticeably on the time scale τ start-

ing with the following initial conditions for νth reservoir:

Eνk(0) =
~zνk
2

coth
~zνk
2kBTν

, (42)

when k belongs to the νth subset, and

Eνk(0) = 0, (43)

when k belongs to the ν1th subset. The goal of this section is

to derive equations for the eigenmode average energies (38)

valid on time scale t ∼ max(∆−1
1 ,∆−1

2 ).
Using (40), one can find expressions for 〈xνi(0)η(s) +

η(s)xνi(0)〉, 〈pνi(0)η(s) + η(s)pνi(0)〉 from (36) and

〈x(τ)η(s) + η(s)x(τ)〉 from (37) (see Appendix). As is also

shown in Appendix, this results in the following expressions

for the two parts of the energy current:

J (1)
ν (t) =

2~γ̂2D4

π2

N
∑

k=1

nνk

ĥ(zk)
×

{z−1
k S

(2)
νk (t)A

(3)
νk (t)− zkS

(1)
νk (t)A

(2)
νk (t)} (44)

and

J (2)
ν = −4~γ̂3D6

π3

2
∑

ν′=1

N
∑

k=1

nν′k

ĥ(zk)
×

{z−1
k S

(2)
ν′k(t)W

(2)
νν′k(t) + zkS

(1)
ν′k(t)W

(1)
νν′k(t)}. (45)

Here

A
(p)
νk (t) = − ∂p

∂tp

Nν
∑

i=1

∆ν cosωνit

(ω2
νi +D2)(z2k − ω2

νi)
(46)

for p = 1, 2 and A
(3)
νk (t) = −∂A(2)

νk (t)/∂t,

S
(p)
νk (t) =

∫ t

0

dsg(s)A
(p)
νk (t− s), (47)

and

W
(p)
νν′k(t) =

N
∑

n=1

1

ĥ(zn)

∫ t

0

dsA
(p)
ν′k(s)×

{A(2)
νn (t− s)−A(2)

νn (0) cos zn(t− s)}. (48)

Thus, after the time τ , the averaged energy of νth thermal

reservoir Eν becomes the sum of the average energies Eνk of

the eigenmodes and, due to (35), one can write

d

dt
Eν =

N
∑

k=1

Ėνk = −[J (1)
ν + J (2)

ν ]. (49)

Taking into account the structure of expressions (44) and (45),

one can rewrite J
(1)
ν and J

(2)
ν in the following form:

J (1)
ν (t) =

N
∑

k=1

jνk(t)Eνk (50)

and

J (2)
ν (t) =

N
∑

k=1

[jννk(t)Eνk + jνν1k(t)Eν1k] , (51)

where ν1 = 1 if ν = 2 and ν1 = 2 if ν = 1. Here

jνk(t) =
2γ̂2D4

π2

2

zkĥ(zk)
×

{z−1
k S

(2)
νk (t)A

(3)
νk (t)− zkS

(1)
νk (t)A

(2)
νk (t)} (52)

and

jνν1k(t) = −4γ̂3D6

π3

2

zkĥ(zk)
×

{z−1
k S

(2)
ν1k

(t)W
(2)
νν1k

(t) + zkS
(1)
ν1k

(t)W
(1)
νν1k

(t)}. (53)

Now one can represent the energy balance (49) as

N
∑

k=1

Ė1k = −
N
∑

k=1

[(j1k + j11k)E1k + j12kE2k] (54)

for the first thermal reservoir and

N
∑

k=1

Ė2k = −
N
∑

k=1

[(j2k + j22k)E2k + j21kE1k] (55)

for the second one. Taking into account the energy conser-

vation law for our closed system and neglecting processes of

excessive storing and depleting of the energy of the central

particle with respect to its average energy during the energy

transport, i.e., assuming that we have quasistatic energy trans-

port, one can write that

N
∑

k=1

(Ė1k + Ė2k) = 0. (56)

Substituting Eqs. (54) and (55) into (56) and using indepen-

dence of the eigenmodes, one obtains the following relation:

(j1k + j11k + j21k)E1k +(j12k + j2k + j22k)E2k = 0. (57)

Noticing that jνk and jνν1k do not depend on initial tempera-

tures, we demand that

j1k + j11k + j21k = 0 (58)

and

j2k + j22k + j12k = 0. (59)
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Using (58) and (59) in Eqs. (54) and (55), one can present the

energy balance equations separately for each eigenmode as

Ė1k = R1kE1k −R2kE2k ≡ −Jk (60)

for the first reservoir and

Ė2k = R2kE2k −R1kE1k ≡ Jk (61)

for the second one. Here

R1k = − [j1k(t) + j11k(t)] (62)

and

R2k = − [j2k(t) + j22k(t)] . (63)

As is clear, Eq. (56) is automatically satisfied by (60) and (61).

CoefficientsR1k andR2k can be computed based on formulas

(52) and (53). Assuming continuity of the eigenmode average

energies and taking into account initial conditions (42)-(43),

Eqs. (60) and (61) can be solved. After finding E1k(t) and

E2k(t), the total energy current Jtot(t) can be determined:

Jtot(t) =

N
∑

k=1

Jk =

N
∑

k=1

[R2kE2k(t)−R1kE1k(t)] . (64)

Because there is no work performed by an external force on

our isolated system, except for the initial moment, the derived

energy current for any t > 0 can be interpreted as the heat

current.

IV. RESULTS AND DISCUSSION

In order to apply the model described above, we need to

choose parameter ωmax that appears in (14). As was shown

in [54], any values for D and ωmax that satisfy inequal-

ity D ∼ ω0 . ωmax are acceptable and we choose here

ωmax = 1.3D. All figures presented below show the corre-

sponding dimensionless quantities.

As follows from our numerical analysis, the coefficients

R1k andR2k can be approximated by a sequence of step func-

tions with the steps occur at times

tnm = 2πn/∆1 + 2πm/∆2, (65)

where n andm are nonnegative integers and it is assumed that

times tnm are arranged in an ascending sequence that depends

on values of ∆1,2. For example, in the case illustrated in Figs.

1-4, this sequence is t00 = 0 < t01 < t10 < t02 < t11 <
t20 < t03. In this regard, it is convenient to introduce a sin-

gle index l in such a way that Tl = tnm, so the above nm
sequence corresponds to increasing l from l = 0 to l = 6.

In accordance to the approximation,Rνk(t) on a time interval

Tl−1 ≤ t ≤ Tl is replaced by

R
(l)
νk =

1

Tl − Tl−1

∫ Tl

Tl−1

dtRνk(t) (66)

(b)

(a)

1
0
5
R

1
k
/
ω
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∆2t/2π 3210

0.006

0.004

0.002

0

-0.002

-0.004

FIG. 1: (Color online) Time dependences of R1k when γ̂/ω0 = 0.1,

D/ω0 = 1, ∆1/ω0 = 0.001, ∆2/ω0 = 0.0013, and k = 650.

(a) accurate result and (b) its approximation by a sequence of step

functions (66).

(b)
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FIG. 2: (Color online) Time dependences of R2k for the same values

of γ̂/ω0, D/ω0, ∆1/ω0, ∆2/ω0, and k as in Fig. 1.

for each ν and k. In Figs. 1-4, we choose k = 650 or 651

that correspond to the middle part of nanoparticles’ eigen-

mode spectra. Here zk=651 and zk=650 belong to the first and

second subset, respectively. As is illustrated in the figures, ap-

proximation (66) is correct except for microscopically narrow

time intervals Tl − τ < t < Tl + τ near Tl. One characteris-

(b)
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k
/
ω
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∆2t/2π 3210
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FIG. 3: (Color online) Time dependences of R1k for the same values

of γ̂/ω0, D/ω0 , ∆1/ω0, and ∆2/ω0 as in Fig. 1, but k = 651.
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FIG. 4: (Color online) Time dependences of R2k for the same values

of γ̂/ω0, D/ω0, ∆1/ω0, and ∆2/ω0 as in Fig. 1 and k = 651.
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FIG. 5: (Color online) Temporal behavior of R2k when D/ω0 = 1,

∆1/ω0 = 0.001, ∆2/ω0 = 0.0013, k = 650, and (a) γ̂/ω0 = 0.1
and (b) γ̂/ω0 = 0.05.

tic example of such an interval (near t = t10 = T2) is shown in

Fig. 5 for two values of γ̂. As one finds, the interval where our

approximation fails is proportional to γ̂−1 and is of the order

of ∆1,2/γ̂ (∼ 0.01 in the considered case). This failure hap-

pens because the energy currents (36) and (37) show transient

processes when their time argument passes from one interval

(b)

(a)

1
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δE

1
k
/
~
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∆2t/2π 3210

1

0

-1

FIG. 6: (Color online) Temporal behavior of δE1k when γ̂/ω0 =

0.1, D/ω0 = 1, ∆1/ω0 = 0.001, ∆2/ω0 = 0.0013, kBT̄ /~ω0 = 0.1

and α = 0.01. (a) k = 651 (1st subset) and (b) k = 650 (2nd subset).

Tl−1 < t < Tl to the next one, Tl < t < Tl+1. As was men-

tioned before, we consider here only the quasistatic regime

for the energy transport and neglect these processes. Strictly

speaking, we have to exclude these narrow intervals from the

time averaging. However, due to relation (27), this exclusion

should not change noticeably values of R
(l)
νk, which is con-

firmed by our numerical analysis. The approximation also

disregards small amplitude “fluctuations” that occur on the

time scale τ outside the above-mentioned microscopic time

intervals near Tl’s. These small deviations of Rνk(t) from

the corresponding constant values R
(l)
νk may lead to violation

of the quasistatic character of the energy current that was as-

sumed in relation (56). In order to estimate the degree of this

violation, we consider the ratio

δ =
|j(l)νk + j

(l)
ννk + j

(l)
ν1νk

|
max(|j(l)νk |, |j

(l)
ννk|, |j

(l)
ν1νk

|)
, (67)

where j
(l)
νk and j

(l)
ν1νk

are obtained from jνk(t) and jν1νk(t),

respectively, by using them in (66) instead of Rνk(t). We in-

vestigated this ratio for different time intervals (Tl−1, Tl) and

different values of ∆1,2 and found that its characteristic values

can be approximately described as δ ≈ C ×max(∆1,∆2)/γ̂
with C ∼ 0.1. Thus, violations of the quasistatic character of

the energy current are, indeed, small (and are not clearly seen

in Figs. 1-4). It also substantiates Eqs. (58)-(59).

SubstitutingRνk(t) by their averaged valuesR
(l)
νk, one finds

Eνk(t) by solving (60) and (61) with initial conditions (42)-

(43) on each time interval Tl−1 < t < Tl and for each k
taking into account continuity of Eνk(t). As an example, Fig.

6 shows temporal behavior of δE1k(t) = E1k(t)−E1k(0) for

the 1st nanoparicle for k = 651 and 650 that belong to the first

and second subset, respectively. Corresponding time depen-

dence of E2k is determined by E2k(t) = E2k(0) + δE2k(t),
where δE2k(t) = −δE1k(t) in accordance to Eqs. (60)-(61).

The other eigenmode average energies show similar behavior.

As one finds, the characteristic time scale over which Eνk(t)
changes noticeably on each interval (Tl−1, Tl) is of the order

of ∆−1
1 ∼ ∆−1

2 ≫ τ . This observation supports our assump-

tion that the eigenmode average energies change negligibly

over τ . Using the obtained solutions for Eνk(t) in (64), the

total energy (or heat) current can be found. Figures 7 and 8

show Jtot(t) between identical (Fig. 7) and unequal (Fig. 8)

nanoparticles. Because we use approximation (66) that disre-

gards transient processes, all the curves appear discontinuous.

We assume that α ≡ (T1 −T2)/T̄ ≪ 1. Here T1,2 are the ini-

tial temperatures of the nanoparticles and T̄ is their average.

In the case of identical nanoparticles, R2k = R1k ≡ Rk and

the expression for the total energy current reduces to

Jtot(t) =
N
∑

k=1

Rk [E2k(t)− E1k(t)] , (68)

where the sum is over only N1 = N2 ≡ N eigenmodes and

their double degeneracy is accounted for by doubling each
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FIG. 7: (Color online) Time dependences of Jtot between identical

nanoparticles when γ̂/ω0 = 0.1, D/ω0 = 1, ∆1/ω0 = ∆2/ω0 =

0.001, and α = 0.01. (a) kBT̄ /~ω0 = 0.2 and (b) kBT̄ /~ω0 = 0.15.
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FIG. 8: (Color online) Temporal behavior of Jtot between unequal

nanoparticles when γ̂/ω0 = 0.1, D/ω0 = 1, ∆1/ω0 = 0.001,

∆2/ω0 = 0.0013, and α = 0.01. (a) kBT̄ /~ω0 = 0.2 and (b)

kBT̄ /~ω0 = 0.1.

sum over zk roots in (22), (44), (45), (48), and the corre-

sponding changes in (52) and (53). Now the ν1th subset of

the roots zk, for which initial conditions (43) on Eνk(t) are

imposed, disappears and Eνk(0) is determined only by (42).

After solving (60)-(61), one can find Jtot(t) from (68). In the

considered case, Jtot ∼ α. Our numerical analysis shows that

characteristic values of Jtot(t) approach zero when t → ∞.

However, these values pass through a maximum which shifts

to larger moments of time when T̄ decreases, as is illustrated

in Fig. 7. As one can notice from the figure, temporal be-

havior of the energy current appears as quasiperiodic. Similar

results were found for the same value of γ̂/ω0 and different ∆
in [57] under approximations described after Eq. (23).

Nature of temporal behavior of Jtot in the case of un-

equal nanoparticles is different. In both (identical and un-

equal) cases, we are dealing with energy transport, which

is a nonequilibrium process. However, in the case of iden-

tical nanoparticles, nonequilibrium is relatively small. It

comes from small differences in the average eigenmode en-

ergies of the nanoparticles and the energy transport tries to

remove these differences. In the case of unequal nanoparti-

cles, nonequilibrium is much stronger, because now partial

energy currents Jk coming from νth nanoparticle, are propor-

tional to Eνk. They pump energy to the corresponding es-

sentially empty zk levels of the ν1th nanoparticle, decreasing

Eνk from Eνk(0). In such a case, Jk depend on T1,2 only

weekly through Eνk(0). Because coefficients Rνk do not de-

pend on T1,2, the same kind dependence is expected for Jtot.
This is illustrated in Fig. 8, where Jtot(t) only weakly de-

pends on T̄ . Due to the strong nonequilibrium situation, it

would be incorrect, in general, to assume that the resulting

average mode energies (or the corresponding occupation num-

bers) for t > 0 are related to the “mode temperatures” in ac-

cordance to the Bose formula (as was considered in [54] for

the case of identical nanoparticles), even if the (42) part of the

initial conditions assumes so. For this reason, we introduce

neither mode temperatures nor average nanoparticle’s temper-

atures and prefer to work only with the average mode ener-

gies and energy current. Despite the above-mentioned shift-

ing of the energy levels after interconnecting the nanoparti-

cles, the whole system keeps some resemblance to its prop-

erties that existed before the connection. In particular, it still

“feels” the difference in periods 2π/∆ν of the reservoirs’ dy-

namic variables existed prior to the connection. For this rea-

son, for example, we observe “jumps” of the coefficients R1k

and R2k at t = 2π/∆2 < 2π/∆1 that cause the correspond-

ing jump in Jtot(t) at the same time moment. As our nu-

merical analysis shows, similar observations are valid for dif-

ferent ratios ∆1/∆2 and different values of γ̂/ω0 and D/ω0

provided that the inequality (27) is satisfied. It is important

to notice, however, that the model becomes inaccurate when

t ≫ max(∆−1
1 ,∆−1

2 ) for ∆1 6= ∆2, because for large t it is

possible to have t ≈ tnm ≈ tn1m1
with different n,m, n1,

and m1. In such a case, time interval |tnm − tn1m1
| can be

small and comparable to τ , violating (27).

Thus, the obtained time dependencies of the energy cur-

rent demonstrate peculiarities at times tnm. Because this un-

usual behavior appears due to finite values of ∆1,2, one can

expect that the previously derived expressions [51] for g(t)
and steady-state current Jst,

g(t) = L−1[g̃(z)] =

3
∑

n=1

gne
−µnt (69)

and

Jst = −~D2γ̂

2π

3
∑

n=1

gnµ
2
n

∫ ∞

0

dωω[n1(ω)− n2(ω)]

(D2 + ω2)(µ2
n + ω2)

, (70)

when the thermodynamic limit (∆1,2 → 0) was assumed

from the beginning, can be restored. In Eq. (70), nν(ω) =
coth(~ω/2kBTν) and in (69),

g̃(z) =
D + z

(D + z)(z2 + ω2
0) + 2Dγ̂z

=

3
∑

n=1

gn
z + µn

. (71)

Here gn are defined by Eq. (71) and µn are the roots of

(µ−D)(µ2 + ω2
0) + 2γ̂Dµ = 0. (72)
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Indeed, in the considered limit, the adjacent mode levels in

both reservoirs become infinitely close, and for any level in

the first reservoir the same level can be found in the second

one and vice versa. Thus, one can assume that ∆1 = ∆2 ≡
∆ → 0. In this case, Nν → ∞ and the infinite series in (46)

can be calculated accurately [56]:

A
(p)
νk (t) =

π(zk)
p−1

2(z2k +D2) sinφk
Â

(p)
νk (t), (73)

where Â
(1)
νk (t) = Â

(3)
νk (t) = sin(zkt − φk), Â

(2)
νk (t) =

cos(zkt − φk), and φk = πzk/∆. If ∆1 = ∆2 ≡ ∆, ana-

lytical solution (25) - (26) can be used and one finds [54]

g(t) = − i

π

3
∑

n=1

gn

∞
∑

k=−∞

∆zke
izkt

z2k + µ2
n

. (74)

When ∆ → 0, the sum over k transforms into the integral.

Closing the integration contour in the upper complex half-

plane (for t > 0), one arrives at (69). Using (69) in (47) with

A
(p)
νk (t) determined from (73), one finds that

z−1
k S

(2)
νk A

(3)
νk − zkS

(1)
νk A

(2)
νk =

π2z3k
4(z2k +D2)2 sin2 φk

3
∑

n=1

gn
µ2
n + z2k

(75)

and does not depend on time. Substituting (30) with ∆1 =

∆2 = ∆ and (75) into (44), one reduces J
(1)
ν to

J (1)
ν =

~γ̂D2

π

3
∑

n=1

gn

N
∑

k=1

∆z3knν(zk)

(z2k +D2)(µ2
n + z2k)

. (76)

Using (69) and (73), J
(2)
ν can be obtained in the same way.

However, one can use Jtot in a simpler equivalent form

Jtot =
1

2

[

J
(1)
1 − J

(1)
2

]

(77)

due to canceling J
(2)
1,2 contributions when ∆1 = ∆2. After

substituting (76) into (77) and converting the sum into the in-

tegral, one can extend its upper limit to infinity, taking into

account fast (exponential) convergence of the integral. Due to

(22), g(0) = g1 + g2 + g3 = 0 and Jtot reduces to Jst.
Finally, we briefly consider an application of our model to

study phononic heat transport between two platinum nanopar-

ticles interconnected by a carbon oxide (CO) molecule. In

order to determine the heat current in this case, we take into

account experimental valueω0 = 480 cm−1, corresponding to

the central frequency of Pt-C stretching vibration bond [58].

In order to estimate γ̂/ω0, we observe that the FWHM of the

Pt-C vibration mode is approximately 60 cm−1 [58], which

amounts to γ̂/ω0 ≈ 0.13. We choose T1 = 70K, which cor-

responds to kBT̄ /~ω0 = 0.1 for α = 0.01. Taking into ac-

count that the platinum Debye frequency is D ≈ 0.021 eV/~,

we have D/ω0 = 0.35. In order to make the result compara-

ble to the one shown in Fig. 8, we assume that the numbers
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FIG. 9: (Color online) Time dependences of Jtot between Pt

nanoparticles when γ̂/ω0 = 0.13, D/ω0 = 0.35, ∆1/ω0 = 0.001,

∆2/ω0 = 0.0013, kBT̄ /~ω0 = 0.1, and α = 0.01.

of Pt atoms in the nanoparticles,Nat1 and Nat2, are such that

the corresponding mode spacings are the same as in Fig. 8,

i.e., ∆1/ω0 = 0.001 and ∆2/ω0 = 0.0013. The resulting

temporal dependence for Jtot in accordance to our prediction

is shown in Fig. 9. It is qualitatively similar to the one in

Fig. 8, however the characteristic values of the heat current

are smaller, despite γ̂/ω0 in Fig. 9 is larger. This is because

D/ω0 in the latter case is smaller decreasing the resulting ef-

fective reservoir-particle interaction strength and, hence, the

heat current [51].

V. CONCLUSIONS

We have considered finite size effects in the energy (heat)

transport between two nanoparticles mediated by a quantum

particle, such as a molecule or an atomic chain. The nanopar-

ticles have, in general, different numbers of atoms resulting in

different mode spacings ∆1 6= ∆2. They are represented as

thermal reservoirs described by ensembles of oscillators using

the generalized quantum Langevin equation combined with

the Drude-Ullersma model. We have derived and numerically

solved the dispersion equation describing the eigenmodes of

our system. As is shown, the double degeneracy of the eigen-

modes that exists for the case of identical nanoparticles, when

∆1 = ∆2, is removed if ∆1 6= ∆2. Equations that govern

temporal behavior of the average energies of system’s eigen-

modes are derived and approximately solved. An expression

that describes the time evolution of the heat current Jtot be-

tween the nanoparticles is found and explored. In addition,

we analyzed the obtained results for possible errors and vio-

lations of the quasistatic regime and found that they are small

and can be neglected. As revealed, the time evolution of all the

considered quantities demonstrates peculiarities at time mo-

ments t = 2πn/∆1 + 2πm/∆2 for nonnegative integers n
and m. For the case of identical nanoparticles, these pecu-

liarities can be delineated as quasiperiodicity. In this case,

the total heat current is proportional to the difference of initial

nanoparticles’ temperatures T1,2. Degeneracy removal modi-

fies the temporal behavior of the heat current due to stronger

9



nonequilibrium nature of the dynamics, making it less sensi-

tive to variations of T1,2. In both cases, the appeared peculiar-

ities are due to discreteness of nanoparticles’ energy spectra

and represent finite size effects. As is shown, in the thermo-

dynamic limit, when ∆1,2 → 0, the produced expression for

the heat current reduces to the one obtained previously [51].

Finally, the heat current between platinum nanoparticles me-

diated by a CO molecule is considered as an example of ap-

plication of the developed model.
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APPENDIX

The dynamics of xνi and pνi is determined by [15, 54]

xνi(t) =
∑

k

√

~

2mνizk
ekνi(a

+
k e

izkt + ake
−izkt) (A78)

and pνi(t) = mνiẋνi(t), where {ek} are orthonormal eigen-

vectors that diagonalize the Hamiltonian (1) and correspond

to the eigenfrequencies zk:

ekνi =

√

2γ̂∆ν

πĥ(zk)(ω2
νi +D2)

ωνiD

ω2
νi − z2k

, ν = 1, 2. (A79)

Here ĥ(zk) is determined by (23). Employing (A78), pνi(t) =
mνiẋνi(t), (40), and taking into account the assumption dis-

cussed after Eq. (40), one finds for νth reservoir

〈xνi(0)xνj(0) + xνj(0)xνi(0)〉 =
~

√
mνimνj

N
∑

k=1

nνke
k
νie

k
νj

zk
, (A80)

〈pνi(0)pνj(0) + pνj(0)pνi(0)〉 =

~
√
mνimνj

N
∑

k=1

nνke
k
νie

k
νjzk, (A81)

and

〈xνi(0)pνi(0) + pνi(0)xνi(0)〉 = 0. (A82)

Thus, the ensemble averages in (36) are

〈xνi(0)η(s) + η(s)xνi(0)〉 =
√

m

mνi

Āνi

N
∑

k=1

nνkA
(2)
νk (s)

ĥ(zk)zk(z2k − ω2
νi)

(A83)

and

〈pνi(0)η(s) + η(s)pνi(0)〉 =
√
mmνiĀνi

N
∑

k=1

nνkzkA
(1)
νk (s)

ĥ(zk)(z2k − ω2
νi)
. (A84)

In these relations,

Āνi =
2~γ̂D3ωνi

π

√

2γ̂∆ν

π(ω2
νi +D2)

(A85)

and A
(p)
νk (t) is defined in (46). Substituting (A83) and (A84)

in Eq. (36), one finds

J (1)
ν (t) =

N
∑

k=1

nνk

zkĥ(zk)

∫ t

0

dsg(t− s)A
(2)
νk (s)×

Nν
∑

i=1

CνiĀνiωνi sinωνit

2
√
mmνi(z2k − ω2

νi)
−

N
∑

k=1

nνkzk

ĥ(zk)

∫ t

0

dsg(t− s)A
(1)
νk (s)×

Nν
∑

i=1

CνiĀνi cosωνit

2
√
mmνi(z2k − ω2

νi)
. (A86)

The use of (A85) and (46) in Eq. (A86) results in (44).

In order to reduce the expression for J
(2)
ν , we substitute

solution (15) for the Langevin equation into Eq. (37). After

dropping the terms that contain g(t) or ġ(t), one obtains

〈x(t)η(s) + η(s)x(t)〉 =
1

m

∫ t

0

dτg(t− τ)〈η(τ)η(s) + η(s)η(τ)〉. (A87)

Using (8), (9), (A80) - (A82), and (46), one finds that

1

m
〈η(τ)η(s) + η(s)η(τ)〉 = 4~γ̂2D4

π2

2
∑

ν=1

N
∑

k=1

nνk

ĥ(zk)
×

{z−1
k A

(2)
νk (τ)A

(2)
νk (s) + zkA

(1)
νk (τ)A

(1)
νk (s)}. (A88)

Substituting (A88) back into (A87) and using (47) results in

〈x(t)η(s) + η(s)x(t)〉 = 4~γ̂2D4

π2

2
∑

ν=1

N
∑

k=1

nνk

ĥ(zk)
×

{z−1
k S

(2)
νk (t)A

(2)
νk (s) + zkS

(1)
νk (t)A

(1)
νk (s)}. (A89)

Finally, using (A89) and (12) in Eq. (37), one can write

J (2)
ν = −4~γ̂3D6

π3

2
∑

ν′=1

N
∑

k=1

nν′k

ĥ(zk)
×

{z−1
k S

(2)
ν′k(t)W

(2)
νν′k(t) + zkS

(1)
ν′k(t)W

(1)
νν′k(t)}. (A90)
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Here W
(p)
νν′k(t) is defined as

W
(p)
νν′k(t) =

Nν
∑

i=1

∆νω
2
νi

ω2
νi +D2

∫ t

0

ds cosωνi(t− s)S
(p)
ν′k(s).

Using Eqs. (22) and (46) - (47), one reduces W
(p)
νν′k to (48).
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