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Abstract 

The topography of a reactive surface contains information about the reactions that form or modify the 

surface and, therefore, it should be possible to characterize reactivity using topography parameters such 

as surface area, roughness, or fractal dimension. As a test of this idea, we consider a 2-D lattice model 

for crystal dissolution and examine a suite of topography parameters to determine which may be useful 

for predicting rates and mechanisms of dissolution. The model is based on the assumption that the 

reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-

state surface topography in our model system is a function of, at most, two variables: the ratio of the 

rate of loss of sites with 2 neighbors versus 3 neighbors (d2/d3) and the ratio of the rate of loss of sites 

with 1 neighbor versus 3 neighbors (d1/d3). This means that relative rates can be determined from two 

parameters characterizing the topography of a surface provided that the two parameters are 

independent of one another. It also means that absolute rates cannot be determined from 

measurements of surface topography alone. To identify independent sets of topography parameters we 

simulated surfaces from a broad range of d1/d3 and d2/d3 and computed a suite of common topography 

parameters for each surface. Our results indicate that the fractal dimension, D, and the average spacing 

between steps, E[s], can serve to uniquely determine d1/d3 and d2/d3 provided that sufficiently strong 

correlations exist between the steps. Sufficiently strong correlations exist in our model system when 

D > 1.5 (which corresponds to D > 2.5 for real 3-D reactive surfaces). When steps are uncorrelated, 

surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these 

conditions, measures of surface topography are not independent and any single topography parameter 

contains all the available mechanistic information about the surface. Our results also indicate that root-

mean-square roughness cannot be used to reliably characterize the surface topography of fractal 

surfaces because it is an inherently noisy parameter for such surfaces with the scale of the noise being 

independent of length scale. 
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Introduction 

In a wide variety of physical systems, interfaces are formed and modified by molecular scale 

processes. Examples include: (i) the formation of grain boundaries during solidification from molten 

metal [1,2], (ii) formation of crystals either by precipitation from over-saturated solutions or by vapor 

deposition/epitaxy [3,4], (iii) nucleation, aggregation and growth of polymeric materials [5], (iv) 

evolution of biofilms on mineral surfaces [6-8], (v) etching of crystalline solids [9,10], and (vi) chemical 

weathering of alumino-silicate minerals [11-14]. In all of these cases, the physical topography of the 

interface is a complex function of the nature and frequency of the chemical processes that form or 

modify it. It should, therefore, be possible to ascertain information about the chemical processes from 

measurements of the surface topography. This idea has been explored to a limited extent in the 

literature [15], but, to our knowledge, theory-based guidance on this problem has yet to appear. 

The ability to determine information about molecular-scale processes based on surface 

topography could be especially useful in understanding the rates and mechanisms of chemical 

weathering of alumino-silicate minerals because these reactions happen so slowly that they often must 

be studied in the laboratory under conditions that differ significantly from natural systems in 

temperature, specific surface area, or chemical saturation index [16]. The problems inherent to 

laboratory-based weathering experiments are exemplified by the so-called “lab/field discrepancy” 

where laboratory measurements of mineral dissolution rates are almost uniformly several orders of 

magnitude greater than field-based estimates of the same [17]. A surface topography-based method for 

constraining dissolution rates could be used to estimate the rate constants of dissolution reactions for 

minerals that have weathered under natural conditions over long periods of time. Such a method might 

also enable more accurate prediction of natural weathering rates from relatively short time-scale 

laboratory experiments. 
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In this paper we explore the possibility of topography-based constraints on mineral dissolution 

rates using a simple 2-D mathematical model for dissolution. We have previously used this model to 

examine the general dependence of mineral dissolution rates on various environmental factors [18]. 

Others have used essentially the same model to study the distribution of steps and kinks on the surface 

of growing crystals [19-28] and the movement of dislocations during plastic deformation of ductile solids 

[29]. We believe that this model occupies a middle ground between being so simple as to be irrelevant 

to real systems and being so complicated as to preclude mathematical analysis. Furthermore, as shown 

in our previous contribution [18], such a model can successfully predict certain observed features of 

dissolution behavior including the length of the transient period during which rates typically decrease 

from an initial fast rate to a slower steady-state dissolution rate as well as the behavior of dissolution 

rate versus free energy of dissolution. A summary description of the model is provided below. 

 

Model Description 

A simple model for a surface embedded in two dimensions is a sequence of steps as shown in 

Fig. 1. The height of each step is an integer which can be positive, negative, or zero. A positive value 

indicates a step up going from left to right and a negative value indicates a step down. This model can 

only represent surfaces with no overhangs. The sequence of step heights for the surface on the left hand 

side of Fig. 1 is 0,1,0,1,-2,-1. We define the length, L, as the lateral extent of the surface so that a surface 

of length L, contains L - 1 steps (assuming unit length between steps). Both of the surfaces shown in Fig. 

1 have L = 7. As discussed later, however, the surface areas of the two examples are different. 

 Dissolution and precipitation reactions can be incorporated into the model by allowing the 

values of two neighboring step heights to change concurrently. For a dissolution reaction, the left hand 

member of the pair decreases by one and the right hand member increases by one. For precipitation, 
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the opposite changes occur. The reaction depicted in Fig. 1 (from left to right) is a dissolution reaction 

between the 4th and 5th steps: 0,1,0,1,-2,-1 → 0,1,0,0,-1,-1. 

Like all chemical reactions, dissolution and precipitation are stochastic processes and, therefore, 

the surfaces formed by these reactions are also stochastic [20-22]. The stochastic nature of the surface 

can be accounted for in the 2-D step model by defining a probability for each possible sequence of steps. 

Unless the surface is in a steady-state configuration, dissolution and precipitation reactions will change 

the step sequence probabilities over time. The probability associated with the sequence shown in Fig. 1 

can be denoted as Pt(n1, n2, n3, n4, n5, n6).  

If the step heights are uncorrelated, then the surface can be described by specifying the 

probability, Pt(n), of observing a step of height, n, at a randomly selected location and at time, t. For 

uncorrelated steps, the probability of a sequence of steps is equal to the product of the probabilities for 

the individual step heights, e.g., Pt(n1, n2, n3, n4, n5, n6) = Pt(n1)∙Pt(n2)∙Pt(n3)∙Pt(n4)∙Pt(n5)∙Pt(n6). 

 Chemical reactions can be modeled as Markov chains [30]. For the 2-D step model, this means 

that the time rate of change of the Pt(n1, n2, n3, n4, n5, n6,…) depend only on the current state of the 

surface. The full dynamics of the surface can be specified via the transition probabilities between each 

possible sequence of steps. Since the reactions can be treated as occurring one at a time [31], the 

transition probabilities between most surfaces are zero. This, however, still leaves a very large number 

of non-zero transition probabilities, particularly for surfaces with large values of L. 

 The stochastic model can be simplified by supposing that the reaction frequencies are uniquely 

determined by the configuration of the surface around each reaction site—i.e., the site neighborhood or 

the short-range ordering of the solid phase. In this context, a reaction site is a region of the surface 

between two steps where a dissolution or precipitation reaction can occur. To this end, let dN and pN 

denote the probability per unit time of, respectively, dissolution and precipitation at sites with N 
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occupied nearest neighbors. For surfaces with no overhangs like that shown in Fig. 1, the number of 

nearest neighbors, N, can take values of 1, 2, or 3 and is determined by the step heights to the left and 

right of the site. For dissolution: 
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where nL and nR are, respectively, the step heights to the left and right of the dissolution site. A slightly 

modified version of Equation 1 can be written for precipitation. 

For the remainder of this work, precipitation reactions will be ignored (i.e., pN = 0). The master 

equation can then be written as: 
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where d(ni-1,ni) is the probability of dissolution per unit time as defined by equation 1 and the 

summations run over all possible dissolution reaction sites. Ignoring precipitation is equivalent to 

restricting our view to far-from-equilibrium conditions. While precipitation reactions do influence the 

development of surface topography [12], the far-from-equilibrium case is of greatest interest because 

many geologic specimens weather under such conditions and because most laboratory experiments 

have been conducted far from equilibrium. Focusing on dissolution reactions alone decreases the 

degrees of freedom in our model to two (see below) allowing simulation results to be presented 

graphically. 

 Numerous computational studies of the model described above [18,21,29] and related models 

[13,24,28,32-36] have identified apparent steady-state behavior for a wide variety of the dN and pN. 

Moreover, an approximate steady-state solution to the master equation can be found by assuming no 
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correlation between step heights at different locations [18,20-22]. The simulations presented in this 

study were performed for a length of time shown to be sufficient to remove any time-varying 

component (see below) and, therefore, the results presented are intended to represent the steady-state 

configuration of the surface. A steady-state surface for real minerals would presumably be represented 

by a crystal dissolving in a flowing fluid whose chemistry was maintained constant in time, i.e., a mineral 

weathering in an aquifer or soil profile under conditions of flowing ground- or pore-water maintained at 

constant chemistry. 

 At steady-state, the time derivative on the left-hand side of equation 2 is zero. All of the 

remaining terms can then be divided by one of the dissolution probabilities per unit time, d3 say. 

Equation 2 then becomes: 
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The only model parameters that appear in equation 3 are the ratio of dissolution probabilities, d1/d3 and 

d2/d3. Therefore, the steady-state configuration of the surface depends only on these two degrees of 

freedom. 

 To our knowledge, a general solution to equation 3 has not been found. An approximate 

solution can be found by assuming that the surface steps are uncorrelated [18,21,22]: 
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1 3

1 3

1
1

n

SS

d d
P n d d

d d

−−
= ⋅

+
 (4) 

The assumption of uncorrelated steps is, however, appropriate only under certain conditions [20]. The 

exact nature of these conditions is discussed further below. In those cases where correlations must be 

taken into account, numerical simulations can be used to find solutions to equation 3. 
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Simulations 

 Surfaces with approximately steady-state topography were simulated using a variable time step 

kinetic Monte-Carlo algorithm [31,37,38]. The surfaces were initiated with the steady-state distribution 

of step heights calculated assuming no correlations between neighboring steps [18]. All surfaces had a 

length of 210 (i.e., L = 1024) which is large enough to eliminate size effects [18]. For each set of dN values, 

an ensemble of 300 statistically identical surfaces was simulated. The boundary conditions for each 

surface were randomly selected from within the ensemble between each reaction. The randomized 

boundary conditions were found to be in good agreement with the more commonly used periodic 

condition for large values of L and this approach more readily enables calculation of fractal dimensions. 

In addition, random boundary conditions allow direct comparison between simulation results and 

theoretical approximations based on ignoring correlations. 

 To ensure simulation results that were close to steady-state, each surface was subjected to 

102,400 dissolution reactions. Previous work with much longer simulations initialized with flat surfaces 

suggested that 100 × L reactions are sufficient to ensure reaction rates and surface areas that approach ≈99% of their steady-state values [18]. Additionally, the full suite of surface topography statistics 

discussed below were calculated for long simulations (1×106 reactions) with select values of the dN. 

Good agreement—within one percent—was found between the long simulations and those presented 

below for all surface topography statistics except root-mean-square roughness and fractal roughness 

amplitude which showed up to 20% variability between the long and short simulations. As we discuss 

below, reasons for this are related to variability that is inherent to root-mean-square roughness. 

Variance reduction was performed using the average surface height as a control variate [39] with an 

expected value of zero. 
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Measures of Surface Topography 

 Researchers studying mineral dissolution have reported surface area, surface roughness, fractal 

dimension, fractal amplitude, and spacing between steps for a number of mineral-water reactions 

[3,40,41]. Of these five, surface area and roughness are the most commonly reported measurements. In 

both cases, however, there are multiple methods for obtaining measurements which lead to quite 

different operational definitions of the parameters (see below). The fractal dimension, fractal amplitude, 

and step spacing, while less frequently reported, can be calculated in an unambiguous manner from 

microscopic measurement of surface heights (e.g., as in atomic force microscopy, AFM) for relatively 

smooth surfaces [42-44]. In the following we outline some essential features of each of these measures 

of topography. 

Surface Area: Usually reported on a per mass basis known as specific surface area, this 

measurement is needed to interpret the rate of any surface-mediated dissolution reaction since twice 

the surface will usually yield twice as much product during a given amount of time. At the grain scale, 

two methods for measuring specific surface area are commonly employed. One—which we will refer to 

as BET surface area, ABET—involves measuring the amount of a gas adsorbed to the surface as a function 

of pressure and evaluating surface area from these data using the Brunauer, Emmet, and Teller (BET) 

isotherm [45]. The other—which we will refer to as geometric surface area, Ageo—involves measuring 

the particle size distribution (e.g., with a series of sieves) and evaluating surface area based on the 

geometry of the particles [46]. It is also possible to evaluate Ageo by integration of height data measured 

microscopically on relatively flat surfaces [47] though this approach is less common.  

These various ways of measuring surface area point to the fact that surface area is defined by 

the characteristic length scale of the “ruler” used in making the measurement [48]. In the case of BET 

surface area, the length scale is the size of the gas molecule being adsorbed. In fact, the BET surface 

area depends on the particular gas used. For geometric surface area, the size of the ruler is determined 
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by the method used to separate particles of different sizes or to make microscopic measurements of 

step heights. 

Surface Roughness: Two surfaces with identical values of Ageo can have very different values of 

ABET due to differences in the roughness of the two surfaces. As with surface area, there are two 

common operational definitions of surface roughness. One, which we refer to as the geometric 

roughness, is defined as the ratio of BET surface area to geometric surface area [49]: 

 BET
geo

geo

A
A

λ =  (5) 

For a perfectly smooth surface, the geometric roughness is one. There is no upper limit on λgeo though 

values for naturally weathered mineral samples typically range between 10 and 1000 [16]. 

The other common definition of roughness, which we refer to as the root-mean-square 

roughness, is defined as the standard deviation of the height of the surface: 

 ( )
1/22

rms h hλ = −  (6) 

where h denotes the height of the surface above some datum and the average (denoted by angle 

brackets) is taken over some lateral extent, L [50]. λrms and λgeo are not mathematically equivalent. λgeo 

is dimensionless while λrms has dimensions of height. λgeo is one for a perfectly smooth surface while λrms 

is zero (i.e., when the datum is the height of the surface itself) and, as we discuss below, the two 

roughness values can vary independently of one another. 

Operationally, these two types of roughness are usually measured on two distinct classes of 

surface. Specifically, λrms can be measured using a microscope such as an AFM to probe relatively 

smooth surfaces such as partially dissolved planchets [3,51-53]. In contrast, such a measurement cannot 

typically be performed on powders. For powders, λgeo is therefore generally measured [40]. As a 
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consequence, λrms is often used in materials science [54] but λgeo is used for geochemical observations of 

naturally dissolved minerals [16]. 

Fractal Dimension: One important way in which λrms and λgeo differ from each other is in their 

dependence on the lateral extent, L, of the measurement. The definition of λrms given in equation (6) 

requires that L be specified, but the definition of λgeo makes no reference to L; λrms is a function of the 

lateral extent and tends to increase with L, but λgeo is independent of L. For self-affine surfaces, the 

relationship between λrms and L takes the form of a power-law: 

 ~rms Lαλ  (7) 

where α is the roughness index [54,55]. This index is also known as the Hausdorff measure [56] and is 

related to the fractal dimension by: 

 N Dα = −  (8) 

where D is the fractal dimension and N is the dimension of the space in which the surface is embedded 

[57]. For surfaces of real 3-dimensional objects such as minerals, N = 3. For our 2-dimensional model 

system, N = 2. 

 The fractal dimension for self-affine surfaces is also related to the power spectral density, S(f), 

for the surface: 

 ( ) ~S f f β−  (9) 

where f is the frequency and β = 2α + 1 [56]. The power spectral density is the square of the magnitude 

of the Fourier transform of the surface height (above some datum) as a function of lateral distance. For 

a surface embedded in 2-D: 

 ( ) ( ) 2

0
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L

S f H f L
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where H(f, L) is the Fourier transform. 
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Several methods have been used to calculate fractal dimension for real surfaces. For example, in 

the 2-dimensional Fast Fourier method [54], the log power is plotted against log frequency for scans of a 

surface measured over different areas and at different resolutions using a microscope. This method has 

been used, for example, to estimate the fractal dimensions of dissolving glass and crystals of albite 

feldspar composition [48,53]. 

Values of the fractal dimension of polished or etched crystal and glass of feldspar composition 

have been calculated using these methods to generally range between 2.7 and 3 [53]. Likewise, the 

fractal dimension of optical glasses has been measured using power spectra to equal 2.65 [54]. The 

fractal dimension of a silicon substrate has also been observed to equal 2.74, whereas the dimension of 

a polysilicon layer deposited on top of the substrate by chemical vapor deposition yielded a value near 

2.2 [58].   

Fractal dimensions have also been estimated by comparisons of specific surface area as a 

function of particle size for many geological materials [41,53]. Based on this method, values of quartz 

and calcite are generally close to 2 whereas samples of dolomite, skeletal carbonates, and feldspar were 

reported to vary between 2.3 and 3 [41].  Adsorption measurements have also been used to estimate 

fractal dimensions of soils (2.1 – 2.7), apatite (2.7), bentonite (2.1-2.3),  kaolinite and montmorillonite (2 

– 2.4) [59]. Those same authors report values based on small-angle scattering that vary between 1.6 and 

2.91 for soils, humic materials, clays, and sands, though the physical interpretation of values below two 

remains unclear. 

Recently, surface fractal dimensions have been measured for unweathered crystalline rocks by 

performing neutron scattering on thin sections of rock. The fractal dimensions measured by this 

technique are applicable to nanometer-scale surface features and values obtained include: 2.7 to 2.8 for 

basaltic andesite [60], 2.5 for quartz diorite [60], 2.6 for diabase [61], and 2.6 for granite [61]. 
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Fractal Amplitude: Equations (7) and (9), which define the fractal dimension, both implicitly 

include a scaling pre-factor. While the fractal dimension defined by these equations is the same [56], the 

scaling pre-factors are different. Both are, however, commonly referred to as amplitudes [57]. We 

denote the fractal roughness amplitude defined by equation (7) as a and the power spectral amplitude 

defined by equation (9) as a’ so that equations (7) and (9) can be written, respectively, as: 

 N D
rms a Lλ −= ⋅  (11) 

 ( ) 2 2 1D NS f a f − −′= ⋅  (12) 

where the exponents have been written in terms of the fractal dimension, D, and the embedding 

dimension, N (3 for real surfaces, 2 for our model system). The dimensions of a vary with D such that the 

left hand side of equation (11) of length. The dimensions of a’ are length squared regardless of the value 

of D. 

 Step Spacing: The average horizontal spacing between steps on a surface has not been broadly 

reported for minerals (see, however, [3,62]).This measure of surface topography can be readily 

evaluated from the same type of data needed for measuring λrms or the fractal dimension. Since mineral 

surface reactivity is likely to be heavily influenced by the density of steps, step spacing may provide a 

convenient way of relating surface reactivity to surface topography and so we include this measure in 

our analyses on the basis of its potential value. For the 2-D step model, the expected value of the step 

spacing, E[s] is given by: 

 [ ] ( )
1

1 0
E s

P n
=

− =
 (13) 

where P(n = 0) is the probability of finding a step height of zero at a randomly selected location on the 

surface. 
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Measures of Surface Topography in the 2-D Step Model 

Each of the measures of surface topography defined above can be calculated for the 2-D step 

model. Doing so allows us to see how these measures are related to one another and also how they are 

influenced by the chemical reactions that form and modify the surface—i.e., the values of d1, d2, and d3 

in equations (1-4). 

 Surface Area: As described above, two distinct operational definitions of surface area are in 

common use. The BET surface area, ABET, is a measure of the total surface area at the molecular scale. 

For the 2-D step model ABET can be calculated as the total length of the surface including the vertical line 

segments due to steps and the horizontal line segment between steps: 

 
1

1

M

BET i
i

A L n
−

=

= +∑  (14) 

where L is the width of the surface, M is the (integer) number of crystal units in L, and the |ni| are the 

absolute values of the step heights. In our model, L and M are numerically equivalent, but L has 

dimensions of length while M is dimensionless. More generally, the ratio L / M is the crystallographic 

spacing. 

The stochastic nature of the surface during reaction can be incorporated into equation (14) to 

give: 

 ( )
1

1 2BET
n

A L n P n
∞

=

⎛ ⎞= ⋅ + ⋅ ⋅⎜ ⎟
⎝ ⎠

∑  (15) 

where the summation is now over all possible step heights and the fact that P(n) is an even function is 

employed to give the factor of 2. Equation (15) is valid for both correlated and uncorrelated surfaces. 

 For uncorrelated surfaces, equation (4) can be substituted into equation (15) for P(n). Provided 

that d1 > d3 (i.e., removal of atoms at the surface that are protruding is easier than removing an atom 

from a perfect surface by opening a pit) the resulting sum converges and the expression for ABET is: 
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Equation (16) has no dependence on d2 indicating that, for an uncorrelated surface, the BET surface area 

depends only on the lateral extent of the surface, L, and the ratio of the step removal rate, d1, to the 

step creation rate, d3. The model parameter d2 represents the rate at which a given step moves across 

the surface (step retreat).  When the step locations are assumed to be uncorrelated, step retreat has no 

influence on the steady-state specific area of the surface. 

In contrast to ABET, the geometric surface area, Ageo, is simply equal to the width of the 

simulation. 

 geoA L=  (17) 

For the simulations considered below L = 210. 

 Roughness: As with surface area, two definitions of roughness are commonly used. The 

geometric roughness is the ratio of the BET surface area to the geometric surface area. Inserting 

equations (15) and (17) into this definition gives: 

 ( )
1

1 2geo
n
n P nλ

∞

=

= + ⋅ ⋅∑  (18) 

Equation (18) can be interpreted as one plus the expected value of the step heights. Geometric 

roughness does not depend on the lateral extent of the surface (i.e., λgeo is independent of L). This 

relationship holds for both correlated and uncorrelated surfaces. 

 Dividing equation (16) by L gives the following expression for the geometric roughness of an 

uncorrelated surface: 
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d d
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+ ⋅ −
 (19) 
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Like ABET, λgeo is independent of d2/d3 for uncorrelated surfaces. Equation (19) indicates that λgeo 

becomes infinitely large as d1/d3 approaches one and that λgeo approaches one as d1/d3 becomes large. 

 The root-mean-square roughness is defined as the square root of the variance of the height of 

the surface (see equation 6). This definition requires the specification of a lateral extent of the surface 

over which the variance is to be computed. To evaluate λrms in terms of the step heights, n, consider a 

surface of lateral extent L whose height at location zero is denoted as h0. All subsequent heights can 

then be expressed in terms of a sequence of step heights. 

 0
1

j

j k
k

h h n
=

= +∑  (20) 

The average height of the surface is then given by: 
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Where M is the number of crystallographic units in a surface of extent, L. The raw second-order moment 

of h over the surface can be found in a similar manner: 
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The variance of the surface heights is the difference between equation (22) and the square of 

equation (21): 
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Taking the average of equation (23) over an ensemble of surfaces gives: 
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where σk is the covariance of step heights removed by a distance k. 

 [ ]k i i kE n nσ += ⋅  (25) 

Equation (24) indicates that λrms depends on the second order moments—E[n2] and σk—of the step 

heights both of which have dimensions of length squared. This is in contrast to λgeo as given by equation 

(18) which depends on the first order moment of the absolute step heights—E[|n|]. As a result, λrms can 

be expected to be more sensitive to noisy data than λgeo and, therefore, λrms may be more difficult to 

compute accurately.  

Since M is numerically equivalent to the scale, L, over which the measurement is made, 

equation (24) indicates a dependence of λrms on L similar to that of equation (11). For an uncorrelated 

surface the covariance terms are zero so equation (24) simplifies to: 

 21 1
6rms E n M

M
λ ⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦ ⎝ ⎠

 (26) 

For large M, the 1/M term is negligible (e.g., for the simulations considered below M ≈ 103 and 

1/M ≈ 10-3) so λrms is proportional to M0.5. For the purposes of this paper we consider M ≥ 24 (= 16) to be 

sufficiently large for the 1/M term in equation (26) to be negligible. The E[n2] in equation (26) can be 
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evaluated for an uncorrelated steady-state surface using equation (4) and employing the even character 

of P(n): 
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The series in equation (27) converges when d1 > d3 giving: 
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The expression for λrms for an uncorrelated surface with large L becomes: 
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Where ΔL represents the crystal spacing (equal to one in our model). As with equation (19) for λgeo, 

equation (29) shows that uncorrelated λrms is independent of d2/d3, grows infinitely large as d1/d3 

approaches one, and approaches zero (the value for a smooth surface) for large d1/d3. Note also from 

equation (29) that interpreting λrms always requires the specification of a length scale. 

Fractal Dimension: The scaling relationship between λrms and L1/2 in equation (29) implies that 

the fractal dimension, D, of an uncorrelated surface is 1.5 (see equation (8) with α = 0.5 and N = 2). A 

1-D Brownian walk also has a fractal dimension of 1.5 [56] and a similar result has been obtained for 

natural and artificial random surfaces [63]. In all of these cases, the fractal dimension of 1.5 is a result of 

the uncorrelated nature of the steps on the surface. 

It is not true, however, that D = 1.5 uniquely implies an uncorrelated surface. Equation (24), 

which is applicable to both correlated and uncorrelated surfaces, yields a fractal dimension of 1.5 for a 



Page 20 of 44 
 

broad range of cases. One such case is when σk is constant up to some maximum value of k and zero 

thereafter provided that the following condition is met: 
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k
cutoff

E n
k

σ
⎡ ⎤⎣ ⎦<  (30) 

where kcutoff is the distance above which the covariance is zero. For surfaces satisfying equation (30), the 

summation in equation (24) is dominated by the leading -M/6 term such that λrms scales with L1/2 for 

large L.  

The fractal dimension is also 1.5 when σk is proportional to fk with 0 < f < 1 again provided that 

the short-range covariances are not too large. The condition for D = 1.5 in this case can be written as: 

 2

1
k

k
E nσ

∞

=

⎡ ⎤< ⎣ ⎦∑  (31) 

As in the case with the cutoff covariances, here the fractal dimension is 1.5 because a leading term that 

is proportional to L dominates the summation in equation (24). This discussion leads to the conclusion 

that a fractal dimension of 1.5 generally arises when the long-range correlations between steps die off 

rapidly enough and when the short-range correlations are sufficiently small. Again, likening these 

attributes to known attributes of crystal surfaces, these criteria might be met when a real crystal has 

randomly distributed defects. In this case, spacing of steps is likely to show small short-range 

correlations and long-range correlations that die off rapidly.  Given this observation, surfaces of glasses 

might be expected to approach fractal dimensions of 2.5 (where fractal dimensions for our 2-D model 

system can be compared to 3-D solids by adding one [56], though fractal properties of surfaces can 

change dramatically when moving from 2-D to 3-D spaces). 

Fractal dimensions other than 1.5 can be found for cases with large short-range correlations. For 

example, if σk is constant for k < kcutoff and zero thereafter, then D = 2, provided that: 
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A fractal dimension of 2 also arises from equation (24) when σk ∼ fk when the constant of proportionality 

is selected such that equation (32) is met. In both of these cases, the leading M term in the summation 

of equation (24) exactly balances the E[n2]∙M/6 term so that the remaining expression is independent of 

L for sufficiently large L. 

Fig. 2 shows two ensembles of surfaces generated with the 2-D step model described above. 

The surfaces in Fig. 2A have an average fractal dimension of 1.5 while the surfaces in Fig. 2B have an 

average fractal dimension of 1.99. Both of these ensembles have approximately the same λrms (≈ 7) at 

the length scale, L = 1024. This can be seen in Fig. 2 by noting that both ensembles have the same 

spread of heights at L = 1024. The two ensembles are, however, very different in the rate at which the 

heights spread out as the length increases from 0 to 1024. It is this difference in rate of spread that is 

described by the fractal dimension, D. 

The surfaces in Fig. 2A spread out gradually, like a square root function (similar to a Brownian 

walk). The surfaces in Fig. 2B spread out immediately—before L = 50—and the spread increases only a 

little, thereafter. These differences are characterized by the fractal dimension according to equation (7). 

The surfaces in Fig. 2A have an average D of 1.5 (as calculated from the power spectra) and this is 

precisely because of the square-root like spread of the surfaces. The surfaces in Fig. 2B have an average 

D of 1.99 due to the nearly zero rate of long-term spreading in the surfaces. 

The fractal dimensions of the surfaces in Fig. 2 are consistent with the discussion of covariance 

above. The highlighted surface with lower fractal dimension in Fig. 2A has a smooth appearance when 

compared to the highlighted surface with higher D in Fig. 2B. This is because the steps that comprise the 

surface in Fig. 2A are uncorrelated while the steps that comprise the surface in Fig. 2B have strong 

positive short-range correlations that die off to zero with increasing distance. The correlation between 
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steps in Fig. 2B is evident in the spiky nature of the surface—any positive (negative) step is likely to be 

followed by several more positive (negative) steps. When considered in the embedding dimension of 3, 

such a surface with high fractal dimension is often described as “space-filling”. 

Equation (24) also permits values of the fractal dimension that are less than 1.5. For example, 

substituting a constant positive covariance with no maximum cut-off into equation (24) gives: 

 2 21 1 3 14 31 3
6 4 3 12 2rms E n M M M

M M
λ σ⎛ ⎞ ⎛ ⎞⎡ ⎤= − + ⋅ − + −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠

 (33) 

where σ denotes the constant positive covariance. For large values of M, equation (33) is dominated by 

the M2 term such that λrms is proportional to L1 and, therefore, D = 1. In our simulations with the 2-D 

step model, however, we have not observed a fractal dimension less than 1.5 even though we 

performed simulations over a very wide swath of the d1/d3 , d2/d3 space (see Fig. 4, below). 

 Taken together these results indicate that: (i) fractal dimensions less than 1.5 are associated 

with long-range correlations; (ii)  fractal dimensions equal to 1.5 are associated with surfaces with, at 

most, weak correlations between steps, and (iii) fractal dimensions greater than 1.5 are associated with 

surfaces with strong short-range correlations. In this regard, it is noteworthy that Farin and Avnir (1987) 

report that crystals of calcite (Iceland spar) or quartz that are relatively defect-free are characterized by 

values of D = 1.8 - 2.45 and 2 respectively while crystals of the chemically complex minerals dolomite 

and feldspar which are always more defect-laden are typically reported to have higher values of D.  

Crystals which contain defects that are widely spaced are likely to show long-range order (D < 2.5) while 

crystals with closely spaced defects are likely to only show short-range order (D > 2.5). 

 Fractal Amplitude: The fractal roughness amplitude, a, defined by equation (11) is a function of 

the second order moments, E[n2] and σk. For the uncorrelated case, equation (29) can be used to 

identify a as: 
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Equation (34) indicates that, for uncorrelated surfaces, a depends only on d1/d3. Therefore, any 

dependence on d2/d3 implies correlation between the steps. 

 The fractal roughness amplitude can be related to the power spectrum amplitude (a’ in 

equation 12)  using Parseval’s theorem [57]. For a surface embedded in 2-D the resulting relation is: 
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Note that for a surface embedded in 3-D, the powers in the denominator of equation (35) must be 

modified; see ref. [57] for details. Equation (35) implies that the two fractal amplitudes are never 

independent measures of surface topography since one of them can always be calculated from the 

other. 

For an uncorrelated surface, D = 1.5 and a is given by equation (34). Substituting these into 

equation (35) gives: 
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where the approximation holds for large L since the series 1 + 1/4 + 1/9 + 1/16 + ... = π2/6. As with the 

other measures of surface topography, a’ is independent of d2/d3 for uncorrelated surfaces. 

 Step Spacing: Substituting equation (4) with n = 0 into equation (13) yields the following 

expression for average step spacing on an uncorrelated surface. 

 [ ] 1 3 1
2

d d
E s

+
=  (37) 
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The step spacing for an uncorrelated surface is independent of d2/d3, approaches one as d1/d3 

approaches one, and approaches ∞ for large d1/d3. A step spacing of 1 corresponds to a rough surface 

with a non-zero step at every surface site while large values of E[s] correspond to smooth surfaces. 

 

Simulation Results 

 Geometric Roughness: Fig. 3A shows contours of constant λgeo for our simulations plotted in the 

space of d1/d3 vs. d2/d3. Mathematically, d1/d3 and d2/d3 must always be > 0. However, since d3 

represents the formation of a step in a flat surface, d2 represents the retreat of steps, and d1 represents 

the ultimate removal of a stepped layer, it is physically realistic to further expect that d1 ≥ d2 ≥ d3. 

Therefore, we have focused our simulations on values of d1/d3 and d2/d3 greater than one. (Note also 

that the region where d1 ≥ d2 is the upper left half of Fig. 3A.) 

 The geometric roughness approaches one as both d1/d3 and d2/d3 become large (the upper right 

corner of Fig. 2A.) This occurs—for example during so-called chemical polishing—because the rates of 

step retreat (d2) and disappearance (d1) are much greater than the rate at which steps are formed (d3) so 

that the steady-state surface has very few steps. Decreasing either d1/d3 or d2/d3 leads to an increase in 

λgeo, though the change is more rapid as a function of variation in d1/d3. When d1/d3 is close to one and 

d2/d3 is large (the lower right corner of Fig. 3A), the steady-state surface is dominated by sites with 

either one or three nearest neighbors because any steps that form quickly retreat. The resulting surface 

is comprised of large towers of one unit width and has a correspondingly large value of λgeo. When 

d1/d3 equals one, a steady-state surface was not reached in our simulations and, at least in the case of 

d1 = d2 = d3, no steady-state exists because all surface sites dissolve with equal probability. 

When d2/d3 is close to one and d1/d3 is large (upper left of Fig. 3A), the rates of step formation 

and retreat are equal and the ultimate removal of steps is nearly instantaneous so that the surface is 

comprised of roughly equal numbers of steps and flat surface. The resulting surface has a moderate 
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value of λgeo ≈ 2.5. The λgeo values in our simulations can be compared to measured values for real 

surfaces by squaring our simulation results (this is due to the difference in dimensionality.) For example, 

the observed values of λgeo typically range from 10 to 1000 for natural samples [16]. The square of our 

simulated values range from nearly 1 to 820. Simulated values where d1 ≥ d2 ≥ d3, however, did not 

exceed 46 (this value is obtained in the lower left region of Fig. 3A). The poor agreement can be 

attributed to the fact that the Ising model used here does not incorporate overhangs and that the very 

high roughness of some natural samples has been attributed to porosity [53]. 

 The “x” symbols in Fig. 3A represent the location on each contour where the uncorrelated 

approximation of λgeo given by equation (19) is the same as the simulation results. Note that since 

equation (19) depends only on d1/d3 contours of constant of λgeo calculated from equation (19) would 

appear as horizontal lines in Fig. 3A. The markers represent the intersection of these horizontal lines 

with the contours generated from the simulation results. 

The dashed line in Fig. 3A represents the contour where σ1 = 0. Higher order covariances are 

also zero along this contour except where d2/d3 begins to approach 1 (i.e., on the left side of Fig. 3A 

where the σ1 = 0 contour forms an upward “hook”). The intersections of equation (19) and the 

simulation results all fall near the σ1 = 0 contour (within 15%). This indicates that the uncorrelated 

model represented by equation (4) is correct along the σ1 = 0 contour provided that d2/d3 is not too 

small. (For values of d2/d3 > 2.5, none of the higher order covariances has a magnitude greater than 0.1 

for our simulations.) 

Since the σ1 = 0 contour appears to be a straight line in the log-scaled space of Fig. 3A, the 

region in d1/d3 vs. d2/d3 space where steps are uncorrelated can be represented by a power law: 
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where we have assumed the condition d2/d3 > 2.5 as described above. In the vicinity of equation (38), 

we can expect a fractal dimension of 1.5 per equation (29) and this is borne out by Fig. 4. Moreover, in 

the vicinity of equation (38), all surface topography statistics are uniquely determined by d1/d3. 

Therefore, only the ratio of the step removal rate (d1) to the step creation rate (d3) can be determined 

from any measure of surface topography. 

Root-Mean-Square Roughness: Fig. 3B shows contours of constant λrms for the same simulations 

discussed above. Like λgeo, root-mean-square roughness decreases as both d1/d3 and d2/d3 increase. 

However, the shape of the contours are quite different indicating that λgeo and λrms vary independently 

of one another. Plotting these two variables against each other (not shown) confirms this. The 

independence of λgeo and λrms suggests that simultaneous measurements of these parameters describing 

surface topography could be used to determine d1/d3 and d2/d3, provided that sufficiently strong 

correlations are present (i.e., provided that the region around the dashed line in Fig. 3A is avoided). For 

instance, for our steady-state model surfaces, if λgeo = 1.75 and λrms = 50, then reading from Fig. 3, the 

ratios d1/d3 and d2/d3 would have values of approximately 25 and 4, respectively. 

Unfortunately, there are at least two difficulties with this approach. First, as described earlier, 

both roughness statistics are generally not measured for the same surface. Root-mean-square 

roughness is usually measured by techniques that are limited to relatively smooth surfaces [53] while 

geometric roughness is usually measured by a technique (BET surface area analysis of a powder with 

well characterized size distribution) that is limited to relatively rough surfaces [46]. 

While this first difficulty could, perhaps, be overcome by creative technique development, a 

second difficulty is more intractable: λrms is an inherently noisy measurement. The percent error 

calculated by averaging the ratio of the ensemble standard deviation divided by the ensemble average 

was found to be 37% for L = 1024 and was unchanged for successively smaller values of L down to 
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L = 128. Constant percent error in λrms with respect to L was confirmed for larger values of L (up to 

L = 217) using ensembles of uncorrelated surfaces generated from equation (4). On average, λrms was 

found to have 40% error for uncorrelated surfaces when d1/d3 = 8. Taken together, these results indicate 

that substantial error is inherent to the measurement of λrms for fractal surfaces. The large error 

inherent in λrms is the reason why the intersections—represented by “x” symbols—of the λrms contours 

with equation (34) for uncorrelated surfaces do not fall directly on the dashed line representing 

covariance of zero. 

Fractal Dimension: Fig. 4 shows contours of constant D in the space of d1/d3 vs. d2/d3. Fractal 

dimension approaches its maximum value of 2 for large values of d1/d3 and small values of d2/d3 and D 

decreases with either decreasing d1/d3 or increasing d2/d3. The fractal dimension is a measure of the 

dimensionality of the model surface with values approaching 2 characteristic of plane-filling surfaces 

and values approaching 1 characteristic of a Euclidian surface (e.g., a flat line). Note, however, that D is 

not a measure of surface roughness since by comparing Fig. 4 with Fig. 3 we see that surfaces with 

D = 1.5 can have nearly any value of roughness and D can decrease while roughness increases (compare, 

also, Fig. 2). 

In the center region of Fig. 4, there is a wedge-shaped plateau where D = 1.5. This value of the 

fractal dimension is characteristic of surfaces where correlations between steps die off sufficiently fast 

with distance. The light dashed contour in Fig. 4 shows the region where the covariance between 

neighboring steps is approximately zero. This contour crosses the D = 1.5 contour when d1/d3 = 4 and 

d2/d3 = 2.55 which corresponds well with the region where longer range covariances are zero.  

We have not investigated the precise rate of decay of σk necessary to ensure D = 1.5; however, 

any surface where σk ≤ fk (|f| < 1) for all k will have D = 1.5. The equality σk = fk is the solution to the 1-

dimensional Ising model at equilibrium under Glauber dynamics [64] where f is equal to the order 
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parameter, tanh(J/kBT), where J is the interaction energy of neighboring spins, kB is the Boltzmann 

constant and T is the absolute temperature. A form of this equation is often used to represent the 

energy dependence of bond-breaking reactions [65]. This correspondence suggests that the additive 

bond energy model for rate constants that is most commonly used when simulating the 

growth/dissolution of realistic crystals [32,35] may describe the boundary of the region where D = 1.5.  

In our 2-D step model, the additive bond energy approach can be written as: 

 0 expn
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nd d
k T

φ⎛ ⎞⋅= ⋅ −⎜ ⎟⋅⎝ ⎠
 (39) 

where the dn are the same dissolution rate constants as given in equation (1), d0 is a scaling constant, 

and φ is the bond energy. Equation (39) can be represented in the space of d1/d3 vs d2/d3 as:  
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Equation (40) is shown on Fig. 4 as a heavy dashed line and, indeed, that line does appear to fall close to 

the portion of the D = 1.5 contour that serves as an upper bound to the region where fractal dimension 

is 1.5. This suggests that the additive bond energy model represented by equation (39) may not be 

appropriate when experimental observations suggest a fractal dimension that is significantly larger than 

2.5 for a weathered mineral surface. For example, fractal dimensions for chemically simple and defect-

free minerals (Iceland spar and Madagascar quartz) are both close to 2, whereas values for chemically 

complex and defect-laden crystals (feldspar and dolomite) are closer to 3 [41]. 

 Fractal Amplitude: Fig. 5 shows contours of constant fractal roughness amplitude, a (Fig. 5A) and 

power spectrum amplitude, a’ (Fig. 5B). Both amplitudes decrease as d1/d3 and d2/d3 increase. 

Moreover, the contours of constant a and a’ have essentially identical shapes indicating a functional 
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relationship between these variables. This observation supports the relationship given in equation (35); 

furthermore, calculating a’ from equation (35) produces a contour plot generally identical to Fig. 5B. 

 The amplitude contours shown in Fig. 5 also appear, in broad terms, to follow a shape similar to 

the λgeo contours shown in Fig. 3A. Both surfaces decrease as d1/d3 and d2/d3 increase, both surfaces 

contain a valley running from the lower left to the upper right corners of the respective figures, and 

both surfaces appear to become independent of d1/d3 when that variable becomes large. This last point 

can be seen in Figs. 2 and 5 by noting that the contours approach vertical lines for large d1/d3. The 

similarity between a and λgeo indicates that the fractal roughness amplitude can be thought of as a 

measure of surface roughness. The same is true of the power spectrum amplitude, a’, because of its 

relationship to a through equation (35). As noted above, this is not true of the fractal dimension itself 

which measures the spatial scaling of the roughness. 

 Step Spacing: Fig. 6 shows contours of constant step spacing, E[s], for our simulations. The 

minimum possible value of E[s] is one and when this value is approached, there are no perfectly flat 

n = 0 sites on the surface. In Fig. 6, E[s] appears to approach one as d1/d3 and d2/d3 both approach one, 

though no simulations were performed in the case where both d1/d3 = 1 and d2/d3 = 1 because a steady-

state surface does not exist under those conditions [18]. As d1/d3 and d2/d3 increase, the spacing 

between steps increases resulting in the smoother surfaces already noted in Fig. 3. Since d3 controls the 

rate at which steps are created and d1 and d2 combine to control the rate of step removal, increasing 

either d1/d3 or d2/d3 tends to decrease the number of steps on the surface and the step spacing 

increases correspondingly. 

 Although step spacing decreases in the same general direction through which λgeo , a, and a’ 

increase, the shape of the E[s] surface is sufficiently different from those other surfaces to suggest that 

step spacing may represent an independent measure of surface topography. Moreover, the type of data 
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needed to compute step spacing for real surfaces—e.g., microscopic measurement of heights over 

distance—is also the type of data needed to compute fractal dimension and fractal roughness 

amplitude. Therefore, it appears that D, a, and E[s] are all good candidates for measures of surface 

topography that are mathematically independent of one another and that can be practicably measured 

for real surfaces. Once again, however, while authors often analyze step spacing during dissolution of 

minerals, such measurements are not generally complemented by measurements of D and a [3]. The 

model simulations shown here point toward the utility of such complete sets of measurements. 

Independence of Surface Topography Parameters: Table I shows Spearman rank-order 

correlation coefficients, rSp, for each pair of surface topography measures that we considered above. 

Rank-order correlation is similar to the more familiar Pearson’s r, but it is non-parametric and measures 

the extent to which two variables are monotonically related whether that relationship is linear or not. In 

ordinary applications of correlation analysis, one seeks values of r that are close to one. In this case, 

however, we are interested in those surface topography statistics that are not well correlated and 

therefore we are looking for values of rSp that are small. Sets of parameters that are not well correlated 

are measurements that should be targeted to understand surface topographies. 

 By this measure, D and E[s] is the pair of topography measures most independent of one 

another with rSp = -0.50.  By implication, measurement of these two parameters would yield the most 

information about the surface. Root-mean-square roughness produces relatively low values of rSp when 

paired with either D or E[s]. However, since our simulations indicate that λrms is plagued by large and 

intractable measurement error for fractal surfaces, we leave it out of our analysis. Ignoring λrms leaves a 

and E[s] as the next most independent pair of topography measures with rSp = -0.68. Since a and a’ are 

directly related to each other by equation (35), E[s] and a’ also form a relatively independent pair with 

rSp = -0.70. Since we anticipate power spectral data being the most convenient means of obtaining 
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fractal dimensions for real surfaces, we will focus on D, E[s], and a’ as the most useful topography 

measures for constraining reaction mechanisms. 

 Fig. 7 shows the three surface topography measures that we have identified as being potentially 

independent plotted against each other. Fig. 7A shows a general relationship between D and a 

suggesting that rSp > 0.8 in Table I is indicative of dependence between topography measures. Plotting 

other pairs of variables with rSp > 0.8 confirms this impression (not shown). 

Figs. 7B and 7C partially confirm the independence of E[s] with both D and a’ that is indicated by 

the low values of rSp in Table I. Focusing on those simulations that produced a step spacing of around 10 

units or less, we see a wide range of values for both D and a’. For step spacing greater than 10, however, 

Figs. 7B and 7C indicate a functional dependence of both D and a’ on E[s]. This dependence can be 

understood by observing that the simulations fall close to the uncorrelated relationships which are 

displayed in Fig. 7 as gray curves. In the case of D vs. E[s], the uncorrelated curve is given by D = 1.5. For 

a’ vs. E[s] the uncorrelated curve is found by solving equation (37) for d1/d3 and substituting into 

equation (36). As discussed above, the topography of uncorrelated surfaces depends only on the value 

of d1/d3. As a result, there is only one degree of freedom in the reaction mechanism and, therefore, any 

measure of surface topography will contain all the mechanistic information possible.  

 Constraining Reaction Mechanisms for the 2-D Step Model: The independence of D, E[s], and a’ 

described above implies that d1/d3 and d2/d3 can be uniquely determined from knowledge of two of 

these surface topography statistics. The procedure for doing so depends, however, on the nature of the 

correlations between the steps. If D is greater than 1.5, then our results indicate that the steps are 

uncorrelated. In this case, d1/d3 and d2/d3 can be found by overlaying two topography contour plots and 

finding the intersection of the relevant contours. For example, the D = 1.7 contour in Fig. 4 intersects the 

a’ = 0.1 contour in Fig. 5B at d1/d3 = 180 and d2/d3 = 2.7. 
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 If D is approximately equal to 1.5, then D cannot be used as one of the independent measures of 

surface topography. In this case, it can still be possible to use other measures of topography such as E[s] 

and a’ and search for intersecting contours as described above. For example, the a’ = 0.01 contour in Fig. 

5B intersects the E[s] = 4 contour in Fig. 6 at d1/d3 = 15 and d2/d3 = 64. This approach is complicated, 

however, by the existence of a direct relationship between a’ and E[s] in the case of uncorrelated steps 

(see the gray line in Fig. 7C) and the fact that this relationship holds in approximate form for the bulk of 

cases where D = 1.5 because a fractal dimension of 1.5 implies relatively weak correlations. The same 

would hold for any other pair of topography statistics since d1/d3 uniquely determines the structure of 

the surface in the uncorrelated case. 

 In the case of D = 1.5, then, additional information is needed to fully constrain the reaction 

mechanism. If D = 1.5 and it can be assumed that the reaction mechanism obeys equation (39)—a 

common assumption in chemical kinetics—then a single measure of surface topography can be used. 

For example, if E[s] = 4, then the intersection of that contour in Fig. 6 and equation (40) would indicate 

that d1/d3 = 362 and d2/d3 = 19. On the other hand, if direct measurement of correlations between steps 

can be used to show that the surface is uncorrelated, equation (38) could be employed in a similar 

fashion. 

 

Conclusions 

 The results described above are directly applicable only to the simple 2-D model depicted in 

Fig. 1. However, a number of the lessons can be drawn more broadly for real surfaces by identifying 

those features of our model that correspond to features of real minerals. First, since the steady-state 

topography of both our simple model and real surfaces is determined by site-specific rate constants, 

measures of surface topography can determine at most the ratio of those rate constants. Therefore, just 



Page 33 of 44 
 

as we have sought to identify at least two independent measures of surface topography that can be 

used to uniquely constrain d1/d3 and d2/d3, the number of topography parameters needed for real 

surfaces would be one fewer than the number of site types. 

 Second, just as our model surface is comprised of a series of steps that possess some average 

spacing and, potentially, correlations in regard to their relative locations, real surfaces are comprised of 

steps. However, steps on real surfaces extend across the surface and move by the formation and 

migration of kinks. This additional structure of steps on real surfaces means that the definitions of the 

surface topography statistics will be more complicated and that relationships with site-specific rate 

constants will be difficult to determine mathematically. Nevertheless, the fractal character of real 

surfaces is well established and the fractal dimension for our 2-D model can be compared to real 

surfaces by adding one to our model results. Therefore, we can conclude that fractal dimensions for real 

surfaces greater than 2.5 are associated with strong short-range correlations between steps—which we 

have argued may be applicable especially to chemically complex and defect laden minerals—while 

fractal dimensions equal to 2.5 are indicative of correlations that die off quickly with distance. 

 Moreover, since the steps on real surfaces can be broadly characterized in terms of their rates 

of nucleation, retreat, and ultimate removal, and since these rates are directly analogous to our model 

parameters d3, d2, and d1, respectively, we can conclude that step retreat rates will strongly influence 

surface topography only when strong correlations exist between steps. Combined with our results on 

fractal dimension, this means that relative retreat rates are likely to be evident in measures of surface 

topography only when the fractal dimension is greater than 2.5. Since, in our model, equation (39) 

appears to form a boundary for the D = 1.5 region, it is possible that this classical rate model where 

activation energy is equal to the sum of the bond energies also forms a boundary where step retreat 
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rates cease to influence surface topography; however, further study is needed to determine if such a 

rate model leads to fractal dimension of 2.5 for real 2-D mineral surfaces. 

 Lastly, in our model simulations, the fractal parameters, D and a’, proved to be the most 

mechanistically sensitive measures of surface topography, particularly when coupled with the expected 

spacing between steps, E[s]. Since this result arises from the fractal character of our model surface and 

since real mineral surfaces can be expected to be fractal [41,53,63], it is likely that these same 

topography parameters will be useful to constrain reaction rates and to diagnose reaction mechanisms. 

In this regard, it is notable that λrms was found to be an inherently noisy measure of surface topography 

in our model simulations. This result also arises from the fractal character of our model and may limit 

the utility of λrms for characterizing minerals as well as other types of reactive surfaces. It is, therefore, 

advisable to characterize the roughness of fractal surfaces using parameters such as fractal dimension, 

power spectral amplitude, and step spacing rather than root-mean-square roughness. 
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Table I. Spearman rank-order correlation coefficients for simulated topography statistics. 

 λgeo λrms D a a’ E[s] 
λgeo 1      
λrms 0.87 1     
D 0.81 0.51 1    
a 0.98 0.85 0.84 1   
a’ 0.99 0.81 0.87 0.99 1  

E[s] -0.74 -0.55 -0.50 -0.68 -0.70 1 
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Figure 1. Example sequence of integer steps that can represent a surface. The reaction from left to right 
represents dissolution of a site with one nearest neighbor. 
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Figure 2. Ensembles of surfaces generated with the 2-D step model for (A) d1/d3 = 128 and d2/d3 = 64 
and (B) d1/d3 = 1024 and d2/d3 = 1. For both cases one particular surface is highlighted in black. Both 
ensembles have an average λrms ≈ 7 but (A) has D = 1.5 while (B) has D = 1.99. 
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Figure 3. Solid lines represent contours of constant (A) geometric roughness and (B) root-mean-square 

roughness plotted in the space of d1 / d3 vs. d2 / d3. Dashed line represents the contour where σ1 = 0 and 
markers represent locations where simulated roughness contours intersect uncorrelated 
approximations given by equations (19) and (29). 
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Figure 4. Solid lines represent contours of constant fractal dimension plotted in the space of d1 / d3 vs. 

d2 / d3. The light dashed line represents the contour where σ1 = 0. The thick dashed line represents an 
exponential relationship between the di.  
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Figure 5. Contours of constant (A) fractal roughness amplitude, a, and (B) power spectrum amplitude, a’, 

plotted in the space of d1/d3 vs. d2/d3. The dashed line represents the contour where σ1 = 0 and markers 
represent locations where simulated amplitude contours intersect uncorrelated approximations given 
by equations (34) and (36). 
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Figure 6. Contours of constant step spacing plotted in the space of d1/d3 vs. d2/d3. The dashed line 

represents the contour where σ1 = 0 and markers represent locations where simulated step spacing 
contours intersect uncorrelated approximations given by equation (37). 
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Figure 7. Simulated fractal dimension, power spectral amplitude, and step spacing plotted against each 
other as open circles. Gray curves represent the uncorrelated case. 
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