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The spontaneous formation of droplets via dewetting of a thin fluid film from a solid substrate allows for
materials nanostructuring. Often, it is crucial to be able to control the evolution, and to produce patterns char-
acterized by regularly spaced droplets. While thermal fluctuations are expected to play a role in dewetting
process, their relevance has remained poorly understood, particularly during the nonlinear stages of evolution
that involve droplet formation. Within a stochastic lubrication framework, we show that thermal noise influences
substantially the process of droplets formation. Stochastic systems feature a smaller number of droplets with a
larger variability in sizes and space distribution, when compared to their deterministic counterparts. Finally, we
discuss the influence of stochasticity on droplet coarsening for asymptotically long times.
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The interplay between stochastic fluctuations and nonlinear
interactions can induce highly nontrivial effects in spatially
extended systems [1] at the nanoscale [2]. For instance, noise
can rectify the direction of material transport, as for diffusing
particles under asymmetric forces [3]. When a characteristic
pattern emerges from a homogenous state [4], fluctuations can
even enhance (rather than hinder) spatial order, or modify the
rate at which typical pattern sizes increase with time (coars-
ening), as e.g. for evolving atomic steps at epitaxial surfaces
[5, 6].

A natural context in which fluctuations are expected to be
relevant is nanoscale fluid flow. Although the (continuum)
Navier-Stokes equations remain physically valid down to sur-
prisingly small scales (' 1 nm) [7, 8], the atomistic nature of
the fluid medium is expected to play an increasingly important
role as physical scales are reduced. In this process the surface-
to-volume ratio becomes ever more favorable [9], so that free
surface flows [10] provide conspicuous instances for noise ef-
fects. Thus, various interfacial processes have been seen to
depend critically on the occurrence of fluctuations, such as,
e.g. the breaking of nanojets [11–13] or of liquid threads [14].
In addition, it is known that thermal noise in the fluid velocity
field changes the value of the contact angle for partial wet-
ting [15], and enhances the spreading of droplets in surface-
tension [16] and gravity [15] driven systems, and rupture of
thin dewetting films [17–19].

Indeed, some dynamical and morphological properties
found in dewetting experiments with polymer [20] or liq-
uid metal films [21] remain beyond deterministic frameworks
such as the ones employed to describe spinodal dewetting
[22]. These formulate the time evolution of coarse-grained
quantities, in which microscopic fluctuations have been av-
eraged out. However, the early rupture times and irregular
patterns which are experimentally observed, suggest that fluc-
tuations play a strong role requiring explicit description. In
the long wave (lubrication) approximation to free surface flow
[23], such an explicit formulation can be provided by the fol-
lowing stochastic evolution equation for the thickness h of a
thin fluid film [16, 18],

η∂th = ∂x {(h3/3)∂x
[
−γ∂

2
x h−Π(h)

]
+σ h3/2

ε}. (1)

Here η is viscosity, γ is surface tension, ε(x, t) is a Gaussian
white noise of zero mean and unit variance, while the am-
plitude of the corresponding stochastic term depends explic-
itly on temperature T as σ =

√
ηkBT/3. In Eq. (1), Π(h) =

−∂Φ(h)/∂h is the disjoining pressure that accounts for fluid-
solid interaction, with Φ(h) the interface potential [24]. A
power law is commonly used, Π(h) = κ[(h∗/h)n− (h∗/h)m],
where κ is proportional to the Hamaker constant and h∗ is
the precursor film thickness [25, 26], corresponding to the
minimum of the potential. The balance between surface ten-
sion and disjoining pressure sets the equilibrium contact an-
gle [27].

The short-time evolution of dewetting experiments [20]
corresponds to the linearized Eq. (1) [19, 20]: the destabi-
lizing disjoining pressure, in competition with stabilizing sur-
face tension, induces a morphological instability [4], whereby
the film thickness becomes non-homogeneous in space and
surface undulations feature a characteristic size, λ . In a pro-
cess reminiscent of domain coarsening in phase separation or
spinodal decomposition of binary mixtures [28], this size in-
creases nontrivially with time in a form whose description re-
quires large fluctuations [i.e., σ 6= 0 in Eq. (1)] [20]. However,
at these short times the film morphology is still dominated by
capillary-like surface modes and differs quite strongly from
the expected break-up of the film into distinct droplets. It is
not known how do large (explicit) thermal fluctuations influ-
ence the morphology and evolution of the drop pattern. This
includes the very-long-time regime, in which deterministic
droplets are expected to undergo coarsening into a single-drop
morphology [29, 30]. It is natural to ponder whether thermal
fluctuations modify the ensuing coarsening law. For instance,
explicit noise is known to do so for the 1D Cahn-Hilliard
equation, a paradigmatic model in the context of spinodal de-
composition [28, 31].

In this paper we study the effect of strong thermal fluctu-
ations on the formation and evolution of droplets under par-
tial wetting conditions. To this end, we study numerically
the full time evolution described by Eq. (1), from the earliest
times up to late-time coarsening, going in detail through the
stochastic nonlinear regime, in which droplets form and non-
trivially evolve. Not only that we confirm that thermal fluctua-
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tions speed up the nonlinear process of droplet formation [18],
but we also show that fluctuations increase significantly het-
erogeneity in droplet sizes and positions inducing disordered
droplet patterns, akin to those recently observed [21]. In addi-
tion, we also find that, while noise accelerates the coarsening
that occurs for asymptotically long times [29, 30], it does not
alter the form of the coarsening law.

In order to carry out our study, we have performed large-
scale numerical simulations, in which a scheme like that in
[32, 33] has been chosen for computational efficiency: To
characterize the droplet distribution in space, a large number
of droplets (hence, a large domain size L) is required, which
is particularly demanding in the presence of noise. Thus,
we restrict ourselves to one dimensional geometry. Our al-
gorithm is based on implicit (Crank-Nicholson) discretiza-
tion [32], treating surface tension implicitly and Π(h) explic-
itly; we employ zero-flux boundary conditions. The stochastic
term is also treated explicitly, the Ito and Stratonovich inter-
pretations having been shown [18] to be equivalent for Eq.
(1). Our algorithm implements an adaptive time-stepping pro-
cedure whereby positivity-non-preserving fluctuations are re-
jected, implying time-step recalculation and noise resampling
[32].

We consider a nondimensional version of Eq. (1) by defin-
ing ĥ = h/hc, x̂ = x/hc, and t̂ = t/tc, where hc is a typical film
thickness and tc = 3ηhc/γ . This leads to non-dimensional am-
plitudes σ̂ = (kBT/γh2

c)
1/2 and to κ̂ = κhc/γ; we use the ex-

ponents (n,m) = (3,2) as in e.g. [27]. The resulting equation
looks formally as Eq. (1) with η = γ ≡ 1, but for hatted co-
ordinates and fields. We perform deterministic and stochastic
simulations of the non-dimensional equation using a precur-
sor thickness ĥ∗= 0.01 and the same random initial condition,
namely, random values of the thickness with non-dimensional
average ĥ0 = 0.1 and variance 10−2ĥ0. The contact angle is
set to 50◦ in the expression κ̂ = 2(1− cosθ)/ĥ∗ [27], lead-
ing to κ̂ = 72; within the long wave theory implementation,
the actual contact angle (measured by the slope of the tan-
gent line passed through the drop profile through the point of
inflection) is smaller and is close to 25◦. These parameter
values are closely related to the polymer films studied in [20],
where the characteristic film thickness is 4 nm (hc = 40 nm, so
that ĥ0 = 0.1), while γ = 0.03 N/m and the Hamaker constant
A = 2 · 10−20 J yield a contact angle in the 15− 20◦ range.
The ensuing non-dimensional noise strength σ̂ ' 10−2 corre-
sponds to T = 50− 60◦ C. On the other hand, for the liquid
metal thin films considered in [21], γ = 1.3 N/m, T = 2000
K, and hc ∈ [50,150] nm, leading to σ̂ ∈ [10−5/2,10−3]. Fi-
nally, the spatial grid size dx = ĥ∗; such a choice is known to
lead to accurate results [32], while the temporal step size is
adaptive, as mentioned above. We use a large L≈ 31λ value,
where λ is the most unstable wavelength obtained by linear
stability analysis of the deterministic version of Eq. (1), see
below. The number of noise realizations we consider (200) is
large enough to obtain significant statistics. We note that pre-
serving non-negativity of solutions to the stochastic equation
requires shorter time steps, inducing much longer computa-
tion times than deterministic simulations.

Unless otherwise stated, we work in dimensionless units
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FIG. 1. (Color online) Space-time plot of droplet formation and evo-
lution as predicted by Eq. (1) for σ = 0 (a) and σ = 10−2 (b), for the
same parameter values and initial conditions, see main text. Brighter
(darker) color corresponds to larger (smaller) values of the film thick-
ness h(x, t) according to the color scale on the right of each panel.

and remove hats for notational simplicity. Figure 1 shows ex-
amples of the time evolution predicted by Eq. (1) in the de-
terministic and stochastic cases. Well-defined droplets (clear
bands) emerge after a rupture time of roughly tr,det = 180
(tr,sto = 80) time units in the deterministic (stochastic) system.
In the latter case there is a substantial amount of droplet merg-
ing around that time, after which activity decreases. Compar-
ing both panels, we immediately observe that the width of the
droplets (clear bands) and their locations are much more reg-
ular in the deterministic than in the stochastic case.

Although some spatial modulation can be seen for earlier
times in Fig. 1, the system behavior is less visually clear.
However, at such times one can resort to linear stability anal-
ysis [18, 20, 27]. The time evolution of the system is con-
veniently described by the structure factor Sq = 〈|hq(t)|2〉,
which within linear approximation can be analytically ob-
tained [18, 20],

Sq = (2π)2
[

S0(q)e2ω(q)t +
σ2h3

0
2

q2

ω(q)

(
e2ω(q)t − 1

)]
.

(2)
Here, hq(t) is the Fourier cosine transform [35] of h(x, t) for
wavenumber q, S0(q) is the initial structure factor, h0 is a
film thickness, and the growth rate is given by the dispersion
relation ω(q) = h3

0q2
(
2q2

0−q2
)
/3, where q2

0 = −Π′(h0)/2.
The wavelengths of unstable perturbations correspond to q ∈
[0,
√

2q0], for which ω(q)≥ 0. Starting from an initial condi-
tion with mean h0, the deterministic system very quickly se-
lects the wavenumber qm,det = q0 for which the growth rate
ω(q) reaches its positive maximum, see black squares and
blue triangles in Fig. 2, where we plot the time evolution of
the value of wavenumber qm at which the main maximum of
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FIG. 2. (Color online) Time evolution of the position of the main
maximum, qm, of the structure factor. The horizontal dashed black
line indicates the deterministic linear prediction, q0. Black circles
(squares) correspond to predictions from Eq. (2) for σ = 10−2 (σ =
0). Red up [blue down] triangles provide the position of qm,sto(t)
[qm,det(t)] as obtained in numerical simulations of Eq. (1) for σ =

10−2 (σ = 0). Rupture times are signaled by arrows. All results are
obtained by averaging over 200 noise realizations. Inset: Number
of droplets for different noise amplitudes at t = 220. All lines are
guides to the eye.

Sq occurs. For our parameter choice, q0 = 2.464. Within lin-
ear approximation, this sets the length scale of the pattern,
λ = 2π/q0 = 2.546, namely, the average size of surface undu-
lations. In contrast, stochastic systems initially develop non-
trivial short lengthscale (large q) correlations, so that Sq(t)
displays a maximum for a wavenumber value qm,sto which de-
creases with time towards the deterministic value q0, see Fig.
2 and [34]. This is the process described in [20] as coarsening.
Note that, as mentioned above, droplets have not yet formed;
as seen in [34], for these times the film morphology remains
largely a small-amplitude sinusoid. In addition, for stochastic
simulations, qm,sto > q0; as we will see, this inequality does
not hold in the nonlinear regime.

Within the range of validity of the linear approximation,
the film develops independent unstable modes. If the linear
predictions were applicable to long times, then the number
of drops eventually formed would be essentially fixed by the
linear value λ = 2.546, since Sq is characterized by a well
defined peak around q = qm, see thick solid lines in Fig.
3. However, experiments [21] show that the distribution of
droplet sizes is relatively wide. Droplets differ strongly from
smooth sinusoids, and they interact non-trivially (e.g. through
merging and coalescing) during their evolution. Hence, we
next need to address droplet formation for times t & 60, see
Fig. 2, away from the linear regime. As seen in the animation
provided at [34], nonlinear effects indeed set in for t ' 60.
Thus, the deterministic structure factor develops higher har-
monics, while the stochastic Sq also departs clearly from the
linear solution, Eq. (2), see Fig. 3 for two sample times. The
amplitudes of higher harmonics are at least one order of mag-
nitude smaller than that of the main peak [34], so that they
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FIG. 3. (Color online) (a), (c): Surface morphologies from simu-
lations of Eq. (1) for σ = 0 (thin blue line) and σ = 10−2 (single
realization, thick red line) at t = 120 (a) and 220 (c). (b), (d): Struc-
ture factor averaged over 200 noise realizations, at t = 120 (b) and
220 (d) for σ = 0 (blue squares) and σ = 10−2 (red circles). The
thick black dashed (resp. solid) line in (b) provides the analytical
prediction from Eq. (2) for σ = 10−2 (resp. σ = 0). Thin solid blue
and red lines in (b) and (d) are guides to the eye.

barely influence later stages of the evolution. As seen in linear
[19, 20] and nonlinear [18] systems, the rupture time at which
well-defined droplets form is much shorter for the stochastic
(tr,sto ' 80) than in the deterministic (tr,det ' 180) case, see
[34] and also Fig. 3(a) for t = 120, where droplets have ap-
peared in the former case, but not yet in the latter.

After rupture, the Sq distribution broadens around the main
peak both in the stochastic and in the deterministic systems,
and for values of q on both sides of qm, see Fig. 3(b,d) and
[34]. Moreover, there is an additional boost in the rupture
process so that stochastic droplets create faster than one would
expect using the linear theory: Note that rupture times are sig-
naled by a kink in the corresponding qm(t) data. At rupture,
nonlinear ripening of droplets takes place, namely, a decrease
of qm with time, which is more pronounced and occurs earlier
in the stochastic system. In contrast to linear predictions, the
deterministic system also undergoes a similar, albeit delayed
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process. We conjecture that disorder in droplet positions fa-
vors merging of nearby drops, inducing more rapid decrease
of qm in the stochastic system.

Also, for any σ ≥ 0, once the drops are well formed the de-
crease in qm(t) with time slows down. On average, the value
of qm which is eventually achieved (say, for t & 220) is smaller
for σ 6= 0. This behavior implies a smaller number of drops
for a fixed domain in the stochastic system, see e.g. Fig. 3(c).
Also recall Fig. 1, where substantial drop merging is seen for
this case during times from rupture up to t ' 120. We note
that, for the time scales considered so far, the final number of
droplets decreases when the noise intensity (say, temperature)
increases, see the inset of Fig. 2.

Figures 4(a,b), showing the distribution of drop heights and
their distances, illustrate a further significant difference be-
tween stochastic and deterministic evolution: stochasticity in-
deed leads to much wider droplet distributions, and therefore
to much more irregular patterns. Two sample morphologies
are compared in Fig. 3(c). Also, the inset in Fig. 4(b) shows
that the width at half maximum of the Sq distribution, ∆, is an
increasing function of noise amplitude, as expected. This find-
ing may be of significant importance in applications, where
regularity of the distribution of drops is often desired. Our re-
sults suggest that decreasing noise amplitude may be the key
to achieve this goal.

On still longer time scales, the number of drops needs
to further reduce: Indeed, the stochastic Eq. (1) drives
the system to an equilibrium state at temperature T in
which height configurations follow the Boltzmann distribu-
tion P{h} ∝ e−H /kBT , with effective interface Hamiltonian
H [h] =

∫
dx
[
Φ(h)+ γ(∂xh)2/2

]
[18, 25]. Since one larger

drop is energetically more favorable than two smaller ones
[29], a single droplet is the stable configuration that will be
reached by the system with the highest probability as a re-
sult of a coarsening process. Thus, although the asymptotic
state is the same as for the deterministic system [29], in prin-
ciple the rate of convergence needs not be the same, as ther-
mal fluctuations can help the system surpass local energetic
barriers. Returning to our simulations, up to the times dis-
cussed so far, the decrease of qm(t) seems mostly induced by
droplet coalescence. This introduces relatively large distances
among remaining units, recall Fig. 1 for t & 200. For still
longer times, droplet interaction occurs mostly through the
precursor layer, indeed inducing non-interrupted coarsening
of the pattern into a single drop morphology [29]. For well-
separated droplets and σ = 0, analytical predictions actually
exist for the decrease of the number of droplets N(t) with time
[29]. We have considered the evolution predicted by Eq. (1)
for σ 6= 0 at very long times, up to t = 104. Computational
feasibility requires a larger precursor thickness h∗ = 0.04 and
smaller noise, σ = 10−5/2. Our results indicate that fluctua-
tions do shorten significantly the time scales on which coars-
ening occurs. However, they become less relevant with in-
creasing time, to the extent that the asymptotic behavior of
N(t) is not modified with respect to the deterministic case, at
least within the accuracy of the results, see Fig. 4(c) and [36].
Thus, droplet coarsening counts among phenomena for which
noise does not change the coarsening universality class [28]
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FIG. 4. (Color online) Distribution functions of drop heights (a) and
inter-drop distances (b) at time t = 220 for σ = 0 (blue squares) and
σ = 10−2 (red circles). Inset: width of the main peak of Sq at t = 220,
as a function of noise amplitude. Solid black, blue, and red lines are
guides to the eye. (c) Number of droplets vs time, N(t), for very long
times up to t = 10000, averaged over 40 noise realizations. We have
set ĥ∗ = 0.04 for computational feasibility. Blue squares (red circles)
correspond to σ = 0 (σ = 10−5/2). The dashed lines correspond to
the power-law decay N(t) ∼ t−2/5 of very large deterministic sys-
tems [29]. Solid blue and red lines are guides to the eye.

of the corresponding deterministic system.
In summary, we have shown that stochastic effects due to

strong thermal noise may play a significant role in dewetting
of thin fluid films, in each of the three stages of evolution con-
sidered. For very early times, as predicted by the linear theory
[19, 20], stochasticity leads to a decrease of the most unstable
wavenumber, qm,sto, down from the values that are large com-
pared to the deterministic one, q0; however, within this stage
qm,sto remains larger than q0. After this, noise triggers an ear-
lier onset of nonlinear effects inducing, as anticipated [17], a
shorter rupture time [18]. At these time scales stochasticity
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leads to droplet coarsening, in the sense that qm,sto < q0, in
contrast to the linear regime. The ensuing pattern is hetero-
geneous both in individual droplet features (heights, widths)
and in inter-droplet distances. Finally, for much longer times,
fluctuations speed up the coarsening process that will ulti-
mately lead to formation of the single-drop, energetically fa-
vored state. Qualitatively, the deterministic coarsening law for
the number of drops remains unchanged. However, quantita-
tively, the time scales involved in this long-time coarsening
process are significantly influenced by noise, and we conjec-
ture that stochastic effects may be observable in careful exper-
iments carried out with fluid films of nanoscale thickness. In
this respect, note that our present results have been obtained
for a 1D system. In the process of generalizing our results
to the 2D case, it would be extremely important to verify if

behavior may turn out to be similar to that of the paradig-
matic Cahn-Hilliard (CH) equation. Indeed, while noise has
a similar accelerating role as in our case with respect to the
domain coarsening properties of the 1D deterministic equa-
tion [37], it is expected to have a less relevant role in 2D [38].
Some, e.g. topological, differences between the deterministic
and stochastic systems seem nevertheless to persist in the lat-
ter case [39, 40]. It would be extremely interesting to consider
the full 2D case for Eq. (1) in detail, and thus understand the
role of dimensionality on the relevance of stochastic effects.
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