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We propose a method to decompose dynamical systems based on the idea that modules constrain
the spread of perturbations. We find partitions of system variables that maximize ‘perturbation
modularity’, defined as the auto-covariance of coarse-grained perturbed trajectories. The measure
effectively separates the fast intra-modular from the slow inter-modular dynamics of perturbation
spreading (in this respect, it is a generalization of the ‘Markov stability’ method of community
detection). Our approach captures variation of modular organization across different system states,
time scales, and in response to different kinds of perturbations – aspects of modularity which are
all relevant to real-world dynamical systems. It offers a principled alternative to detecting com-
munities in networks of statistical dependencies between system variables (e.g. ‘relevance net-
works’ or ‘functional networks’). Using coupled logistic maps, we demonstrate that the method
uncovers hierarchical modular organization planted in a system’s coupling matrix. Additionally,
in homogeneously-coupled map lattices, it identifies the presence of self-organized modularity that
depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers
a powerful tool for exploring the modular organization of complex dynamical systems.

Many complex systems are modular, in that their com-
ponents are organized in tightly-integrated subsystems
that are weakly-coupled to one another. Modularity has
been argued to play many important roles, including in-
creasing robustness [1–3], evolvability [1, 4], and func-
tional differentiation [5, 6]. Thus, there is great interest
in measures of modularity and methods for decomposing
complex systems into weakly-coupled modules.

This problem is here considered in the domain of mul-
tivariate dynamics, a common formalism for modeling
complex physical, biological, neural and social systems.
We propose a method of identifying dynamical modules
motivated by the intuition that, in a modular system,
the spread of perturbations is characterized by two time
scales: fast spreading within modules and slow spreading
between modules [1, 7]. In our treatment, the spread-
ing process is coarse-grained relative to a partition (a de-
composition of system variables into disjoint subsystems)
by measuring the magnitude of the perturbation’s effect
within each subsystem over time. If a partition reflects
underlying modular structure, initially perturbed subsys-
tems remain affected as dynamics unfold, while initially
unperturbed subsystems remain largely unaffected. In
this case, the partition’s coarse-graining will capture the
slow component of perturbation spreading dynamics, an
effect quantified using a quality function called pertur-
bation modularity. Our perturbation-based approach is
related to many existing techniques for analyzing mul-
tivariate dynamics, including Lyapunov-exponent based
methods [8–10] and impulse response analysis [11].

As will be elaborated below, our methodology can
identify the dependence of optimal decompositions on
initial states, time scales, and kinds of perturbations ap-
plied. These factors are all important aspects of mod-
ular organization in real-world dynamical systems. De-
pendence on the initial condition reflects that dynamical
systems can exhibit different modular organizations in

different regions of their state-space; for example, dis-
tributed regions of the brain can couple into modular
assemblies via oscillatory synchronization, with the same
region participating in different assemblies depending on
brain state [12, 13]. The choice of time scale affects
optimal decompositions by determining the separation
between intra-modular and inter-modular perturbation
spreading; in real-world complex systems, longer time
scales have often been argued to correspond to larger-
scale modules [1, 14–17]. Finally, the dependence on the
kinds of perturbations reflects that a dynamical system
may be robust to some perturbations but highly-sensitive
to others [18]; for example, in biological double-knockout
experiments, cellular responses to the simultaneous de-
activation of two genes can differ dramatically from re-
sponses to the individual deactivation of either gene [19].

Our approach starts from a pre-specified dynamical
system and thus differs fundamentally from existing
treatments of modularity based on network represen-
tations of a system. Such methods are usually unable
to capture the variation of modular organization across
state-space or time scale, as well as other important dy-
namical aspects of modularity.

For instance, one standard approach applies graph-
based community detection [20] to the structural network
underlying a dynamical process (e.g. the social network
over which an epidemic spreads). This treatment ignores
the fact that the same structural network can support
many different dynamical processes (for example, ‘com-
plex contagion’ epidemics proceed differently from ‘sim-
ple contagion’ epidemics [21]). In contrast, our method-
ology is by definition sensitive to dynamical differences.

Another class of methods applies community struc-
ture to network representations of dynamics, defined ei-
ther in terms of causal interactions or statistical depen-
dencies between variables (e.g. relevance networks in
systems biology [22] and functional networks in neuro-
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science [23]). Unfortunately, constructing such networks
involves a conversion of the dynamical system (defined
in terms of transitions between multidimensional states)
into a graph (defined in terms of nodes and edges). This
conversion can affect modular decompositions in opaque
ways as well as invalidate presumed graph-theoretic null
models [24, 25]; statistical dependency networks in par-
ticular require a number of non-trivial decisions regard-
ing the choice of dependency measure (correlation, trans-
fer entropy, phase-locking measures, etc.), treatment of
positive vs. negative interactions, and thresholding [23].
Furthermore, coupling between variables does not neces-
sarily give rise to large values of correlation or other de-
pendency measures [26] (also as shown in our first exam-
ple below). Finally, community detection on dependency
networks optimizes quality functions that are difficult to
interpret in terms of the original system dynamics. Per-
turbation modularity does not require the construction
of a network representation of a dynamical system and is
interpretable in terms of the separation of slow and fast
time scales of perturbation spreading.

Finally, because our approach is based on intrinsic sys-
tem dynamics, it also differs from methods that identify
modules by imposing a dynamical process onto a given
network, such as diffusion of random walkers [27, 28] or
coupled phase oscillators [15, 29]. However, as we discuss
below, in certain cases our approach has connections to
such methods. In particular, it can be seen as a gener-
alization of the random-walk-based approach of Markov
stability [28, 30, 31] to a broad class of dynamics.

To formally define perturbation modularity, consider a
dynamical system with an N -dimensional state-space X
and evolution operator f t : X →X at time scale t (both
state and time can be continuous or discrete). Given a
set E of possible initial perturbations, ε ∈ E is applied
to an initial condition x ∈ X to produce a perturbed
initial condition x + ε ∈ X. After time t, the size of
the perturbation in the whole system is measured as the
norm of the difference between the perturbed and unper-
turbed trajectories: ‖f t(x + ε)− f t(x)‖. The relative
size of the perturbation within a subsystem S (a subset
of system variables) is:

(1)mt
S(x, ε) =

‖(f t(x + ε)− f t(x))S‖
‖f t(x + ε)− f t(x)‖

where the subscript S on the right hand side indicates a
projection onto the dimensions indexed by S. For sim-
plicity, we only consider cases where the system’s per-
turbed and unperturbed trajectories have not merged
(‖f t(x + ε)− f t(x)‖ > 0) and Eq. 1 is well-defined.

Assume a partition of the system π = {S1, . . . , SK}
into K disjoint subsystems. The coarse-grained perturba-
tion vector ytπ(x, ε) =

〈
mt
S1

(x, ε), . . . ,mt
SK

(x, ε)
〉

cap-
tures the relative size of the perturbation in each sub-
system. Due to the normalization in Eq. 1, ytπ is in-
variant to the dynamical expansion of the whole-system
phase-space, instead reflecting only the relative effects of
perturbations on different subsystems.

We now define perturbation modularity Qt(π,x) as the
vector autocovariance of the coarse-grained perturbation
vector:

Qt(π,x) = (2)

E
[
y0
π(x, ε) · ytπ(x, ε)

]
− E

[
y0
π(x, ε)

]
· E
[
ytπ(x, ε)

]
where the expected values are taken over P (ε), a prob-
ability distribution over perturbations (i.e. the elements
of E). The first term of Eq. 2 measures the degree to
which perturbations persist within a partition’s subsys-
tems (i.e. initially perturbed subsystems remain affected
after time t, while initially unperturbed subsystems re-
main relatively unaffected). The second term of Eq. 2
provides a baseline expectation of perturbation effects
that accounts for differences in subsystem sizes.

As stated, the spread of perturbations in a mod-
ular system will be constrained by module bound-
aries. The optimal modular decomposition is the
partition that maximizes perturbation modularity:
π? = arg maxπ Q

t(π,x).

Perturbation modularity (Eq. 2), as well as optimal
modular decompositions, are state-dependent in that
they are defined relative to an initial condition x. Differ-
ent criteria may be used to determine the choice of this
initial condition, such as dynamical importance (e.g. an
equilibrium state), particular research interest, or ran-
dom selection. Alternatively, the modularity of entire
state-space regions, rather than individual states, can be
measured as the expectation of perturbation modularity
over a distribution of initial conditions (e.g. by averaging
across the entire system state space). Similarly, stochas-
tic dynamical systems can be accommodated by taking
expectations over future state distributions. For simplic-
ity, however, these extensions are not considered in the
present work.

In addition to initial condition, perturbation modu-
larity and optimal decompositions also depend on the
time scale t, which, as mentioned, can act as a resolu-
tion parameter. When there is not a time scale of a pri-
ori interest, optimal decompositions can be identified at
multiple resolutions by sweeping across a range of time
scales. Finally, the measure also depends on the kinds
of perturbations applied, as specified by E and P (ε). In
practice, perturbations can be selected according to do-
main knowledge (e.g. typically-encountered environmen-
tal perturbations) or using ‘neutral’ options (e.g. small
increments to single variables). In many cases, initial
perturbations should be localized to a small number of
variables (i.e. the elements of E are sparse) because the
spread of perturbations is more pronounced when only a
few subsystems are initially perturbed. As we will show,
perturbations that simultaneously affect many variables
probe the system at larger scales and uncover larger mod-
ules, providing another way to explore decompositions at
multiple resolutions.

Like other temporally-localized methods [32], pertur-
bation modularity also depends on the norm used to mea-
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sure perturbation magnitude. Below, the `1 norm is used
because it performs well and permits connections to com-
munity detection methods in graphs (see Supplemental
Material [33] for definition of `p norms).

Specifically, perturbation modularity is related to the
Markov stability method of community detection in
graphs, which identifies communities as subgraphs that
trap random walkers [28, 30, 31]. Similarly to per-
turbation modularity, Markov stability separates diffu-
sion dynamics into fast intra-community and slow inter-
community components. As shown in the Supplemental
Material [33], perturbation modularity is equivalent to
Markov stability when the system of interest exhibits dif-
fusion dynamics, perturbations are homogenous increases
to single variables, and the `1 norm is used to measure
perturbation magnitude. More broadly, our approach
can be seen as a generalization of Markov Stability to
other dynamics.

In addition, `1 perturbation modularity on a dynam-
ical system is equivalent to directed weighted Newman’s
modularity [34, 35] on a specially-constructed graph (see
Supplemental Material [33]). In this graph, nodes corre-
spond to system variables and the edge from node i to
node j has weight:

wij = E
[
m0

{i}(x, ε)mt
{j}(x, ε)

]
where the expectation is over P (ε) and the subscripts {i}
and {j} indicate single-variable subsystems. This map-
ping permits perturbation modularity to be maximized
using highly-efficient existing community detection algo-
rithms (such as the Louvain method [36, 37] used for the
examples below; code available online [38]).

Several criteria can be used to measure the quality of
identified decompositions. High-quality decompositions
have large perturbation modularity values (e.g. near 1
for `1 or `2 perturbation modularity, see Supplemental
Material [33] for derivation of bounds on perturbation
modularity). Additionally, high-quality decompositions
are robust to small changes in system and optimization
parameters. This can be quantified by measures of parti-
tion similarity like normalized mutual information (NMI)
[39], an information-theoretic measure that ranges from
0 (maximally dissimilar partitions) to 1 (identical parti-
tions). In several of the examples below, we plot NMI
similarity between optimal decompositions identified at
close values of t; high NMI values indicate modular or-
ganization robust to small changes in time scale. Similar
techniques are used in the Markov stability literature to
identify time scales with robust decompositions [40].

We demonstrate our method on several examples of
coupled logistic maps, non-linear discrete-time dynam-
ical systems that have been used to explore spatially-
extended chaos and pattern formation [41]. Assume a
system of N variables, with xi(t) indicating the state of
variable i at time t, and the transition function:

(3)xi(t+ 1) = (1− γ)g(xi(t)) + γ
∑
j 6=i

kji
di
g(xj(t))
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FIG. 1. (Color online) System of 80 coupled logistic maps
(α=2, γ=0.04) (a) The coupling matrix exhibits hierarchical
modularity at three levels. (b) The system is chaotic and
no strong correlations between variables are observed over
10,000 time steps. (c) Perturbation modularity of optimal
decompositions (PM, solid black) at different time scales t
and NMI between optimal decompositions at successive times
(dashed blue). Three time scale regions are robust (NMI=1,
grey), corresponding to the three hierarchical levels of the
coupling matrix (insets).

where g(x) = 1 − αx2 is the logistic map, parameter
α ∈ [1, 2] controls the chaoticity, parameter γ ∈ [0, 1] con-
trols the coupling strength, ‘coupling matrix’ elements
kji determine the influence of variable j on variable i, and
di =

∑
j 6=i kji normalizes the coupling strengths. When

variables are homogeneously coupled to nearest neigh-
bors on a 1-dimensional ring lattice, these systems are
called coupled map lattices (CML) [41]. Coupled logistic
maps display a rich variety of spatiotemporal patterns
in different parameter regimes due to the interplay be-
tween inter-variable coupling (which ‘homogenizes’ vari-
able states) and chaos (which injects variation into vari-
able states).

We consider several examples of coupled logistic maps.
Unless otherwise noted, perturbations consist of a uni-
form distribution over small increases to single vari-
ables: E = {0.0001 · ei : i = 1..N}, where ei is the ith

N -dimensional standard basis vector. The `1 norm is
used to measure perturbation size.

In Example 1, we uncover modular organization that
is present in a system’s coupling matrix, though not ap-
parent in the correlation statistics. Consider an N=80
variable system with chaotic dynamics (α=2, γ=0.04)
and a hierarchically-modular coupling matrix (Fig. 1a).
The system is composed of 8 tightly-coupled low-level
modules (kji=1) with 10 variables each, pairs of which
are nested within 4 mid-level modules (kji=0.01), pairs
of which are in turn nested within 2 weakly-coupled high-
level modules (kji=0.0001). A random state is used as
the initial condition.

Because the system is strongly chaotic for these val-
ues of α and γ, there is no obvious ‘order parameter’
for identifying modular organization from system trajec-
tories [15]; for instance, variable states are largely un-
correlated over 10,000 time steps (Fig. 1b). However, be-
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FIG. 2. (Color online) Two 100-variable CMLs are compared:
one ‘modular’ (top row; α=1.7, γ=0.1) and one ‘diffusive’
(bottom row; α=1.9, γ=0.6). (a,d) Spacetime plots of the ef-
fect of a single-variable perturbation. A pixel is colored black
if the absolute difference between perturbed and unperturbed
trajectory at a variable (vertical axis) exceeds 1% of the size
of the system-wide perturbation at a given time (horizontal
axis). (b,e) Spacetime plots of the optimal decompositions
at different time scales; color indicates each variable’s sub-
system. (c,f) Perturbation modularity of optimal decompo-
sitions (PM, solid black) at different time scales t and NMI
between optimal decompositions at successive times (dashed
blue). Stable decompositions are observed in the modular
CML (top row).

cause perturbations first spread within low-level modules,
then mid-level modules, and finally high-level modules,
our method easily uncovers the hierarchical modular or-
ganization. Fig. 1c shows the perturbation modularity
(black) and NMI (dashed blue) for optimal decomposi-
tions at different time scales. There are three robust time
scale regions, corresponding to each of the three hierar-
chical levels of the coupling matrix (insets in Fig. 1c). Be-
yond time scale ∼50, perturbations have spread between
the high-level modules; at this point, optimal decompo-
sitions reflect random fluctuations in initial conditions,
and perturbation modularity and NMI values are near 0.

In Example 2, we investigate a more interesting case
in which modularity emerges in a homogeneously-coupled
CML. In some parameter regimes, spatial variation in ini-
tial conditions breaks the lattice coupling symmetry and
leads to the emergence of modular domains (contiguous
lattice regions) that constrain the spread of perturba-
tions [42]. Such a ‘modular’ regime is investigated using a
CML with N=100 variables and weak coupling-strength
(α=1.7, γ=0.1). The initial condition is set by iterating
a random state for 10,000 time steps. Fig. 2a shows the
spacetime plot of the effect of a single-variable perturba-
tion to this initial condition: the perturbation spreads to
several nearby variables until t∼50 but then remains con-
fined within its domain. When computed over a uniform
distribution of single-variable perturbations, our method
uncovers robust modular organization for a large range
of time scales (Fig. 2b), with optimal decompositions ex-
hibiting high values of perturbation modularity and NMI
(Fig. 2c).

The above system can be compared to a CML in a ‘dif-
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FIG. 3. (Color online) State-dependence in the modular
CML. For a 12, 000 step trajectory starting from a random
state, optimal decompositions (time scale t=300) are iden-
tified using states along this trajectory as initial conditions.
(a) Optimal perturbation modularity (PM, solid black) grows
with increasing trajectory steps (horizontal axis), indicating
the emergence of robust modular structures. Trajectory step
10, 000 (dotted green line) is the initial condition in examples
2 and 5. (b) Optimal decompositions identified at different
trajectory steps; color indicates the subsystem of each vari-
able (vertical axis).

fusive’ regime (α=1.9, γ=0.6). For these parameters, the
effects of perturbations spread freely across the lattice, as
shown in the spacetime plot of Fig. 2d (initial condition
is the same random state as in the modular CML iterated
for 10,000 time steps). This system does not exhibit ro-
bust modular organization: optimal decompositions are
not stable (Fig. 2e) and optimal perturbation modularity
and NMI values are low (Fig. 2f). Once the effects of per-
turbations spread completely around the ring lattice at
t∼100, both optimal perturbation modularity and NMI
values are near 0.

In Example 3, we demonstrate state-dependent mod-
ularity by tracking the gradual emergence of modular
organization over the course of a CML trajectory. The
modular CML of example 2 (α=1.7, γ=0.1) was started
from a random state and iterated over a 12, 000 step tra-
jectory. The state encountered after 10, 000 time steps
was previously used as the initial condition in example 2.
Here we find optimal decompositions (time scale t=300)
when different states along the aforementioned trajectory
are used as initial conditions. Over the course of the tra-
jectory, optimal perturbation modularity grows through
a series of plateaus (Fig. 3a), indicating the appearance of
modular structures. Fig. 3b shows the optimal decompo-
sitions identified at different trajectory steps. Variables
∼1−40 quickly form modular structures (by trajectory
step ∼2000), while variables ∼40−100 need almost 7, 000
steps to do so. This provides an example of self-organized
modularity, or modular organization that emerges during
a system’s dynamical evolution.

Previously, we showed that perturbation modularity
captures the presence of stable modular structures in dif-
ferent CML parameter regimes (Example 2), and that it
can uncover modular organization in a state-dependent
manner (Example 3). In Example 4, we use pertur-
bation modularity to characterize regions in the CML
parameter space with respect to the onset of modularity.
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FIG. 4. (Color online) Parameter phase map of CML. Per-
turbation modularity (color) for optimal decompositions of
100-variable CMLs with different values of chaoticity (α; hor-
izontal axes) and coupling strength (γ; vertical axes). Pertur-
bation modularity is computed at three time scales for two dif-
ferent classes of initial conditions: random states [(a) t=100,
(b) t=200, and (c) t=300] as well as random states iterated
for 10,000 time steps [(d) t=100, (e) t=200, and (f) t=300].

Specifically, we construct 100-variable CMLs with dif-
ferent values of chaoticity (α) and coupling (γ) parame-
ters. For these different parameter values, Fig. 4 shows
values of optimal perturbation modularity computed at
three time scales (t=100, t=200, and t=300) and two
different classes of initial conditions: random states (Fig.
4a-c) and random states iterated for 10,000 time steps
(Fig. 4d-f). In all cases, optimal perturbation modu-
larity values were averaged across 10 random samples of
initial conditions.

Several regimes of spatial organization can be iden-
tified in the parameter phase maps. For α . 1.44,
spatial domains, which form even when the system is
started from random initial conditions, constrain the
spread of perturbations over long time scales; we call
this the modular regime. For other parameter values
(e.g. 1.6 . α . 1.95, γ ≈ 0.1, the yellow ‘tongue’ in
Fig. 4d-f), modular domains only appear when random
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FIG. 5. (Color online) Perturbation-dependence in the mod-
ular CML. (a) Spacetime plot of the effect of a perturbation
to a 20-variable window (red arrows), as in Fig. 2a,d. (b)
Optimal decompositions (time scale t=300) for different per-
turbation sizes (horizontal axis).

states are iterated for many steps before being used as
initial conditions. This regime, which includes the case
studied in Example 3, we call self-organized modular. Fi-
nally, for parameter values corresponding to the blue re-
gions in Fig. 4, which we call the diffuse regime, mod-
ular domains are not present and perturbations spread
freely. Here, different parameter values give rise to dif-
ferent diffusion speeds [42]: for example, α=1.9, γ=0.7
exhibits no modular organization at time scale t=100;
on the other hand, α=1.9, γ=0.2 maintains some mod-
ularity at t=100, but this organization disintegrates at
t=200.

Finally, in Example 5, we explore modularity’s de-
pendence on the kinds of perturbations applied. We
again consider the modular CML (α=1.7, γ=0.1) and ini-
tial condition of example 2. Instead of perturbing sin-
gle variables, we now simultaneously perturb multiple
variables in lattice-contiguous ‘windows’ of different sizes
(variables simultaneously incremented by 0.0001; all N
windows are perturbed with uniform probability); for il-
lustration, Fig. 5a shows the effect of a perturbation to
a window of 20 variables. Fig. 5b shows that optimal
decompositions (time scale t=300) depend on perturba-
tion size. As more variables are perturbed, smaller sub-
systems merge into larger subsystems in a hierarchical
manner.

Future work can pursue several extensions to our ap-
proach. First, estimating perturbation modularity from
real-world datasets is of great practical interest; this can
be investigated by applying the method to fitted dy-
namical models (e.g. vector autoregressive or dynam-
ical causal modeling [43]) or using non-parametric ap-
proaches. Second, it is possible to explore other mea-
sures of decomposition quality beyond robustness to time
scale, including robustness to changes in initial conditions
and kinds of perturbations; alternatively, decomposition
quality may be evaluated by testing the statistical signif-
icance of optimal perturbation modularity against null-
model ensembles of non-modular dynamical systems [24].
Third, it is of interest to identify possible limitations of
our method, such as for example whether it is suscepti-
ble to the kinds of resolution limits [44] and detectability
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thresholds [45] encountered by graph-based community
detection methods. Finally, future research can investi-
gate other measures of perturbation magnitude (e.g. dif-
ferent norms or divergence functions), kinds of decompo-
sitions (e.g. overlapping subsystems), and cost functions
(beyond vector autocovariance). For example, cost func-
tions that capture the invertibility or sparsity of coarse-
grained dynamics could be used to decompose a system
into a mesoscopic ‘control diagram’, in which each sub-
system controls a small number of others.

To summarize, we identify modular decompositions of
multivariate dynamical systems based on the idea that
modules constrain the spread of perturbations. We pro-
pose a quality function, called perturbation modularity,
which can be used to identify optimal coarse-grainings
that capture the slow component of perturbation spread-
ing dynamics. The method generalizes graph-based com-

munity detection to a broad class of nonlinear dynamical
systems and provides a principled alternative to detect-
ing communities in network representations of dynamics.
The method captures variation in modular organization
across different time scales, initial conditions, and kinds
of perturbations and offers a powerful tool for exploring
modularity in complex systems.
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