
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stick-slip behavior in a continuum-granular experiment
Drew A. Geller, Robert E. Ecke, Karin A. Dahmen, and Scott Backhaus

Phys. Rev. E 92, 060201 — Published  4 December 2015
DOI: 10.1103/PhysRevE.92.060201

http://dx.doi.org/10.1103/PhysRevE.92.060201


Stick-Slip Behavior in a Continuum-Granular Experiment

Drew Geller,1 Robert E. Ecke,1 Karin A. Dahmen,2 and Scott Backhaus1

1Condensed Matter and Thermal Physics Group and Center for Nonlinear Studies

Los Alamos National Laboratory, Los Alamos, NM 87545
2Department of Physics, University of Illinois Urbana Champaign

Urbana, Il 61801

We report moment distribution results from a laboratory experiment, similar in character to an
isolated strike-slip earthquake fault, consisting of sheared elastic plates separated by a narrow gap
filled with a two dimensional granular medium. Local measurement of strain displacements of the
plates at 203 spatial points located adjacent to the gap allows direct determination of the event
moments and their spatial and temporal distributions. We show that events consist of spatially-
coherent, larger motions and spatially-extended (non-coherent), smaller events. The non-coherent

events have a probability distribution of event moment consistent with an M−3/2 power law scaling
with Poisson-distributed recurrence times. Coherent events have a log-normal moment distribution
and mean temporal recurrence. As the applied normal pressure increases, there are more coherent
events and their log-normal distribution broadens and shifts to larger average moment.

PACS numbers: 45.70.Ht,46.50.+a,91.30.Px,91.45.cn

Earthquakes involve complex stick-slip motion, het-
erogeneous material properties, and a large range of
length scales from less than a meter to many hundreds
of kilometers [1]. One feature of earthquake fault sys-

tems is a probability distribution of earthquake mag-
nitude m known as the Gutenberg-Richter (GR) law:
logP (m) ∼ −bm with b ≈ 1 [2]. In terms of the mo-
ment M released and for globally averaged strike-slip
faults (surfaces moving past each other horizontally) the
GR distribution is consistent with P (M) ∼ M−1−β with
β ≈ 2/3 [3, 4]. For individual earthquake faults there are
examples of GR distributions with a range 0.6 < b < 1.2
(0.4 < β < 0.8) [3–5] and ones where there is a deficit of
smaller events and an excess of larger events [6].

Because physical measurements that capture the com-
plexity of real earthquake faults are difficult, theoretical
models, laboratory experiments, and numerical simula-
tions have been developed to provide insight into earth-
quake physics. The simplest ingredients of a strike-slip
fault model [1, 7, 8] are continuum elastic plates repre-
senting the differential motion of tectonic plates with cou-
pling between the plates determined by frictional interac-
tions. An apparent feature of mature faults is that there
is fault gouge—ground up granular matter—at the inter-
face of the plate surfaces [9]. This feature has prompted
consideration of the role of idealized granular media sub-
ject to compaction and shear in producing stick-slip fluc-
tuations similar in nature to earthquake events [10–15].
Another class of laboratory experiments has focused on
effective friction behavior in seismically relevant mate-
rials [16] or in block-on-block frictional dynamics [17].
None of these experiments, however, can access the simul-
taneous spatial and temporal structure of boundary de-
formations and granular motion, an essential but unstud-
ied aspect of laboratory experimental analogs of earth-
quake behavior. In our experiment, it is possible to com-
pare individual events in terms of moment, stress change,
and gouge kinetics.

Theoretical models incorporate various ingredients
from continuum properties [1] to statistical physics ap-
proaches [7, 8] that include discrete granular interactions.
These models are usually studied using numerical simula-
tions [1, 7, 8, 18–20] but some models are amenable to an-
alytical calculation and predict universal scaling behav-
ior in the limit of long-range forces, i.e., in the mean field
limit [21, 22]. Universal models are compelling in that
they do not rely on detailed modeling of all the relevant
physics of earthquakes and other stick-slip systems. The
major predictions for mean field theory models [21–23]
concern the slip moment M which is the sum of the indi-
vidual local displacements s induced in an event. These
local displacements are spatially distributed along the
slip plane as in real earthquakes. The probability distri-
bution P (M) is predicted to scale as M−3/2 for small M
(the -3/2 power law is within the range -1.4 to -1.8 expo-
nents observed in real earthquakes) whereas there may
be enhanced probability for large moment events if there
is frictional weakening.

v

F
Na F

Nb

foam

photoelastic “tectonic” plate

photoelastic “tectonic” plate

foam

aluminum plate

Kapton

strip

Kapton

strip

L

W

H

bi-dispersed granular rods “fault gouge”

rough

boundary

rough

boundary

aluminum plateBead

Grain

FIG. 1. (Color online) Schematic illustration of experimental
laboratory earthquake apparatus

We have developed a laboratory analog of a single
strike-slip fault with continuum plates and granular fault
gouge that uniquely allows the determination of the spa-
tial and temporal properties of both the elastic plate de-
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formations and the microscopic motion of the granular
material. We measure the local slip s and the total slip
moment M associated with stick-slip events that occur
as the system is slowly sheared. The spatial structure
of the slip events along this fault is directly observed
in contrast to other experiments of this class [15, 16].
The experiment has two soft plates, one fixed and the
other sheared at fixed velocity, and the forces between
the plates are coupled across a narrow gap by a con-
fined quasi two-dimensional granular material. We find
that the total probability distribution of M is consistent
with the mean-field prediction [21, 22] ofM−3/2 for small
M but shows a crossover to a surplus of large moment
events as the applied normal pressure PN is increased.
When the events are divided into “coherent” (C), large,
spatially localized ones and smaller, less spatially local-
ized, “non-coherent” (NC) events, the NC probability
distribution is well described by a M−3/2 distribution
over about two decades in M and the mean-recurrence
time distribution is a decaying exponential, i.e., a Pois-
son process, consistent with predictions of mean field the-
ory [21, 23]. The probability distribution of C events is
broadly peaked, consistent with a log-normal distribution
whose peak shifts towards higher moment and broadens
with increasing normal force. There is a mean recur-
rence time for C events which increases with increasing
PN . Our measurements strongly demonstrate the emer-
gence of the two types of earthquake behaviors observed
in nature [6] in a single fault of coupled continuum plates
and granular fault gouge, where the role of the granular
stress chains is to induce dynamical spatial heterogeneity
of force distributions.

Our experimental apparatus, see Fig. 1, consists of two
plates formed from photo-elastic material (Vishay PS-4)
with dimensions L = 50 cm, W = 25 cm, and H = 1 cm.
The plate material has an elastic modulus Ep = 2.5 MPa
and a Poisson ratio of 0.50. Aluminum supports on the
outer edges provide structural support and are respec-
tively sheared at one boundary using a linear translation
stage driven by a stepper motor while compressed by a
normal force FN in the range 20 < FN < 200 N applied
to the fixed boundary at the start of the run. We define
a dimensionless normal pressure as PN = FN/(LHEp).

The plates are spaced Wg ≈ 1 cm apart and the gap
is filled with a bi-dispersed set of Ng = 3000 nylon rods
with height H and diameters 0.119 and 0.159 cm aligned
parallel to one another. The elastic modulus of the gran-
ular rods is Eg ≈ 4 GPa, much stiffer than the plate
material (a more realistic earthquake situation would be
Ep ≈ Eg). At both ends of the gap, a plastic strip con-
fines the granular material, and a piece of foam keeps
the force more or less constant as the plates translate.
The total physical displacement in an experiment is ±2
cm corresponding to total strain of about 0.04 (∆x/L),
and the shearing velocity v ≈ 4 µm/s corresponds to a
strain rate γ̇H = v/Wg = 4 × 10−4/s (or based on L:
γ̇L = v/L = 8 × 10−6/s). The strain rate gives a time
scale τH = 1/γ̇H = 2500 s.

The boundary conditions between the elastic plates
and the granular packing are mediated by a regularly
spaced array of 202 of the larger diameter nylon rods
glued into each of the elastic plates at the edge of the
fault. Additionally, 812 (4 rows of Np = 203) ball bear-
ings of 300 µm diameter are fixed in two rows on the top
surface of each plate near the inner edge with nominal
ℓ = 0.22 cm separation, as can be seen in the detailed
view in the upper left hand corner of Fig. 1. These
ball bearings do not contact the granular gouge but in-
stead serve as fiducial markers, showing the local dis-
placements of the elastic plate (here we use one row on
the fixed plate and one on the moving plate). Photo-
graphic digital images (3024 × 4032 pixels) of the ball
bearings are taken every δt = 2.5 sec (500 motor steps)
and provide individual locations {xi, yi}j with relative
error of δ = 12 µm (0.2 pixels) where i labels the dis-
tance along the gap, and j is the time index in units of
δt. As the plates are sheared, the bead arrays deform to
follow the elastic response of the plates. The differential
motion between successive time steps of bead i is defined

as sji =
(

xj
i − xj−1

i

)

θ
(

xj
i − xj−1

i − δn

)

where δn = 1.5δ

and θ(x) is the Heaviside function; values below our noise
threshold are set to zero and we define the number of non-
zero contributions N j =

∑Np

i=1 θ(s
j
i − δn). The spatially-

integrated moment at time step j is mj =
∑Np

i=1 s
j
i ,

and the dimensionless moment for the event at time j is
M j = mjαℓH/(H2ℓ) = mjα/H where α = 60 µm/pixel
is a calibration factor.

One unique aspect of our experiments is the ability to
determine the spatial distribution of stick-slip events. In
Fig. 2(a), we show a typical set of displacements si ver-
sus normalized time t/τH for lateral positions x/L = 1/4,
1/2, and 3/4. Large displacements indicated by dashed
lines occur over the whole fault length whereas the spa-
tial coherence of smaller events varies. A more indica-
tive representation of spatial coherence can be seen in a
space-time plot of the magnitude of differential displace-
ments in Fig. 2(b). Large, fault-spanning events (solid
vertical lines spanning most of L in Figs. 2(b),(c)) occur
frequently for these conditions (the frequency increases
and the events become more nearly periodic at higher
PN ). A close-up view of the motions near the center of
the fault in Fig. 2(c), shows detail of smaller events in
which only a few locations or clusters of beads slip in a
given time interval.

In addition to global events and spatially extended
ones, there are spatially localized events that have
length less than L. This variation arises from the
heterogeneous force distribution in the granular mate-
rial set up by stress chains. To extract more detailed
spatial information, the center for an event at time
j is defined by the displacement-weighted bead posi-

tion Xj =
(

∑Np

i=1 s
j
ix

0
i

)

/M j, where x0
i is the nomi-

nal initial position of the bead i. The spatial extent
of event j is proportional to the radius of gyration,
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FIG. 2. (Color online) (a) Typical s/H vs t/τH for x/L =
1/4, 1/2, and 3/4; PN = 4.8 × 10−3. (b) The space-time
displacements of beads indicated by intensity where darker
points indicate more motion; PN = 6.4× 10−3. The ordinate
is x/L and normalized time t/τH proceeds from left to right.
The system reaches steady state for t/τH > 0.4, roughly in-
dependent of PN . (c) Expanded segment of space-time plot
in b).

Rj =
(

∑Np

i=1 s
j
i

(

Xj − x0
i

)2
/M j

)1/2

. A related normal-

ized quantity that reflects the spatial coherence of an
event: Cj = Rj/(

√
12N j) (the numerical factor gives

Cj = 1 for a spatially uniform event of any extent with
constant amplitude).

For most events, typically involving motion at a small
number of locations, M/N (each data point denotes an
event with M j and N j) is nearly constant as a function
of M , as seen in Fig. 3(a). The average motion typically
spans a small range, so that events differ in moment ow-
ing to the number of beads N j involved rather than the
distance that they move. For high moments, M/N is lin-
ear in M because the number of beads participating in
a slip event is limited by the size of our experiment, i.e.,
N j ≈ Np so thatM/N can only grow in proportion to the
average bead displacement. These events achieve much
higher average displacements per bead than the spatially
localized events because no locations remain pinned by
force chains across the gouge. This behavior suggests
that events can be divided into two populations: C are
system spanning events and NC as smaller events (see
also [15]). We refine this division by including as co-
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FIG. 3. (Color online) (a) Average slip M/N vs. M for labeled
PN . Curves are offset vertically for clarity (coherent: solid
red; non-coherent: open black). (b) Fraction of moment MN

relative to available total strain moment ST (coherent: solid
red; non-coherent: open black). Dashed lines - see text. The
mean recurrence times for C events are labeled.

herent events spatially localized ones with Cj < 2 and
where M j/N j > 0.003 (2.5δ/H); the latter criterion is
a minor one. Our results do not depend sensitively on
either cutoff. Both types of events are indicated in Fig.
3(a).
For any particular shear experiment, the system

reaches a steady state after a ”run-in” period Tr ≈ 0.4τH .
In the steady state the system is essentially in the plas-
tic yield limit, such that the fixed plate no longer has a
time-averaged motion accumulating elastic energy. The
shear imparted by the moving plate must be released over
time, and we quantify the stick-slip versus sliding con-
tributions to this motion by comparing the total event
moment per site MN = (1/Np)

∑

j: Tj>Tr
M j to the to-

tal displacement of the moving plate ST = v(Tf −Tr) for
the remainder of the experiment (of total duration Tf) af-
ter run-in. To improve the statistics of the measurement,
several runs at nearly the same conditions (the configu-
ration of stress chains and gouge particles will differ, but
PN can be held approximately constant) are combined in
calculating MN and ST .
Figure 3(b) shows that MN of all C and NC events

recorded for the fixed plate captures less than 30% of the
continual motion of the driven plate over the full range
of normal pressure studied. The contribution of the C
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events increases dramatically in the range PN > 0.0036
consistent with (PN − 0.0036)1/2 (long dashed curve in
Fig. 3(b) for PN > 0.0036 ), perhaps indicative of a bi-
furcation, and the contribution of these events is larger
than that for NC events except at very low PN . The NC
events account for a constant fraction of the motion up
to PN ≈ 0.0064, above which their contribution declines
rapidly. The remaining (> 70%) fraction of the available
motion results from steady sliding (integrating M P(M)
for events below the noise threshold yields a contribution
of less than 10% to the total moment). In MF models
of stick-slip behavior [21, 24], sliding does not affect the
expected scalings. This measurement has analogy in the
seismic coupling (ratio of seismic slip to total slip) of real
earthquake faults with values less than 1 observed, for
example, for creeping regions of the San Andreas fault
and for many subduction faults [25].

The probability distribution of event moments for dif-
ferent 0.0016 < PN < 0.016 is shown in Fig. 4(a). As
PN increases, the probability of NC events decreases,
consistent with trends in models [22] that include the
effects of packing fraction φ (φ increases slightly with
increasing PN ). The large C events become more proba-
ble, growing at the expense of the NC events, and have
higher mean M for larger PN . Using the decomposi-
tion into C and NC events, we represent their individ-
ual contributions to the overall probability distribution
P (M). In Fig. 4 (b), we show the NC distribution (nor-
malized to the number of NC events) and in the inset
Fig. 4 (b) we show the C distribution and its varia-
tion with PN . This decomposition demonstrates that
NC events are distributed as a power law over about 2
decades in M consistent with M−3/2 (the remaining de-
pletion/enhancement of M may be a finite size effect).
On the other hand, the C events are concentrated at large
M with broader distribution and higher mean M as PN

increases. Once one divides out the C events, the resul-
tant PDFs are consistent with log-normal distributions of

the form: P (M) =
(

1/
(

xσ
√
2π

))

e−(log x−µ)2/(2σ2). We
fit the probability distributions to this form. The fitted
values of µ and σ for the curves shown in the inset of Fig.
4: {0.0016 ≤ PN ≤ 0.004,−0.4, 0.45}, {0.0048 ≤ PN ≤
0.0064 : 0.24, 0.6}, and {0.0096 ≤ PN ≤ 0.016 : 1.0, 1.2}.
The mean moment of C events grows with increasing PN

as does the range of moment sizes as reflected in the
standard deviation of the distribution.

In addition to the excess large-event probability at
higher PN , the C events develop a dominant mean repe-
tition time τ for large PN , see Fig. 2(b),(c). In contrast,
the NC events are consistent with an exponential distri-
bution in τ , representative of a Poisson process. For C
events, the mean repetition time is 0.02 < τ/τH < 0.04
with small overall variation with PN (values labeled for
data points in Fig. 3(b)). Many laboratory based exper-
iments and model simulations show the emergence of a
mean repetition time associated with large brittle events
[1, 21, 22].

The probability distribution of event moments can be
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FIG. 4. (Color online)P (M) vs M for different PN : (a) All
events; (b) NC events and inset: C events; (c) All events
for PN = 9.6 × 10−3 measured on moving boundary (solid
square; open square offsets M for comparison), fixed bound-
ary (solid circles), and for granular displacements Mg . Solid,
short-dashed and long-dashed curves are guides to the eye
for different PN . The dashed lines in inset of (b) are fits to

log-normal distributions. M−3/2 scaling labeled by (black)
dashed line in (a) and (b).

determined in various ways from experimental measure-
ments. As described above, one can evaluate the moment
event distribution measured for the fixed plate. After
an initial transient, the mean total displacement of the
fixed plate is zero, i.e., the plate has no mean transla-
tional motion. Data for PN = 0.0096 from fixed plate
measurements are shown in Fig. 4(c). For comparison,
we also show data for the moving plate which is evalu-
ated along the moving side of the gap after subtracting
the mean translational velocity. There is a slight differ-
ence in amplitude of the response but the dependence
on M is almost identical to that of the fixed plate. Fi-
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nally, we measure the positions rji of Ng particles in the
fault gap where j indexes the time increment and the in-
dex i labels each particle. The differential displacements
∆r

j
i = r

j
i − r

j+1
i are determined and the total squared

displacements M2
g =

∑Ng

i=1

(

(∆xi)
2 + (∆yi)

2
)

offers an-

other quantitative measure of the event moment. In Fig.
4(c), one sees that the scaling for granular displacements
Mg is very similar to those obtained from the fixed and
moving plates where we have adjusted the magnitude for
the different numbers of elements involved, i.e., roughly
by the ratio Ng/Np. From this comparison of scaling be-
havior using different measures of motion for slip events,
we conclude that the scaling we observe is a robust fea-
ture of our experimental system and not limited to slip
events on the fixed plate.

Earthquake motion is sometimes described as an effec-
tive brittle fracture and analogies drawn with the fracture
of heterogenous rock samples [26]. C events in our sys-
tem have much in common with brittle fracture [27, 28]:
1) yield force for C events increases roughly linearly with
PN ; 2) average mean displacement of fixed plate (pro-
portional to PN ) shows no pre-event plastic deformation,
i.e., the stress-strain curve is typically linear up to the
C event; 3) no measurable precursor signature for a C
event in the microscopic granular mean-square displace-
ment signal whereas NC events may show some pre-event
and post-event signature, see Fig. 5; 4) shear localization
on the scale of several bead diameters for C events, in-
set of Fig. 5, in which the motion shown is heterogeneous
over the central third of the fault section but the majority
of the shear motion is concentrated in a vertically local-
ized section of width 1 to 2 grain diameters as indicated
by the shaded region. In many features, C events are sim-
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FIG. 5. (Color online) (a) Total granular squared displace-
ment magnitude M2

g (background noise subtracted) vs τ/τH ;
a C (M2

g ∼ 104) and a NC event are labeled (PN = 0.0096).
Horizontal lines show mean and plus/minus one standard de-
viation of noise. Inset shows spatial average (on a 10 × 10
grid) of lateral displacements of granular particles over the
central third of the fault in a C event showing irregular shear
localization (shaded contour).

ilar to Mode II fracture [28]. The direct correspondence
between brittle fracture of a cohesive material and the
formation of strain localization in a sheared, compressed
granular media is incomplete but the similarities suggest
that a characterization of large C events as “brittle” is
not unreasonable.
The moment distribution scaling for NC events with

the emergence of C events combined with the concurrent
development of a mean recurrence time τ/τH ≈ 0.025
and the demonstrated spatial coherence of C events with
increasing PN gives a cohesive picture of system behav-
ior. At small normal force, spatial and temporal correla-
tions are weak giving rise to random spatially extended
events and power law M−3/2 scaling corresponding to
the “fluid”-like phase in mean field theory [22]. As PN

increases, the granular media compacts owing to com-
pressive stresses and more effectively couples motion on
either side of the gap. This coupling leads to a larger
fractional moment slipped, a mean recurrence time be-
tween events, and many more spatially compact events
with Rj ∼ L. Our results are consistent with a system
having frictional weakening.
The full physical picture of the phenomena we report

is complex involving the rheology of the sheared granular
medium. Many other features of the experimental data
are possible including a “microscopic” elucidation of the
individual motions of the grains and their individual or
collective motion in events [14]. Finally, our results have
qualitative representation in the behavior of individual
earthquake faults. For example, brittle strength increases
with depth, and the largest earthquakes are nucleated
near the base of the seismogenic zone [25], consistent with
our observations of increased likelihood of large events at
higher normal pressure.
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