
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Physics-based statistical learning approach to mesoscopic
model selection

Søren Taverniers, Terry S. Haut, Kipton Barros, Francis J. Alexander, and Turab Lookman
Phys. Rev. E 92, 053301 — Published  9 November 2015

DOI: 10.1103/PhysRevE.92.053301

http://dx.doi.org/10.1103/PhysRevE.92.053301


A physics-based statistical learning approach to mesoscopic model selection

Søren Taverniers,1 Terry S. Haut,2 Kipton Barros,3 Francis J. Alexander,2 and Turab Lookman3

1Department of Mechanical and Aerospace Engineering,
University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093

2Computer, Computational, and Statistical Sciences Division,
Los Alamos National Laboratory, Los Alamos, NM 87545

3Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

In materials science and many other research areas, models are frequently inferred without considering their
generalization to unseen data. We apply statistical learning using cross-validation to obtain an optimally predic-
tive coarse-grained description of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynam-
ics (GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from GD “training”
data using a log-likelihood analysis, and its predictive ability for various complexities of the model is tested
on GD “test” data independent of the data used to train the model on. Using two different error metrics, we
perform a detailed analysis of the error between magnetization time trajectories simulated using the learned
sGLE coarse-grained description and those obtained using the GD model. We show that both for equilibrium
and out-of-equilibrium GD training trajectories, the standard phenomenological description using a quartic free
energy does not always yield the most predictive coarse-grained model. Moreover, increasing the amount of
training data can shift the optimal model complexity to higher values. Our results are promising in that they
pave the way for the use of statistical learning as a general tool for materials modeling and discovery.
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I. INTRODUCTION

Due to limitations in computational resources, the behavior
of complex systems (e.g. climate, turbulent flow, materials un-
der shock loading) often needs to be modeled using a coarse-
grained description that captures the phenomenon of inter-
est. Coarse-grained models cannot be perfect of course, since
many microscopic degrees of freedom are absent. The Mori-
Zwanzig formalism [1, 2] tells us that the relevant coarse-
grained description should contain both noise [3, 4] and mem-
ory kernels to represent the “integrated out” fine scale dynam-
ics. Deriving an appropriate coarse-graining analytically is
therefore extremely difficult. Statistical learning provides a
tractable way of finding a coarse-grained description that is
able to predict the results of new experiments or simulations
beyond those used in the model construction, which serves as
a true objective test of the model. In fact, unlike traditional
approaches, statistical learning can also serve as a coarse-
graining strategy in cases where there is no clear separation of
spatial and/or temporal scales. For example, it may be applied
to problems that involve inhomogeneous flows (e.g. multi-
component fluids, complex fluids) and those in materials sci-
ence where the coarse-grained description needs to account
for inhomogeneities at a finer scale, such as microstructural
defects. Techniques such as the Heterogeneous Multiscale
Method (HMM) [5] that demand a clean separation in time
scales are not applicable.

In the statistical approach to coarse-graining discussed
here, the goal is to search over a certain class of coarse-grained
models and find the complexity for which the description is
“optimally predictive”. This technique is called regulariza-
tion, and to estimate the generalization error we use cross-
validation. The latter involves randomly dividing data (either
from experiments or simulations) into “training” and “test”
samples. Ideally one would like both groups of data to be in-

finite, but in practice one only has a limited amount of data
to work with. Experimentalists can only synthesize a small
number of material samples, and in molecular dynamics sim-
ulations one is also limited to a finite number of samples. For
the purposes of the current analysis, we will assume that the
amount of training data is limited but that we can test our
learned model on an infinite amount of data independent of
the training samples. An extension to cases where both train-
ing and test data are finite will be the topic of future research.

Selecting the appropriate model regularization is of
paramount importance because it can minimize both underfit-
ting and overfitting. An underfitted model is too simplistic and
therefore fails to capture much of the useful information avail-
able in the training data; hence, it will perform sub-optimally
on data independent of the training set. In contrast, overfitting
refers to the case where an overly complex model describes
the many irrelevant details that appear in the training data by
chance. An overfitted model will therefore be also less suc-
cessful in generalizing to new data from simulations or ex-
periments that are outside the class of the training data. The
model developed in this study avoids common issues associ-
ated with overfitting by using an effectively infinite amount of
test data independent of the samples on which it was trained,
and selecting the complexity that makes it most predictive of
this test data.

As an error estimator, cross-validation has been used for
a number of years. When the amount of data is very lim-
ited though, there can be issues between the cross-validation
error and the actual error [6, 7]. Moreover, a proper error
analysis is often lacking in physics modeling applications.
Our motivation is to learn mesoscale models from microstruc-
tural data incorporating prior domain knowledge and physical
symmetries. We will focus on the time-dependent stochastic
Ginzburg-Landau equation (sGLE) which provides a coarse-
grained description of a kinetic nearest-neighbor Ising model
with Glauber dynamics (GD) and of which the dynamics are
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expected to be particularly straightforward to learn. While
our approach is related to that in [8], we do not assume a prior
distribution for the learned parameters and do not include a
penalty for overfitting or complexity in the Bayesian Informa-
tion Criterion. Moreover, instead of simply fitting a regular
quartic free energy to a single or joint magnetization distri-
bution function as in [9, 10], we consider higher order terms
and find the parameters that optimally predict GD data inde-
pendent of the samples on which the model was trained. The
inclusion of terms beyond fourth order in the free energy ac-
counts for the fact that we are in a regime of finite coarse-
graining block sizes, and hence not at a fixed point in the
renormalization group theory [11, 12]. Our current approach
does not account for higher order spatial gradients, which can
play an important role out of equilibrium; we plan to include
these terms in future versions of the model. Finally, our study
involves a detailed error analysis which is often lacking in ex-
isting literature on coarse-grained model selection.

Section II describes the microscopic GD model and its
mesoscale description provided by the sGLE. Section III de-
tails our design loop used to select the optimal complexity of
the sGLE for each amount of training data considered, after
which Section IV discusses the results of the error analysis we
performed in order to arrive at an optimally predictive model.
Section V summarizes our conclusions and discusses possi-
bilities for future work.

II. THE KINETIC ISING MODEL AND ITS
COARSE-SCALE DESCRIPTION BY A STOCHASTIC

GINZBURG-LANDAU EQUATION

A. Kinetic Ising model with Glauber dynamics

The Ising model with nearest-neighbor interactions [13] is
a simple, yet very rich, model in statistical mechanics for de-
scribing ferromagnetic behavior. Consider a two-dimensional
(2D) ferromagnet with atoms arranged on an N1 ×N2 square
lattice. The spin si,j (where i = 0, . . . , N1 − 1 and j =
0, . . . , N2 − 1) of each atom can be in one of two states,
si,j = ±1, and can only interact with its four adjacent spins.
We can add dynamics to this system by flipping spins with
a certain transition rate w, and the result is a kinetic nearest-
neighbor Ising model with spin-flip (Glauber) [14] dynamics
(which we will refer to as GD). This allows us to express the
time evolution of the spin system through a master equation
given by

d

dt
P(σ; t) =

∑
σ′

[w(σ′ → σ)P(σ′; t)− w(σ → σ′)P(σ; t)]

(1)

where P(σ; t) is the joint probability of finding the system in
spin configuration σ at time t, and the w’s are the transition
rates between two N1×N2-spin configurations differing only
in the value of 1 spin, si,j . For w we choose the heat bath rate,
given by

wHB(σ → σ′) = κ
(

1 + e−β[H(σ)−H(σ′)]
)−1

. (2)

HereH(σ) represents the Hamiltonian of the spin system with
configuration σ, β = 1/(kBT ) with T the system tempera-
ture, and κ−1 sets the time scale of the spin-flip process and
can depend both on T and the spins other than si,j . We sim-
ulate this kinetic Ising model via a Monte Carlo (MC) algo-
rithm with 1 MC step per spin; i.e., to complete one step in our
Ising run, we performN1×N2 times the following procedure:

1. Pick a random site (i, j) where i = 0, . . . , N1 − 1 and
j = 0, . . . , N2 − 1.

2. Draw a number r1 from a uniform distribution on [0, 1].

3. Flip the spin si,j if r1 < w(σ → σ′), or leave it in its
original state if r1 ≥ w(σ → σ′).

In all of our work here, we initialize the lattice by selecting
spins to be +1 or -1 randomly based on drawing samples from
a discrete uniform distribution on the interval [−1, 0)∪ (0, 1].

B. Ginzburg-Landau equation

By invoking a phenomenological coarse-graining approach,
it is possible to obtain a mesoscopic model of GD given by a
time-dependent Ginzburg-Landau equation (GLE) [15]. The
latter will describe the spatio-temporal evolution of an “order
parameter”, φ, a field variable which represents the instan-
taneous average of Ising spin values over some portion of a
ferromagnetic material (also called “magnetization”). At fi-
nite temperatures, one needs to account for fluctuations, which
can be added via a white noise term to obtain an overdamped
stochastic relaxation equation

∂φ(x, t)

∂t
= −M δF [φ(x, t)]

δφ(x, t)
+ η(x, t), (3)

with M the mobility which sets the time scale of the dynam-
ics. Here η(x, t) is a zero-mean Gaussian white noise with a
variance which, according to the fluctuation-dissipation the-
orem, scales linearly with M and the system temperature.
Moreover, F [φ] is an effective free energy for the system, and
is usually developed as a power series in φ and its derivatives

F ∼
∑
k

akφ
k + b∇2φ+ c∇4φ+ d φ∇2φ+ . . . (4)

In the context of late-stage domain growth, renormalization
group arguments indicate that the Ising model with Glauber
dynamics is in the universality class of Model A dynam-
ics [12], and hence well represented at the coarse scale by
having only a2 and a4 different from zero. However, since we
are focusing on intermediate time and length scales, we re-
lax this assumption and instead consider a model class for the
free energy consisting of even-term polynomials with degree
two or greater. The complexity that we eventually select is the
one for which the model is optimally predictive of GD data
independent of the samples from which it was learned.
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III. NUMERICAL ALGORITHM

Our goal is to learn the parameters of a discrete version
of the stochastic Ginzburg-Landau equation (sGLE) which
evolves the magnetization φ from time tn to time tn+1 ac-
cording to

φi,j,n+1 = φn,i,j + α0(φn,i+1,j + φn,i−1,j + φn,i,j+1

+ φn,i,j−1 − 4φn,i,j) +

C−1
2∑

k=0

αk+1φ
2k+1
n,i,j

+ α(C+3)/2 ξn,i,j , (5)

where C is the model complexity [16] and the ξn,i,j are
independent, identically distributed standard normal random
variables. Here n and n + 1 refer to times tn and tn+1,
i = 0, . . . , N̄1 − 1 and j = 0, . . . , N̄2 − 1, with N̄1

and N̄2 the number of coarse-grained Ising spin blocks in
both spatial directions. Given block-averaged training data
Sn,i,j , we would like to find the set of parameters αopt ≡
α0, α1, . . . , α(C+3)/2 that maximizes the likelihood of ob-
serving S0, S1,. . . , Sneq−1 [17] using the sGLE model. It
turns out αopt is the solution to a linear system

Aαopt = b, (6)

where the components of A and the elements of b involve
products of Sn, its powers and its discrete Laplacian. The
dimension of this system is given by the number of free
parameters that make up the model (5), which is equal to
(C − 1)/2 + 3. For more details, we refer the reader to Ap-
pendix A where we have worked out the case of C = 3. We
then test our learned sGLE model against independent GD
data (“test” data) to ascertain how well learned models of dif-
ferent complexities perform on unseen data. By calculating
the root-mean-square (RMS) error between GD test trajec-
tories and those simulated using the learned sGLE, we then
determine for which complexity C the latter is optimally pre-
dictive of the GD test data.

We will consider two error metrics in our analysis, which
we will refer to as “type 1” and “type 2” error. For type 1
error, we calculate the sGLE grid at time tn+1 through (5)
but replace φn with the block-averaged GD test data at time
tn. This error is of the same type as the error that we want to
minimize when calculating αopt from the GD training data,
where we search for the set of parameters that maximizes the
likelihood of observing the training data at tn+1 given the
sGLE model and the training data at tn, for every n (see Ap-
pendix A). For type 2 error, we evolve the sGLE grid in time
through (5) directly, i.e. we do not keep referring back to the
GD test data at each time tn.

A flowchart of the operational algorithm is shown in Fig-
ure 1. At a high level, our approach for computing one
data point in the error probability density function (pdf) for
a learned sGLE model of complexity C, given a number of
training samples Ntrain, can be described as follows (see Ap-
pendix B for more details).

1. We simulate Ntest independent GD test sample tra-
jectories. For each trajectory, we let the Ising system

evolve over nmc steps, after which we take another neq
steps during which we record the Ising configuration.
Each of these steps represents one MC step per spin as
detailed in Section II A.

2. We simulate Ntrain independent GD training sample
trajectories. We let the spins evolve over nmc steps, and
then record their configuration over the next neq steps.

3. Using the data gathered during the last neq steps of each
training trajectory, we compute the coefficients of the
learned sGLE polynomial using a log-likelihood anal-
ysis (see Appendix A).

4. With the parameters calculated in step 3, we now sim-
ulate Ntest sGLE trajectories. Each trajectory consists
of neq steps, with each step involving the advancement
of the discrete sGLE (5) from one discrete point in time
to the next.

5. For the kth sGLE trajectory, we calculate the RMS
error εk between this trajectory and the kth block-
averaged GD test trajectory.

6. Finally, we compute the test-averaged error

ε =
1

Ntest

Ntest∑
k=1

εk, (7)

which we will call “type 1” or “type 2” test error de-
pending on how the sGLE trajectory has been calcu-
lated (see our above definition of these errors).

The quantity ε represents one point in the error pdf for the con-
sidered complexity C and number of training samplesNtrain.
The entire pdf is then obtained by repeating the above proce-
dure except for step 1 (we use the same GD test trajectories
for each point in the pdf) nreal number of times. We will de-
note the sample (i.e., realization) mean and variance of this
pdf by ε̄ and s2

ε, respectively.

IV. ERROR ANALYSIS AND MAIN RESULTS

We now present the pdfs of type 1 and type 2 error, de-
fined in Section III, for different complexities C = 3, 5, 7 or
9, given a finite number of GD training samples Ntrain. We
will use Ntest = 1000 GD test samples, which provides an
accurate generalization error [18]. Moreover, we will build up
the error histograms using nreal = 5000 independent realiza-
tions, and consider both training data in equilibrium and out of
equilibrium. For the equilibrium case, we measure the energy
of the spin system and choose nmc as the number of steps after
which thermal equilibrium has been reached. Out of equilib-
rium, we choose nmc such that after nmc steps domains have
started to form. Learning the sGLE model parameters from
GD data for which the block size is smaller than the size of
a typical domain allows the Laplacian in the sGLE to better
capture gradients in the GD data, and should hence yield a
more accurate coarse-grained description. For both cases, we
determine an appropriate value for neq through trial and error,
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Figure 1. (Color online) Flowchart for the model complexity selection algorithm.
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and choose values that provide a sufficient amount of input
data to our log-likelihood solver. We will use nmc = 2000 and
neq = 100 for the equilibrium case, and nmc = neq = 500
out of equilibrium. In all cases, we simulate the Glauber dy-
namics on a 256×256 spin lattice with periodic boundary con-
ditions, and coarse grain using 16×16 blocks. Finally, next to
each error distribution, we show a plot of the free energy con-
structed using the learned model parameters. These plots are
meant to serve as a check of the physical soundness of our ap-
proach in the sense that, consistent with common knowledge,
a single-well potential should be observed above the phase
transition and a double-well potential below the phase transi-
tion. However, they do not convey any information regarding
the predictiveness of our model, which follows entirely from
the error distributions.

A. Type 1 test error pdfs for training data in equilibrium

We first consider the case where we train on Ntrain = 8
GD trajectories in equilibrium, obtained by quenching the
spin lattice from infinite temperature to either T = 1.6 J/kB
(below Tc = 2.269 J/kB [19]) or T = 2.8 J/kB (above
Tc), letting the system evolve over nmc = 2000 steps and
then sampling over neq = 100 steps. As Figure 2 shows, at
T = 1.6 J/kB the error pdf’s sample mean ε̄ clearly decreases
with complexity C. Hence, the most predictive sGLE model
is that with the highest complexity considered, C = 9.

At T = 2.8 J/kB , however, the error pdfs for all the com-
plexities overlap almost completely (see Figure 3), indicating
that the regular third-order sGLE polynomial is adequate to
predict the coarse-grained Glauber dynamics.

B. Type 1 test error pdfs for training data out of equilibrium

Next, we look at the case where we train on various
amounts of GD trajectories out of equilibrium, obtained by
quenching the spin lattice from infinite temperature to T =
2.2 J/kB (just below Tc), evolving it over nmc = 500 steps
and then sampling over neq = 500 steps.

As Figures 4 through 7 show, regardless of the amount of
training data the regular φ4 form of the free energy (C = 3)
is not optimally predictive of the GD test data. The com-
plexity for which the sGLE model best predicts the GD test
trajectories varies with the amount of training data. For small
amounts of training data (i.e. Ntrain = 1 or 2), the histograms
for the different complexities largely overlap. As the number
of training samples is increased to 16, the pdfs for C = 5 and
higher can be more clearly distinguished from that for C = 3.
When one further increases the amount of training samples to
128, the pdf for C = 3 becomes fully distinct from those for
higher complexities, and the pdf for C = 5 is becoming more
distinct from those for C = 7 and C = 9. In sum, increas-
ing the amount of GD training data causes the complexity at
which the sGLE is optimally predictive to shift toward higher
values.

C. Type 2 test error pdfs for training data out of equilibrium

Finally, we repeat the simulations in Section IV B for type
2 error. We find that for this error type the regular φ4 free en-
ergy does optimally predict theGD test data, regardless of the
amount of training data. Figure 8 shows this for the case of
1 GD training sample. We note here that it is to be expected
that ε̄ is bigger for type 2 error than for type 1 error, since
the latter is calculated in the same way as the optimization er-
ror for obtaining the αopt is calculated from the GD training
data, while the former is not.
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Figure 2. (Color online) Type 1 error pdfs (left) and learned Ginzburg-Landau free energy (right) for different complexities of an sGLE model
learned from 8 equilibrium GD training samples at T = 1.6 J/kB (below the phase transition). The sGLE with C = 9 predicts the GD test
data best.
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Figure 3. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from 8 equilibrium GD training samples at
T = 2.8 J/kB (above the phase transition). All considered model complexities are equally predictive of the GD test data.
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Figure 4. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from 1 out-of-equilibrium GD training
sample at T = 2.2 J/kB (just below the phase transition). Complexities 5 and higher are optimally predictive of the GD test data, but the
corresponding error pdfs still largely overlap with that for C = 3.
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Figure 5. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from 2 out-of-equilibrium GD training
samples at T = 2.2 J/kB .
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Figure 6. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from 16 out-of-equilibrium GD training
samples at T = 2.2 J/kB . The error pdfs for C = 5 and higher are now clearly distinct from that for C = 3.
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Figure 7. (Color online) Type 1 error pdfs for different complexities of an sGLE model learned from 128 out-of-equilibrium GD training
samples at T = 2.2 J/kB . The error pdf for C = 5 and those for C = 7 and higher are becoming more distinct, shifting the optimally
predictive model complexity to C = 7.
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Figure 8. (Color online) Type 2 error pdfs for different complexities of an sGLE model learned from 1 out-of-equilibrium GD training sample
at T = 2.2 J/kB . The sGLE with C = 3 is most predictive of the GD test data.

V. SUMMARY AND CONCLUSIONS

By performing a detailed error analysis in the context of
a statistical learning approach using cross-validation, we de-
rive an optimally predictive coarse-grained description of a
two-dimensional kinetic nearest-neighbor Ising model with
Glauber dynamics (GD) based on the stochastic Ginzburg-
Landau equation (sGLE). The latter is learned from micro-
scopic GD “training” data through a log-likelihood analysis,
and its capacity to predict GD “test” data independent of the
training data is analyzed for various model complexities using
two error metrics and varying amounts of training data.

Our analysis yields the following major conclusions:

1. For type 1 error, a complexity of 3 in the sGLE force
equation does not yield an optimally predictive model
for any amount of training data that we investigated.
Moreover, the model complexity yielding the most pre-
dictive coarse-grained description increases with the
amount of GD training data.

2. For type 2 error, the regular Ginzburg-Landau descrip-
tion using a φ4 mean-field free energy does yield the
most predictive model irrespective of the amount ofGD
training data.

The principled methodology developed here for simple
Model A dynamics can be applied to more complicated prob-
lems such as Model H dynamics [12]. A particular applica-
tion which might benefit from this work is the use of data

generated from experiments, e.g. ultrafast X-ray diffraction
patterns of structural phase transitions in semiconductor crys-
tals to generate models describing crystal disordering [20]. In
general, our approach can be utilized in any application using
a Ginzburg-Landau functional, e.g. in phase field simulations
of materials.

Directions for future work include studying the effects of
the coarse-graining block size (in both space and time), per-
forming a rigorous analysis of the stability and discretization
error of our numerical scheme, and expanding the model class
by including operator terms that account for higher order spa-
tial gradients. Moreover, it is desirable to complement the cur-
rent computational analysis with a rigorous theoretical deriva-
tion of an expression for the error probability density function
in terms of model complexity, number of training samples and
coarse-graining block size.
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Appendix A: Computation of the parameters in the learned
sGLE model

In order to calculate the coefficients of the learned discrete
sGLE, we employ the widely used statistical technique of
maximizing the log-likelihood that the model will predict the
GD training data. The discrete sGLE we are trying to learn
has the form

φn+1,i,j = φn,i,j + α0(φn,i+1,j + φn,i−1,j + φn,i,j+1

+ φn,i,j−1 − 4φn,i,j) +

C−1
2∑

k=0

αk+1φ
2k+1
n,i,j

+ α(C+3)/2 ξn,i,j , (A1)

where C is the model complexity (we only consider odd com-
plexities), the ξn,i,j are independent, identically distributed
standard normal random variables and n = 0, . . . , neq−2,
i = 0, . . . , N̄1 − 1 and j = 0, . . . , N̄2 − 1. Given the block-
averaged training data Sn,i,j , we would like to find the set of
parameters αopt ≡ α0, α1, . . . , α(C+3)/2 that maximizes the
probability of observing S0, S1,. . . , Sneq−1 from model (A1).
The latter is given by

P(S0, S1, . . . , Sneq−1;α)

= P(S0)P(S1 | S0;α) . . .P(Sneq−1 | S1, . . . , Sneq−2;α)

= P(S0)P(S1 | S0;α) . . .P(Sneq−1 | Sneq−2;α). (A2)

Given Sn, we can see from (A1) that for each i and j, Sn+1,i,j

is normally distributed with mean

Yn,i,j = Sn,i,j + α0(Sn,i+1,j + Sn,i−1,j + Sn,i,j+1

+ Sn,i,j−1 − 4Sn,i,j) +

C−1
2∑

k=0

αk+1S
2k+1
n,i,j (A3)

and variance α2
(C+3)/2. Therefore, we have

P (Sn+1,i,j = s | Sn;α)

=
1

α(C+3)/2

√
2π

exp

[
− (s− Yn,i,j)2

2α2
(C+3)/2

]
, (A4)

and since the ξn,i,j are independent,

P (Sn+1 | Sn;α)

=
1(

α2
(C+3)/22π

)(N̄1N̄2)/2
exp

[
−‖Sn+1 − Yn‖2

2α2
(C+3)/2

]
. (A5)

Hence,

lnP
(
S0, S1, . . . , Sneq−1;α

)
= −

neq−2∑
n=0

‖Sn+1 − Yn‖2

2α2
(C+3)/2

− (neq − 1)N̄1N̄2 ln
(
α(C+3)/2

)
+ constant. (A6)

For notational simplicity, let us now focus on the case of
C = 3; the generalization to higher order nonlinearity is
straightforward. From (A6), it follows that we need to mini-
mize

L
(
S1, . . . , Sneq−1;α

)
=

1

2
α−2

3 f (α0, α1, α2)

+ (neq − 1) N̄1N̄2 ln (α3) , (A7)

where

f (α0, α1, α2) =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

[(Sn+1,i,j − Sn,i,j)

− α0(Sn,i+1,j + Sn,i−1,j + Sn,i,j+1

+ Sn,i,j−1 − 4Sn,i,j)− α1Sn,i,j

− α2S
3
n,i,j ]

2. (A8)

From

∂L
∂α3

= −α−3
3 f (α0, α1, α2) + (neq − 1) N̄1N̄2α

−1
3 = 0,

(A9)

we can solve for α3

α3 =

√
f (α0, α1, α2)

(neq − 1) N̄1N̄2
. (A10)

Also, for k 6= 3, we have

∂L
∂αk

=
1

2
α−2

3

∂f

∂αk
. (A11)

If we now define

Dn,i,j = Sn+1,i,j − Sn,i,j ,
An,i,j = Sn,i+1,j + Sn,i−1,j + Sn,i,j+1 + Sn,i,j−1 − 4Sn,i,j ,

Bn,i,j = Sn,i,j , Cn,i,j = S3
n,i,j , (A12)

then

∂f

∂α0
= ∂α0

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

(Dn,i,j − α0An,i,j

− α1Bn,i,j − α2Cn,i,j)
2

= −2

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Dn,i,jAn,i,j


+ 2

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

A2
n,i,j

α0

+ 2

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Bn,i,jAn,i,j

α1

+ 2

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Cn,i,jAn,i,j

α2

= −2 (a0 − a00α0 − a01α1 − a02α2) . (A13)
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Similarly,

∂f

∂α1
= −2 (a1 − a10α0 − a11α1 − a12α2) , (A14)

where

a1 =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Dn,i,jBn,i,j ,

a10 =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

An,i,jBn,i,j ,

a11 =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

B2
n,i,j ,

a12 =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Cn,i,jBn,i,j . (A15)

Finally,

∂f

∂α2
= −2 (a2 − a20α0 − a21α1 − a22α2) , (A16)

where

a2 =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Dn,i,jCn,i,j ,

a20 =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

An,i,jCn,i,j ,

a21 =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

Bn,i,jCn,i,j ,

a22 =

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

C2
n,i,j . (A17)

Hence, we need to solve the linear system

a00α0 + a01α1 + a02α2 = a0,

a10α0 + a11α1 + a12α2 = a1,

a20α0 + a21α1 + a22α2 = a2. (A18)

We can see that despite the nonlinearity of the sGLE, opti-
mizing the log-likelihood function can be reduced to solving
a linear system.

Appendix B: Details of the operational procedure for calculating
the error pdfs

To compute one data point in the error pdf for a learned
sGLE model of complexity C given a number of training
samples Ntrain, we do the following.

1. We simulate Ntest independent GD test sample trajec-
tories. The kth trajectory is obtained as follows:

(a) Starting from a random initial Ising configuration,
we march over nmc − 1 steps.

(b) Starting from the resulting Ising configuration, we
march over neq − 1 steps and store the block-
averaged time history over these steps in a 3D ma-
trix sav,test with dimensions neq×N̄1×N̄2. Here
N̄1 and N̄2 represent the number of spin blocks in
each spatial direction.

(c) This matrix sav,test will be the kth element of a
4D matrix sav,test,all with dimensions Ntest ×
neq × N̄1 × N̄2.

The initial spins si,j (i = 0, . . . , N1 − 1 and j =
0, . . . , N2− 1) are given by si,j = 1− 2 ri,j , where the
ri,j are drawn from a discrete uniform distribution on
the half-open interval [0, 2). Furthermore, with “block-
averaged time history”, we refer to the time evolution of
the block-averaged spin configuration of the Ising lat-
tice. At each discrete point in time, we group the indi-
vidual spins into blocks of a certain size, and then cal-
culate the average spin values over the different blocks.
The resulting coarsened grid is then recorded.

2. We simulate Ntrain independent GD training sample
trajectories. A trajectory is calculated as follows:

(a) Starting from a random initial Ising configuration,
we march over nmc − 1 steps.

(b) Starting from the final Ising configuration, we
march over neq − 1 steps and store the block-
averaged time history over these steps in a 3D ma-
trix sav,train with dimensions neq × N̄1 × N̄2.

(c) We concatenate sav,train of the current training
sample with the corresponding matrices of the
previous training samples along the first (time)
dimension, and hence obtain a bigger matrix
sav,train,all with dimensionsNtrain×neq×N̄1×
N̄2.

3. Using the training data stored in sav,train,all, we com-
pute the coefficients of the learned sGLE polynomial
using a log-likelihood analysis (see Appendix A).

4. With the parameters calculated in step 3, we now sim-
ulate Ntest sGLE trajectories. The kth trajectory is
obtained as follows:

(a) We define a 3D matrix φ with dimensions neq ×
N̄1 × N̄2.

(b) We take the block-averaged Ising test configura-
tion stored in sav,test,allk,0,:,: as the initial condition
and define sav,test ≡ sav,test,allk,:,:,: . We then define
φ0,:,: ≡ sav,test0,:,: .

(c) We march over neq − 1 steps and store the time
history over these steps in φ.

(d) The configuration φn+1,:,: is calculated according
to

φn+1,i,j = xi,j + G(x:,:;α), (B1)
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where x:,: is either sav,testn,:,: or φn,:,:, i =

0, . . . , N̄1 − 1 and j = 0, . . . , N̄2 − 1.

In (d), we have defined G(x:,:;α) as

G(x:,:;α)

= α0(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xi,j)

+

C−1
2∑

k=0

αk+1(xi,j)
2k+1 + α(C+3)/2 ξn,i,j . (B2)

5. For the kth sGLE trajectory, we calculate the RMS er-

ror εk

εk =

√√√√1

a

neq−2∑
n=0

N̄1−1∑
i=0

N̄2−1∑
j=0

(φn+1,i,j − sav,testn+1,i,j)
2, (B3)

where a = (neq − 1)N̄1N̄2.

6. Finally, we compute the test-averaged error

ε =
1

Ntest

Ntest∑
k=1

εk, (B4)

which we will call “type 1” test error if the φn+1,i,j are
calculated using x:,: = sav,testn,:,: in (B1), or “type 2” test
error if the φn+1,i,j are calculated using x:,: = φn,:,:
in (B1).
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