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We investigate the Taylor-Couette system where the radius ratio is close to unity. Systematically

increasing the Reynolds number, we observe a number of previously known transitions, such as one

from the classical Taylor vortex flow (TVF) to wavy vortex flow (WVF) and transition to fully

developed turbulence. Prior to the onset of turbulence, we observe intermittent bursting patterns of

localized turbulent patches, confirming the experimentally observed pattern of very short wavelength

bursts (VSWBs). A striking finding is that, for Reynolds number larger than that for the onset

of VSWBs, a new type of intermittently bursting behavior emerges: patterns of azimuthally closed

rings of various orders. We call them ring-bursting patterns, which surround the cylinder completely

but remain localized and separated in the axial direction through non-turbulent wavy structures. We

employ a number of quantitative measures including the cross-flow energy to characterize the ring-

bursting patterns and to distinguish them from the background flow. These patterns are interesting

because they do not occur in the wide-gap Taylor-Couette flow systems. The narrow-gap regime

is less studied but certainly deserves further attention to gain deeper insights into complex flow

dynamics in fluids.

PACS numbers: 47.20.Ky, 47.32.cf, 47.54.-r

I. INTRODUCTION

Turbulence is arguably one of the most difficult prob-

lems in science and engineering. The vast literature in

this field [1] has mostly focused on fully developed tur-

bulence. The purpose of this paper is to report a phe-

nomenon of intermittency associated with the evolution

of turbulence in a prototypical model system of shear

flow: the Taylor-Couette system [2] with the gap between

the inner and outer cylinders so narrow that flow is effec-

tively a curved Couette flow. This type of intermittency

occurs en route to turbulence as the Reynolds number is

increased which, to our knowledge, has not been reported

previously.

The Taylor-Couette system, a flow between two con-

centric rotating cylinders, has been a paradigm in the

study of complex dynamical behaviors of fluid flows, es-

pecially turbulence [3–11]. The flow system can exhibit a

large variety of ordered and disordered behaviors in dif-

ferent parameter regimes. The parameters that control

the system dynamics include the values of the rotation

speed of the inner and outer cylinders, as well as their

radius ratio. Most previous studies have dealt with the

setting in which the radius ratio is below, say about 0.95,
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the so called wide-gap regime [6]. The primary interest

of this work is in the narrow-gap case, where the radius

ratio is close to unity. We fix the radius ratio to be

0.99. While different configurations of rotation of the

inner and outer cylinders can lead to distinct dynamical

behaviors, to be concrete we restrict our study to the case

in which the outer cylinder is stationary. In fact, regard-

less of whether the outer cylinder is rotational or station-

ary, transition to turbulence can occur as the Reynolds

number is increased. For different system and parameter

settings, there can be distinct routes to turbulence. For

example, for systems of counter-rotating cylinders, an

early work [3] showed that transition to turbulence can

be sudden as the Reynolds number is increased through

a critical point. For a stationary outer cylinder, the tran-

sition from laminar flow to turbulence can occur through

a sequence of instabilities of distinct nature [10, 12].

For the Taylor-Couette system of counter-rotating

cylinders, spatially isolated flow patterns such as local-

ized patches can emerge and decay through the whole

fluid domain [6, 13]. Depending on the parameters, the

localized patches can be laminar or exhibit more complex

patterns such as inter-penetrating spirals [6]. In the wide-

gap regime, numerical simulations [14] revealed the exis-

tence of the Görtler vortices [15], which are small-scale

azimuthal vortices that can cause streaky structures and

form herringbone-like patterns near the wall. Localized

turbulent behaviors can arise when the Görtler vortices

concentrate and grow at the outflow boundaries of the
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Taylor vortex cell [14].

For narrow-gap flows, there was experimental evi-

dence of the phenomenon of very short wavelength bursts

(VSWBs) [10]. One contribution of our work is an

explicit computational demonstration of VSWBs. Re-

markably, we uncover a class of solutions en route to

turbulence. These are localized, irregular, intermit-

tently bursting, azimuthally closed patterns that man-

ifest themselves as various rings located along the axial

direction. For convenience, we refer to the states as “ring

bursts.” Depending on the parameter setting, the num-

ber of distinct rings can vary, but their extents in the

axial direction are similar. The ring bursts can occur

on some background flow that is not necessarily regular.

For example, in a typical setting the background can be

wavy vortex flows (WVFs) with relatively high azimuthal

wavenumbers. Because of the coexistence of complex flow

patterns, to single out ring bursts is challenging, a task

that we accomplish by developing an effective azimuthal

wavenumber separation method based on the cross-flow

energy. We also find that ring bursts are precursors to

turbulence, signifying a new route to turbulence uniquely

for narrow-gap Taylor-Couette flows. To our knowledge,

there has been no prior report of ring-bursting patterns

or similar phenomena. This is mainly due to the fact

that this narrow-gap regime is a less explored territory

in the giant landscape of turbulence research. It would

be interesting to identify precursors to turbulence in flow

systems in general.

In Sec. II, we outline our numerical method and de-

scribe a number of regular states in our narrow-gap

Taylor-Couette system. In Sec. III, we present our main

results: numerical confirmation of experimentally ob-

served VSWBs and more importantly, identification and

quantitative confirmation of intermittent ring bursts as

precursors to turbulence. In Sec. IV, we present conclu-

sions and discussions.

II. NUMERICAL METHOD AND BASIC

DYNAMICAL STATES OF NARROW-GAP

TAYLOR-COUETTE FLOW

A. Numerical method

The Taylor-Couette system consists of two indepen-

dently rotating cylinders of finite length L and a fluid

confined in the annular gap between the two cylinders.

We consider the setting in which the inner cylinder of

radius Ri rotates at angular speed Ω and the outer cylin-

der of radius Ro is stationary. The end walls enclosing

the annulus in the axial direction are stationary and the

fluid in the annulus is assumed to be Newtonian, isother-

mal and incompressible with kinematic viscosity ν. Us-

ing the gap width d = Ro − Ri as the length scale and

the radial diffusion time d2/ν as the time scale, the non-

dimensionalized Navier-Stokes and continuity equations

are

∂tu+ (u · ∇)u = −∇p+∇2
u, ∇ · u = 0, (1)

where u = (ur, uθ, uz) is the flow velocity field in the

cylindrical coordinates (r, θ, z), the corresponding vortic-

ity is given by ∇×u = (ξ, η, ζ), and r is the radius of the

fluid domain in the gap (ri 6 r 6 ro). The three relevant

parameters are the Reynolds number Re = ΩiRid/ν,

the radius ratio Ri/Ro = 0.99, and the aspect ratio

Γ ≡ L/d = 44. The boundary conditions on the cylindri-

cal surfaces are of the no-slip type, with

u(ri, θ, z, t) = (0, Re, 0), u(ro, θ, z, t) = (0, 0, 0), (2)

where the non-dimensionalized inner and outer radii are

ri = Ri/d and ro = Ro/d, respectively. The boundary

conditions in the axial direction are u(r, θ,±0.5Γ, t) =

(0, 0, 0).

We solve Eq. (1) by using the standard second-order

time-splitting method with consistent boundary condi-

tions for the pressure [16]. Spatial discretization is done

via a Galerkin-Fourier expansion in θ and Chebyshev col-

location in r and z. The idealized boundary conditions

are discontinuous at the junctions where the stationary

end walls meet the rotating inner cylinder. In experi-

ments there are small but finite gaps at these junctions

where the azimuthal velocity is adjusted to zero. To

achieve accuracy associated with the spectral method, a

regularization of the discontinuous boundary conditions

is implemented, which is of the form

uθ(r, θ,±0.5Γ, t) = Re{exp([ri − r]/ǫ) + exp([r− ro]/ǫ)},

(3)

where ǫ is a small parameter characterizing the physical

gaps. We use ǫ = 6 × 10−3. Our numerical method

was previously developed to study the end-wall effects in

the Taylor-Couette system with co- and counter-rotating

cylinders [17, 18]. In the present work we use up to nr =

50 and nz = 500 Chebyshev modes in the radial and

axial directions, respectively, and up to nθ = 100 Fourier

modes in the azimuthal direction. The time step is chosen

to be δt = 10−6.

B. Qualitative description of basic dynamical states

1. Low-order instabilities

In the wide-gap Taylor-Couette system various flow

patterns and their bifurcation behaviors are relatively
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well understood [3, 6]. In our narrow-gap setting, the

background flow is a number of known low-order, non-

turbulent instabilities upon which a new type of ring

bursting structures emerges. Here we describe these low-

order instabilities. To visualize and distinguish qualita-

tively different flow patterns, we use the contour plots of

the azimuthal vorticity component η.

Primary instability - Taylor vortex flow. As the

Reynolds number Re is increased, the basic state, circu-

lar Couette flow (CCF) becomes unstable and is replaced

by the classical Taylor vortex flow (TVF) that consists

of toroidally closed vortices. TVFs with increasing num-

bers of vortices appear gradually over a large range of

Re, starting from a single Taylor vortex cell generated

through the mechanism of Ekman pumping near the end

walls. This initial cell can appear either near the top or

the bottom lid. In an ideal system, initial Taylor vortex

cells can occur simultaneously at both lids, but this is less

likely in realistic systems due to the inevitable imperfec-

tions in the system. The onset of initial TVF cells was

experimentally found for Re about 358 [10]. We find,

numerically, that the onset value is about 356. As Re

is increased from this value, additional vortices appear,

which enter the bulk from near the lids until they finally

fill the whole annulus for Re near 435 (experimentally

the value is about 437 [10]). For example, we observe a

TVF with 22 pairs of vortices within the annulus, with

the characterizing wavenumber of k = 3.427, and an ad-

ditional pair of Ekman boundary layer vortices near the

top and bottom lids. Note that, since the system is fi-

nite, Ekman-vortex regions are typically present near the

boundaries of the system. In the following we focus on

the bulk region that is free of Ekman vortices.

Secondary instabilities - wavy vortex flow. Upon fur-

ther increase in Re, the TVF becomes unstable and is

replaced by a wavy vortex flow (WVF) driven by the ax-

ial shear in the azimuthal velocity [19] due to the radial

advection of high and low azimuthal momentum close

to the inner and outer cylinder, respectively. We find

that the onset of WVF occurs for Re ≈ 473 (experimen-

tally the value is about 475 [10]). The WVF, as shown

in Fig. 1(a), is associated with relatively high values of

the azimuthal wavenumber m. For example, the WVF

pattern in Fig 1(a) has azimuthal wavenumber m = 39,

which we call WVF39. We find that this particular WVF

state is in fact a global background flow over a wide range

of Re values.

The TVF and WVF patterns occur regardless of

whether the system has a wide or a narrow gap, although

the critical values of Re for the onset of these flow pat-

terns depend on the system details.

(a)

(b)

(c)

(d)

FIG. 1: (Color online) Distinct flow patterns in narrow-

gap Taylor-Couette system. Contours of the azimuthal

vorticity component η with (left column, η ∈ [−400, 400])

and without (right column, η(m 6= 0) ∈ [−200, 200]) the ax-

isymmetric component on an unrolled cylindrical surface at

the mid-gap (r = d/2) for different flows and different values

of Re. Red (dark gray) and yellow (light gray) colors corre-

spond to positive and negative values, respectively, and the

black curves indicate the zero contours. Distinct flow patterns

are shown in (a) WVF39 for Re = 500, (b) LP for Re = 540,

(c) ring bursts (n = 3) for Re = 545, and (d) VSWB for

Re = 800, respectively. Note that (d) shows the situation

in which VSWBs occupy the entire angular (see Carey et

al. [10]).
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FIG. 2: (Color online) Schematic illustration of the Re

regimes in which different patterns exist. Shown are

the regimes of CCF, TVF, WVF, VSWB and ring-bursts and

their corresponding numerical and experimental (in paren-

theses) onsets. Thick dashed (solid) line illustrates approxi-

mately the existence of LPs with a wavy-like or a turbulent

interior.

2. High-order instabilities

Very short wavelength bursts and localized patches.

For the commonly studied [6], wide-gap Taylor-Couette

system, e.g., of radius ratio 0.883, the typical sequence

of solutions with increasing Re values is as follows. As

the stationary TVF becomes unstable, a time-dependent

WVF arises, followed by a modulated WVF [6], even-

tually leading to turbulent behaviors. However, in the

narrow-gap case we do not observe the global transition

from WVF to modulated WVF. Instead, we find that

a state, named VSWB [10] appear immediately after the

onset of WVF without any other types of intermediate so-

lutions. The onset of VSWBs occurs for Re ≈ 483, which

agrees with the experimentally observed onset value. The

VSWB state can effectively be regarded as a burst be-

cause it occurs on top of some background flow structure

such as wavy vortices. The term “short wavelength” is

with respect to the length scale of the background pat-

tern. VSWB is in fact a state of weak turbulence.

As Re is increased further, we observe localized patches

(LPs) [10, 20] superposed on the WVF. The pattern

within LPs can be either wavy-like (Fig. 1(b)) or turbu-

lent, depending on the Re value. In particular, wavy-like

patterns occur for relatively low values of Re but tur-

bulence occurs for high Re values, e.g., for Re > 580.

A turbulent pattern can either evolve into VSWBs or

decay slowly. The number of LPs depends on Re as

well. In general, the higher the value of Re the larger the

number of LPs that appear, and their lifetimes increase

as well. The patches are randomly distributed over the

whole bulk length.

Ring-bursting patterns. When Re is increased above

about 540, we discover a new type of localized, inter-

mittent bursting solution, the ring bursts that coexist

with VSWBs. While both types of solutions are localized,

there are characteristic differences. For example, VSWBs

appear randomly over the whole bulk fluid region with

seemingly expanding behaviors in all directions, but ring

bursts always remain localized in the axial direction. In

fact, the bursts are generated from the localized turbu-

lent patches that grow in the azimuthal direction as Re is

increased. For sufficiently high values of Re, the patches

extend over one circumference, generating distinct ring

bursts that are separated from the flow patterns in the

rest of the bulk, as shown in Fig. 1(c). The characteristics

of the background flows in the regions surrounding the

ring bursts depend strongly on Re. They can range from

wavy-like patterns (i.e., WVF39) to inter-penetrating spi-

rals [6] due to the interactions among various azimuthal

wavenumbers, as shown in Fig. 1(b). We observe ring-

bursting patterns of different order j, as shown in Figs. 1

and 3. For example, we observe j ∈ {1, 2, 3}. All these

states coexist but the probability for ring bursts with

larger j values increases with Re. Along the axial di-

rection, the ring-bursting patterns can appear at any

position, except for the Ekman-vortex region near the

lids, because strong boundary layer vortices prevent the

development of ring-bursting patterns. In terms of the

lifetime, the ring-bursting patterns exhibit a similar be-

havior to LPs. In general, the higher the value of Re

the longer the lifetime of the pattern, and the lifetime

does not seem to depend on the number of ring bursts

(order-1, order-2 or order-3).

While there is no apparent order associated with the

flow patterns within the ring bursts, the flow in the re-

gions in between exhibit a clear WVF39 signature. The

ring bursts can spontaneously break up and disappear.

Depending on the number of ring bursts, the transient

time for the burst to decay into localized patches can

be relatively long. In addition, there can be transitions

between patterns with distinct numbers of ring bursts.

For example, suppose there is a ring-bursting pattern

of order-3. If one ring disappears, a new ring-bursting

region can appear and grow. Transitions between pat-

terns with either increasing or decreasing numbers of ring

bursts have been observed.

For Re > 850, we find that VSWBs can fill the whole

bulk fluid region, as shown in Fig. 1(d). For this rela-

tively high Reynolds number, there is one large VSWB

pattern that fills the whole annulus. To see the evolu-

tion of VSWBs we refer to Figure 3 in Carey et al. [10].

In fact, for Re > 900, the entire fluid region is satu-

rated with VSWBs. These numerical observations are in

agreement with experimental findings [10].

Underlying flow patterns. The right panels in Fig. 1

show contours for the same pattern as those for the left

panels but without the underlying axisymmetric contri-

bution. The resulting “reduced” flow pattern of WVF39

in Fig. 1(a) appears quite regular, indicating the exis-

tence of the dominant wavy with azimuthal wavenum-
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(a) (b) (c) (d)

FIG. 3: (Color online)Angular momentum and vorticity.

Isosurfaces of rv (top row) and η (bottom row) for flows at

different values of Re (isolevels shown for the top and bottom

rows are rv = 80 and η = ±30, respectively). Red (dark

gray) and yellow (light gray) colors correspond to positive

and negative values, respectively. The different flow states

are shown in (a) WVF39 for Re = 500, (b) ring bursts (order-

3) for Re = 545, (c) ring burst (order-1) for Re = 550, and

(d) VSWB for Re = 900, respectively. For clear visualization,

here and in all subsequent three-dimensional plots the radius

ratio is scaled with the factor 100.

ber m = 39. The nearly vertical black curves specify

the contours of zero vorticity. At several azimuthal po-

sitions, these lines narrow, signifying the emergence of a

second but weaker azimuthal wavenumber, e.g., m = 8.

For order-3 ring bursts, the flow patterns near the lids

are somewhat modified due to the presence of higher az-

imuthal wavenumber m, as shown in Fig. 1(c), where

these wavenumbers can be seen from the η(m 6= 0) plot

(right column). The somewhat random patterns near the

lids indicate the higher values of the azimuthal wavenum-

ber m. The flow patterns in the central region (includ-

ing that containing the three ring bursts) exhibit a com-

pletely different behaviors. In particular, with respect

to the contours η(m 6= 0) (right column in Fig. 1) the

turbulent ring bursts and the separating WVF39 pat-

tern appear indistinguishable, suggesting an axisymmet-

ric dominance of the ring bursts. For turbulent flows or

VSWBs in Fig. 1(d), none of the patterns has such an

ordered structure. The somewhat visible separation by

vertical lines in the contours η(m 6= 0) for WVF39 and

order-3 ring bursts [Fig. 1(a,c)] suggests a similarity to

the underlying/surrounding wavy-like pattern. However,

the contours η(m 6= 0) for VSWB [(Fig. 1(d)] are quite

different, suggesting that the underlying structure is dif-

ferent. It is in fact turbulent! The schematic diagram in

Fig. 2 shows the regimes of Re values in which different

flow patterns exist. Regimes on top of each other indicate

coexistence and the numbers below the axis give numer-

ical and experimental (in parentheses) values of regime

onset, respectively. Note that the thick (solid) dashed

line illustrates the regime of LPs with a wavy-like or a

turbulent interior.

III. CHARACTERIZATION OF RING BURSTS

A. Angular momentum, azimuthal vorticity, and

modal kinetic energy

Figure 3 shows the isosurfaces of the angular momen-

tum rv (top row) and azimuthal vorticity η (bottom row)

for representative flow patterns at different values of Re.

WVF39 with the dominant axisymmetric contribution

and high azimuthal wavenumber, as shown in Fig. 3(a),

serves as the background pattern for ring bursts and

VSWBs. The three turbulent, azimuthally closed burst-

ing regions associated with the order-3 ring-bursting pat-

tern are distinctly visible, as shown in Fig. 3(b). Within

each bursting region, both rv and η appear random but

the (background) flow patterns in between the bursting

regions are remnants of the WVF39 pattern. With in-

creasing Re, higher wavenumbers emerge, but the sep-

aration between bursting and non-bursting regions per-
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(a) (b)

FIG. 4: (Color online) Three-dimensional views of angu-

lar momentum and vorticity. Magnitude of the angular

momentum (top panels) and azimuthal vorticity (bottom pan-

els) for a flow segment of vertical length Γ/10 for ring bursts

(left column) and VSWB (right column); (a) ring bursts of

order-3 for Re = 545 and (b) VSWB for Re = 800, respec-

tively. The segment is taken from the region containing the

middle ring burst in Fig. 3(b) and has the same color coding.

sists. For high values of Re, VSWBs arise, as shown in

Fig. 3(d). In this case, isosurface plots of rv and η exhibit

random flow patterns.

To better visualize and illustrate the similarity and

differences between ring burst and VSWB patterns, we

present in Fig. 4 the angular momentum (top panels) and

azimuthal vorticity (bottom panels) for a segment of the

bulk flow. The length of the segment is Γ/10. The en-

tire structure of the ring-bursting pattern possesses an

axial symmetry and an azimuthal dominance of rotation

symmetric mode (m = 0). The interior of the bursting

regions has no symmetry - similar to the structures of

VSWBs. There are thus two distinct spatial scales as-

sociated with ring bursts: a large scale determined by

the azimuthal-symmetry and a small scale present in the

interior of the bursting regions.

Figure 5 illustrates the time-evolution of different ring-

bursting patterns. Starting from WVF39 at t = 0, a

ring-bursting pattern emerges almost immediately near

the central region (z/Γ ≈ 0.5), followed at t ≈ 0.1 by

the occurrence of an order-2 pattern in the upper half

of the bulk (z/Γ ≈ 0.7). For t & 3.5, an order-3 ring-

bursting pattern is formed in the lower half of the bulk

(z/Γ ≈ 0.25), which remains in the system for t ≈ 12.5

and then decays. Hereafter the system shows again an

order-2 ring-bursting, as the lowest ring burst region (z =

0.25z/Γ) has vanished. This pattern persists until t ≈ 15,

at which the order-2 bursting ring disappears with the

burst region in the center (z = 0.5z/Γ). In the time

(a)

20
t

0
0

0.5Γ

1

z

10

(b)

20
t

0
0

0.5Γ

1

z

10

FIG. 5: (Color online) Time series from ring-bursting

regime. Time evolution of (a) ur and (b) η at θ =constant

and mid-gap of the bulk (r = d/2) for a flow exhibiting dif-

ferent ring-bursting patterns (Color coding as in Fig. 1).

interval considered, an order-1 pattern persists.

Figures 6(a) and 6(b) show the power spectral density

(PSD) of the radial velocity profile at the mid-gap for

WVF and ring burst, respectively. We see that the PSD

associated with the ring-bursting pattern (b) indicates

the existence of significantly higher azimuthal wavenum-

ber than the WVF pattern (a). In fact, the PSD of

WVF39 in (a) shows a strong peak at frequency about 19,

which corresponds to the dominant azimuthal wavenum-

ber (m = 39). This peak is still present in (b) but it

is broadened, indicating WVF as the background flow

pattern for the ring burst. Figure 6(c) shows the scaled

PSD curves for several flow patterns for different values

of Re. We see that the PSD curves for the ring-bursting

patterns essentially collapse into one frequency band, but

the PSD curve associated with WVF39 lies slightly below

those of ring-bursting patterns. There is relatively large

difference for small frequencies but it becomes insignifi-

cant for higher frequencies. This is further support for
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FIG. 6: (Color online) Power spectral density (PSD).

PSD curves calculated from the radial flow component ud/2 =

u(d/2, 0,Γ/2, t) for (a) WVF39 for Re = 500 and (b) ring

burst of order-3 for Re = 545. (c) PSD curves scaled by

the respective Reynolds number for different flow patterns.

As the number of ring bursts is increased, the local peaks in

the PSD curves become more pronounced. The vertical line

highlights the resemblance of the spectra.

the role of WVF39 in providing the skeleton structure for

all ring-bursting patterns.

(a)

(b)

(c)

FIG. 7: (Color online) Radial component of cross-flow

energy. Spacetime plots of the radial component of the cross-

flow energy, Ecf,r(r, t) = 〈u2
r + u2

z〉A(r), averaged over the

surfaces A of a concentric cylinder of radius r for (a) Re =

500, (b) Re = 545, and (c) Re = 560. Red (dark gray)

[yellow (light gray)] color indicates high [low] energy value

with contours defined as ∆Ecf,r = 5 × 105. The maximum

energy values in (a-c) are approximately 8.1× 105, 8.5× 106,

and 1.2×106, respectively. For better visualization the radial

gap width is magnified by the factor of 500 (the same for

Fig. 8 below).

B. Cross-flow energy

A suitable and commonly used quantity in the study of

fluid turbulence is the cross-flow energy [21], where small

values indicate a laminar flow but large values correspond

to turbulence.

1. Radial component of cross-flow energy

The radial component of the cross-flow energy is given

by [21]

Ecf,r(r, t) = 〈u2
r + u2

z〉A(r), (4)

where 〈·〉A(r) denotes the average over the surface of a

concentric cylinder at radius r. The cross-flow energy

component Ecf,r(r, t) measures the instantaneous energy

associated with the radial and axial velocity components

at radial distance r. Figure 7 shows the spacetime plots

of Ecf,r(r, t) over the time period of 50 diffusion times for

three values of Re. We observe the temporal emergence

and disappearance of various ring-bursting patterns in

the bulk. For example, for Re = 545, an order-3 ring-

bursting pattern exists for 40 . t . 44, and an order-2

pattern appears for 0.5 . t . 4.5, as shown in Fig. 7(b).
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FIG. 8: (Color online) Magnified view of the radial com-

ponent of the cross-flow energy. (a) Magnification of a

segment of Fig. 7(b) for t ∈ [0, 1.8] illustrating the emer-

gence and disappearance of the order-3 ring-bursting pattern

for Re = 545 (color coding as in Fig. 7). The contours are

defined through ∆Ecf,r = 5 × 105, a nd the maximum en-

ergy value is about 8.288 × 106. (b) Average radial cross-

flow energy 〈Ecf,r〉r versus t for the order-3 ring burst for

Re = 545. The nearly constant background flow is WVF39

with 〈Ecf,r(WVF39)〉r ≈ 2× 10−6.

For Re = 560, an order-3 pattern appears for 2.5 . t .

7.0, and a single ring-bursting pattern (order-1) exists for

43 . t . 47, as shown in Fig. 7(c).

Plots of the cross-flow energy exhibit two features.

First, the presence of the order-1 ring-bursting pattern is

accompanied by a significant increase in the radial cross-

flow energy as compared with that associated with the

background flow, e.g., WVF39, indicated as the uniform

red (dark gray) regions. Second, the profile of Ecf,r(r, t)

for any ring-bursting pattern is approximately symmet-

ric with respect to the middle of the gap. Regarding the

structural properties the ring-bursting patterns are simi-

lar to the turbulent WVF state [14, 22–24] (see Sec. III C).

The (radial) symmetry is a consequence of the narrow-

gap nature of the flow. From Fig. 7, we see that it is

not feasible to determine the number of ring bursts (e.g.,

order-1, order-2 or order-3) present in the bulk. However,

in all cases, this can be done using the magnitude of the

cross-flow energy.

Figure 8(a) shows a magnification of a segment of

Fig. 7(b) for t ∈ [0, 1.8], which contains the emergence

and disappearance of an order-3 ring burst for Re = 545,

occurring at t ≈ 0.45 and t ≈ 1.35, respectively. Outside

(a)
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f b

(b)
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E
cf
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>

r

order-3
order-2
order-1

FIG. 9: (Color online) Onset of bursting patterns. (a)

Burst fraction fb as a function of Re. A linear fit indicates

that the onset of VSWBs occurs for Re ≈ 480 (the experi-

mental onset [10] is Re ≈ 483). (b) The maximum average

radial energy 〈Ecf,r〉r [Eq. (4)] versus Re for ring bursts of

different orders (j ∈ {1, 2, 3}). The linear behavior indicates

that the ring bursts are a result of a forward bifurcation, the

onset of which occurs for Rec ≈ 537. In (b), the average en-

ergy of the underlying background flow, 〈Ecf,r〉r, has been

subtracted off.

this time interval the flow is WVF39, which constitutes a

nearly uniform background without any significant varia-

tions in Ecf,r(r, t). The spatial distribution of Ecf,r(r, t)

exhibits an approximate symmetry about r = 0.5. Fig-

ure 8(b) shows the average cross-flow energy, 〈Ecf,r〉r , as

a function of time t, corresponding to the emergence and

disappearance of the ring-bursting pattern. We observe a

significant enhancement of the average radial energy over

that of the background flow (〈Ecf,r〉r ≈ 2 × 10−6). In

fact, in the time interval where the ring burst exists, the

maximum value of the average radial energy is about one

order of magnitude larger than that of the background

flow. In general, the maximum energy depends on the

number j (order) of ring bursts in the annulus, where

a larger value of j corresponds to a higher value of the

maximum energy.
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FIG. 10: (Color online) Axial component of cross-flow

energy. Associated with the order-3 ring-bursting pattern

for Re = 545, time averaged axisymmetric energy component

E
cf,z
0 . Note that all higher azimuthal wavenumbers are on

the order of 10−4.

The emergence and development of any type of burst-

ing pattern with increasing Re can be conveniently char-

acterized using the quantity fB, the percentage of the

annulus containing bursts in the space-time plot. Fig-

ure 9(a) shows fB versus Re, where we observe approxi-

mately a linear behavior for Re . 900, and the transition

to bursts occurs for Re ≈ 480, in agreement with the ex-

perimentally found onset of VSWB [10]. Onset of ring

bursts can be revealed through examination of the max-

imum value of the average radial energy 〈Ecf,r〉r versus

Re, as shown in Fig. 9(b). Regardless of the order of the

ring bursts, there is a linear increase in 〈Ecf,r〉r with Re,

suggesting a type of forward bifurcation. Calculations of

the flow amplitudes show a square-root type of scaling

behavior with increasing parameter difference from the

“critical” point, providing further support for the forward

nature of the bifurcation. Due to strong localization, the

slope of the linear scaling regime depends on the order of

the ring burst. Nonetheless, the onset value Rec ≈ 537

of ring bursts does not depend on the order. Thus ring

bursts emerge after VSWBs (Re ≈ 483).

2. Axial component of cross-flow energy

The axial component of the cross-flow energy is

Ecf,z
m (z, t) = 〈(ur)

2
m + (uz)

2
m〉A(z). (5)

where A(z) stands for averaging over the radial and az-

imuthal variables on the surface of a disc at a fixed axial

position z. Figure 10 shows the time-averaged value for

the dominant axisymmetric component E
cf,z

0 . Near the

center of the ring-bursting region in the axial direction,

the values of E
cf,z

0 are smaller than those around the

edges. However, the contributions from all higher az-

imuthal wavenumbers (not shown), i.e., E
cf,z

m for m > 0,

have similarly small magnitudes as compared with E
cf,z

0 ,

which are on the order of 10−4. In fact, for higher az-

imuthal wavenumbers m, the axial components of their

cross-flow energies are randomly distributed over z and

they are not indicators of any appreciable difference be-

tween the background flow and the ring-bursting pattern.

3. Azimuthal wavenumber separation of axial cross-flow

energy

To better characterize the ring-bursting patterns in re-

lation to the background wavy-like and general burst-

ing patterns, we devise a method based on the idea of

wavenumber separation. Since a bursting pattern in-

cludes modes of higher azimuthal wavenumbers, we can

decompose the axial component of the cross-flow energy

Ecf,z
m (z, t) into two distinct subcomponents:

Ecf,z
w (z)+Ecf,z

b (z) =

mc−1∑

m=1

Ecf,z
m (z)+

M∑

m=mc

Ecf,z
m (z), (6)

where Ecf,z
w (z) and Ecf,z

b (z) denote the axial components

of the cross-flow energy associated with the background

wavy-like and burst patterns, respectively, and mc is

some cutoff wavenumber. Note that the axisymmetric

component of the cross-flow energy is excluded because it

is significantly larger than all other components [Fig. 10].

We choose the normalization factor to be the total cross-

flow energy for all azimuthal wavenumbers except m = 0:

Ecf,z
M (z) =

M∑

m=1

Ecf,z
m (z). (7)

Figure 11(a) shows the basic Ew and the burst contri-

bution Eb at different axial positions versus the cut-off

wavenumber mc. We observe that the curves for the

z positions within the bursting region (in Fig. 11(a) at

z = 0.3Γ and 0.45Γ), are higher than those in the wavy-

like background (in Fig. 11(a) at z = 0.15Γ and 0.35Γ),

where the former exhibit a rapid decrease in the energy

to collapse with the latter for mc about 39. The vari-

ations of Eb and Ew along the annulus length for two

different cutoff wavenumbers [mc = 20, 30, as indicated

by the vertical lines in Fig. 11(a)] are shown in Fig. 11(b).

Neglecting the differences in their magnitudes, the varia-

tions show qualitatively similar behaviors. Using a cutoff

level at 80% of the maximum of the background contribu-

tion Ew(mc), we find a good agreement with the visible
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FIG. 11: (Color online) Characterization of axial cross-

flow energy based on wavenumber separation. (a) Vari-

ation of the axial cross-flow energy component Ecf,z
m (z) =

Ecf,z
b (z) +Ecf,z

w (z) versus the cutoff wavenumber mc for two

axial positions in the burst region (z = 0.3Γ and 0.45Γ, cir-

cles) and in the background region (z = 0.15Γ and 0.35Γ,

squares). (b) Spatial variations of Ecf,z
b (z) =

∑mc−1
m=1 Ecf,z

m (z)

and Ecf,z
w (z) =

∑M
m=mc

Ecf,z
m (z) with z for mc = 20 (circles)

and 30 (squares), respectively. Regions above (below) each

curve indicate Eb (Ew). The two horizontal dashed lines give

the 80% threshold of the maximum values of [Ew(mc = 20)]

(lower) and [Ew(mc = 30)] (upper), respectively. In the cal-

culations the zero wavenumber contribution is excluded. Due

to normalization with EM the sum must be unity.

energy thresholds between the background and burst re-

gions (cf. Fig. 1). We thus see that, through some proper

choice of the cutoff wavenumber, the bursting and non-

bursting regions can be distinguished by examining the

axial cross-flow energy variations associated with the cut-

off wavenumber.

10
-1

10
0

kd/2π

10
-4

10
-2

10
0

SP
SD

 o
f u

r

k(WVF
39

)

WVF
39

order-1
order-2
order-3

10
-2

10
-1

10
0

10
-4

10
-2

10
0

FIG. 12: (Color online) Spatial power spectral density

(SPSD) SPSD of the radial velocity ur at the midgap for

Re = 545, where k is the axial wavenumber. Inset shows the

full spectrum.

C. Axial spacing and localization

The axial ranges of distinct ring-bursting regions are

approximately identical. Figure 12 shows the spatial

power spectral density (SPSD) of the radial velocity ur

along a line at the mid-gap in the center of the bulk for

the background flow and three types of ring-bursting pat-

terns. Here, SPSD is a power spectral density obtained

from an axial Fourier transformation. In particular, we

use a window of 0.8Γ about the center of the system for

the axial Fourier transform to avoid the Ekman regions

near the lids. We observe that the four curves coincide at

the first sharp peak determined by the wavenumber as-

sociated with the background flow WVF39 that consists

of 24 vortex pairs in the axial direction. The correspond-

ing axial wavelength and wavenumber are λ ≈ 1.667

and k ≈ 3.770, respectively. In addition, several broad-

band peaks at higher wavenumbers exist in the SPSD of

the ring-bursting patterns, corresponding to a number of

short wavelength bursts within the respective patterns.

The broadband nature at higher wavenumbers is indica-

tive of the dominance of small-scale bursting patterns.

The axial spacing is apparently independent of the value

of Re and of the order of the ring-bursting pattern. The

typical value of axial expansion agrees well with the ax-

ial dimension of two-pair Taylor vortices that constitute

four single vortex cells, which holds for all ring-bursting

flows that we have succeeded in uncovering. Analogous

to the behavior of the cross-flow energy, this behavior is

indicative of turbulent WVFs [14, 22–24]. We note that

the size of only one pair of Taylor vortices (two cells) is

too small to account for the observed range of axial ex-

pansion. This is consistent with the formation process of
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ring bursts. In particular, any localized turbulent patch,

after its generation, first expands in the axial direction

(to four cells) before growing in the azimuthal direction.

Whenever the bursting region has expanded to a larger

size in the axial direction, the closed ring structure is

destroyed, leading to VSWBs.

IV. CONCLUSIONS AND DISCUSSIONS

This paper provides a comprehensive numerical study

of the Taylor-Couette system of radius ratio 0.99 and

stationary outer cylinder, a regime that was not studied

previously. The relevant control or bifurcation param-

eter is the Reynolds number Re. For small Re values,

TVF initially arises near one of the lids in a single cell,

extends and finally fills the bulk interior completely. As

Re is increased the TVF loses its stability and WVF

emerges through a supercritical Hopf bifurcation. WVFs

with high azimuthal wavenumbers, e.g., m = 39, consti-

tute a persistent background flow, on top of which more

complex flow structures develop, such as VSWBs that

have been experimentally observed [10].

The main result of this paper is the uncovering of a new

type of transient, intermittent state en route to turbu-

lence with increasing Re: ring bursts. They emerge when

localized turbulent patches grow and close azimuthally,

signifying a higher-order instability. The ring bursts oc-

cur in various orders and the azimuthally closed bursting

regions possess axially expanding subregions surrounded

by the WVF background flow or more complex flows at

high Re values. The ring-bursting patterns differ charac-

teristically from the localized VSWB turbulent patches.

The axial expansion of ring-bursting patterns of different

orders correlates well with the size of the double-pair Tay-

lor vortex structure, providing a plausible reason for the

similarity of the patterns to the turbulent WVF struc-

ture [14, 22–24] that usually occurs in the whole annulus

at higher Reynolds numbers. We develop a wavenumber

separation method based on decomposing the cross-flow

energy to distinguish bursting and non-bursting patterns.

In particular, the burst regions are associated with high

order and the non-bursting regions (background flow) are

associated with lower order azimuthal wavenumbers. We

also find that the radial cross-flow energy changes signif-

icantly in the presence of ring-bursting patterns. By ex-

amining the maximum value of the cross-flow energy, we

determine the onset of the ring-bursting patterns at the

critical Reynolds number of Rec ≈ 537, which is larger

than that for the onset of VSWBs [10] (about 482). For

ring-bursting patterns of different orders, their expan-

sions in the axial direction are nearly identical, and they

tend to shift along the axial direction.

There are a number of differences between turbu-

lence in the wide-gap (e.g., radius ratio 0.5 to 0.8) and

narrow-gap (e.g., radius ratio 0.99) Taylor-Couette sys-

tems. First, in the wide-gap case, the intensity distri-

butions of turbulent fluctuations are often uneven in the

radial direction [14, 21], where more energetic turbulent

fluctuations occur towards the inner cylinder wall. The

regions near the inner cylinder thus exhibits stronger

turbulence than in the region near the outer cylinder.

This radial dependence of turbulent fluctuations is lost

in the narrow-gap Taylor-Couette system, where turbu-

lence is observed through the bulk in the radial direc-

tion. Second, in wide-gap systems, phenomena such as

turbulent streaks [14], small-scale Görtler vortices and

herringbone-like streaks [15] can occur near both inner

and outer cylindrical walls. Examining the typical size of

the small Görtler vortices [15] reveals that, in the narrow-

gap case these vortices have expansion larger than the

radial width, excluding the possibility of generating tur-

bulent streaks from small-scale Görtler vortices. Indeed,

our simulations do not reveal any small-scale vortices.

This might explain the loss of radial dependence of tur-

bulence, as can be seen, e.g., from the cross-flow energy

behavior in Fig. 7. In fact, in narrow-gap systems turbu-

lence emerges at the boundary layer of the neighboring

vortex cells almost immediately at any radial position.

While there are ring-bursting patterns of turbulent

bands in planar Couette flow systems [25, 26], the back-

ground flow is quiescent, which defines a threshold be-

tween a “simple” state and the coexisting turbulent state.

However, in our narrow-gap Taylor-Couette system, the

background flow has wavy-like patterns, which represents

a “threshold” state between an already complex (non-

basic) state and turbulence. Despite these differences

there is in fact a remarkable similarity between turbu-

lence in both types of systems. For example, detailed in-

vestigations [25] of the separating regime of laminar and

turbulent characteristics in planar Couette flows revealed

isolated band states of turbulence in confined domains

close to the global stability threshold. In the plane Cou-

ette flow [25], these bands appear at different angles but

are always parallel for a given experiment or simulation.

They are are remarkably analogous to our ring-bursting

patterns on an unrolled cylindrical surface (e.g., compar-

ing Fig. 1 with Fig. 11 in Ref. [26]). In addition, the

routes to turbulence are similar: in both cases the turbu-

lent bands grow out of a small localized turbulent spot

that subsequently expands in some direction.

It may be challenging to detect ring-bursting patterns

experimentally as they coexist with other complex states

such as VSWBs with similar turbulent characteristics.

Nonetheless, given that the Taylor-Couette system is a

paradigm enabling well controlled experiments on com-
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plex vortex dynamics and turbulence, we are hopeful that

our finding will stimulate further research of turbulence

in narrow-gap regime of the system, a regime that has

received little attention in spite of the large body of lit-

erature on Taylor-Couette flows.
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