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We report on an astonishing switching synchronization phenomenon in one-dimensional memris-
tive networks, which occurs when several memristive systems with different switching constants are
switched from the high to low resistance state. Our numerical simulations show that such a collective
behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold
voltage of memristive systems. Moreover, a finite increase in the network switching time is found
compared to the average switching time of individual systems. An analytical model is presented
to explain our observations. Using this model, we have derived asymptotic expressions for memory
resistances at short and long times, which are in excellent agreement with results of our numerical
simulations.

PACS numbers: 64.60.aq, 73.50.Fq, 73.63.-b, 84.35.+i

I. INTRODUCTION

Synchronization is the term that is frequently used to
describe the coherent dynamics of an ensemble of in-
terconnected dynamical units, namely, dynamical units
forming networks. The networks are ubiquitous in na-
ture and technology, and, therefore, it is not surprising
that the phenomenon of synchronization has been stud-
ied and observed in a wide range of dynamical systems.
These systems include, for example, neurons [1, 2], power
grids [3, 4], coupled lasers [5], oscillators, social systems
[6], etc. A lot of attention has been drawn to the synchro-
nization of chaotic systems [7, 8] – an intriguing emer-
gence of collective dynamics of a number of chaotic units
linked with a common signal or signals. Oscillator net-
works [9] are another example of widely studied systems
with synchronization.

In this paper, our attention is focused on memristive
(memory resistive) networks. These networks are com-
posed of individual memristive elements [10], which now
are of considerable interest for a variety of applications
[11]. In these passive resistive electronic devices, the re-
sistance depends on the history of signals applied. There
are two types of memristive systems: voltage-controlled
and current-controlled [10]. In particular, the voltage-
controlled memristive systems are defined by

I = R−1 (x, V, t)V, (1)

ẋ = f (x, V, t) , (2)

where I and V are the current through and voltage across
the system, respectively, R (x, V, t) is the memristance
(memory resistance), x is an n-component vector of in-
ternal state variables and f (x, V, t) is the vector-function.
The current-controlled memristive systems are defined in
the similar way [10]. Typically, the memristance changes
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between two limiting values, Ron and Roff , such that
Ron < Roff .

The ability of memristive systems to store and process
information on the same physical platform makes them
ideal for unconventional computing applications [12, 13].
In fact, boolean logic operations with small memristive
networks were experimentally demonstrated few years
ago [14]. Moreover, it was theoretically shown that larger
memristive networks could solve maze [15] and shortest
path optimization [16] problems in a single step compared
to multi-step algorithms employed in the conventional
computers. Therefore, it’s quite important to understand
the dynamical properties of memristive networks.

Recently, two of us (VAS and YVP) have found that in
one-dimensional memristive networks subjected to adia-
batically increasing voltage, the effective switching rates
of memristive systems strongly depend on their polari-
ties [17]. It has been demonstrated (on the level of in-
dividual memristive elements) that an abrupt (acceler-
ated) switching occurs when the memristance of a given
memristive system in the network increases at the given
voltage polarity. A slow (decelerated) switching takes
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FIG. 1: (Color online) (a) One-dimensional network of N
memristive systems Mi connected to a dc voltage source. (b)
Memristive systems Mi independently connected to voltage
sources.



2

place in the opposite case [17]. However, this prior work
leaves open the question of the switching behavior be-
yond the adiabatic limit, namely, when the applied volt-
age is initially high enough to induce the dynamics of
several memristive systems. This is precisely the aim of
the present paper, which explores the switching dynam-
ics of one-dimensional memristive networks subjected to
sufficiently high voltages. According to our findings, an
interesting switching synchronization effect takes place
when all memristive systems switch from the high to low
resistance state. Our consideration of the switching syn-
chronization effect employs both numerical and analyti-
cal techniques.

Fig. 1(a) shows a one-dimensional memristive network
connected to a constant voltage source V . The phe-
nomenon of synchronization is exemplified most clearly
if the polarities of all memristive systems are the same,
and, at the initial moment of time t = 0, all mem-
ristive systems are in the same high resistance state
Ri(t = 0) = Roff . Our paper focuses precisely on this
configuration. Importantly, the same conditions exist in
the maze [15] and shortest path problem [16] solving net-
works.

Moreover, we assume that Fig. 1(a) network em-
ploys voltage-controlled memristive systems with thresh-
old that have been experimentally realized with different
materials combinations [11]. In our numerical simula-
tions and analytical calculations presented below, we use
a model of voltage-controlled memristive systems with
threshold [17] that can be written (for i-th memristive
system) in the following form:

Ii = R−1
i Vi (3)

dRi
dt

=

{
±sign(Vi)βi(|Vi| − Vt) if |Vi| > Vt
0 otherwise

, (4)

where the memristance Ri serves as an internal state
variable [10], βi is a positive switching constant char-
acterizing the intrinsic rate of memristance change when
|Vi| > Vt, Vt is the constant positive threshold voltage,
and + or − sign is selected according to the device con-
nection polarity. Additionally, it is assumed that the
memristance is limited to the interval [Ron, Roff ]. We
emphasize that Eqs. (3)-(4) are a particular case of gen-
eral Eqs. (1)-(2).

II. NUMERICAL RESULTS

In the calculations presented below, we consider the
dynamics of a set of N memristive systems characterized
by a probabilistic distribution of the parameter βi. For
the sake of simplicity, we consider a flat random distri-
bution of this parameter keeping all other parameters of
memristive systems the same. In these calculations, we
use the ” − ” sign in Eq. (4) accounting for the desired
device polarity and Ri(t = 0) = Roff .

Let us, first of all, consider the dynamics of a set of N
memristive systems individually subjected to a positive
voltage V ≡ Vi (see Fig. 1(b) circuits), i = 1, .., N . For
this purpose, we perform N independent calculations (for
each memristive system from the set). In each calcula-
tion, Ri(t) is found as a solution of Eq. (4) with Vi = V .
Fig. 2(a) shows the result of these calculations for a spe-
cific realization of random parameters βi and V = 1.05Vt,
which is the average voltage per system in the network
considered in the next two paragraphs. It follows from
Fig. 2(a) (as well as from Eq. (4)) that the memristances
Ri(t) vary linearly with time. It is not surprising that the
switchings of individual memristive systems subjected to
the same voltage occur at very different rates defined by
specific individual values of switching constants βi.

Next, we consider the collective switching, namely,
the switching of memristive systems that form one-
dimensional networks as the one sketched in Fig. 1(a). In
this case, the network dynamics is found in a single cal-
culation as a solution of N Eqs. (4) coupled through the

current I and condition
∑N
i=1 Vi = V . Using Eq. (3), it is

not difficult to see that in this case Vi(t) = (Ri(t)/R(t))V

with R(t) =
∑N
i=1Ri(t).

Fig. 2(b) shows the main result of this paper. This
plot demonstrates a surprising switching synchronization
effect in which the effective switching rates of unlike sys-
tems become the same. This is a truly remarkable be-
havior that has not been anticipated in the literature.
The basic principles of this behavior are related to the
phenomenon of the decelerated switching [17] that, un-
like our previous investigation [17], takes place simulta-
neously in every component of the network. Technically
speaking, the switching of memristive systems with larger
values of βi can not proceed fast as the decreases of their
memristances also suppress the voltage falls across them.
At the same time, the voltage falls across memristive sys-
tems with smaller values of βi increase compensating the
smallness of their βi. As a result, the switching of all
memristive system occurs coherently with approximately
the same effective rate.

Fig. 2(b) also demonstrates that the total switch-
ing time for this random realization of the network is
longer than the switching time defined by the average
value of βi-s, which is 〈β〉. This typical type of behavior
has been seen in the majority of random realizations of
the network. Fig. 3 shows some additional data points
(extracted from numerical simulations) demonstrating a
monotonic increase in the network switching time with
distribution width. In fact, according to our analytical
theory presented below, the network switching time is
actually proportional to 〈1/β〉 instead of 1/〈β〉 (See Eq.
(13)). For a flat random distribution of βi in the range
[〈β〉 −∆β/2, 〈β〉+ ∆β/2] and N � 1

〈1/β〉 =
1

∆β
ln
〈β〉+ ∆β

2

〈β〉 − ∆β
2

. (5)

The dashed curve in Fig. 3 shows the perfect agreement



3

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Δβ /β =1.5

 

 

 Time (in units of τ
0
)

R i (t)
/R

on
(a)Independent devices

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

1D network

Δβ /β 
=1.5

 

 

 Time (in units of τ
0
)

R i (t)
/R

on

Δβ /β 
 =0

(b)

FIG. 2: (Color online) The memristance Ri(t) of N = 30
memristive systems with Roff/Ron = 100 (a) individually
subjected to the same voltage V = Vi = 1.05Vt (see Fig.
1(b) circuits), and (b) forming 1D network (as in Fig. 1(a))
subjected to V = 1.05NVt. These plots have been obtained
with a random flat distribution of parameters βi in the interval
[〈β〉 −∆β/2, 〈β〉+ ∆β/2]. The time is measured in units of
τ0 = Ron/(〈β〉Vt).

of Eq. (5) with our numerical results.

Even if the distribution of βi-s is not flat then one
can show that for any distribution of βi the differ-
ence 〈1/β〉 − 1/〈β〉 ≥ 0. Indeed, in accordance with
the Cauchy-Schwarz inequality we have 〈1/β〉〈β〉 =(∫

dβf(β)/β
) (∫

dβf(β)β
)
≥
(∫

dβf(β)
)2

= 1, where
f(β) is the distribution function of positive switching
rates βi.

Additionally, the difference between 〈1/β〉 and 1/〈β〉
normally grows with the distribution width. For exam-
ple, if all odd central momenta are negative or equal to
zero (as in the case of the Gaussian distribution) then this
difference cannot be less than (〈β2〉 − 〈β〉2)/〈β〉3. Thus,
our observation of the switching time increase is valid on
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FIG. 3: (Color online) The network switching time as a func-
tion of the distribution width ∆β. The numerical points have
been found for a network of N = 1000 memristive systems
with a flat random distribution of switching constants assum-
ing V = 1.05NVt. An averaging over 11 random realizations
of networks has been performed. The error bars show the
standard deviation of each point. The dashed curve is plot-
ted assuming that the switching time is proportional to 〈1/β〉
given by Eq. (5).

average for any distribution of βi.

III. ANALYTICAL MODEL

If the initial memristances are the same and the ap-
plied voltage exceeds the combined threshold voltage
NVt, then one can realize that the voltage fall across any
memristive system exceeds its threshold voltage at any
time. Moreover, in the case of a distribution of initial
memristances, the same is true either from t = 0 or after
an initial equilibration period. Therefore, in the region of
parameters of interest, Eq. (4) can be generally written
as

Ṙi(t) = −βi [Vi(t)− Vt] , (6)

where i = 1, ..., N , Vi(t) = V Ri(t)/R(t), and R(t) =∑N
i=1Ri(t) is the total memristance.

Let us search for the solution of Eq. (6) in the form

Ri(t) = Ci(t)e
−βi

t∫
0

V
R(τ)

dτ
, (7)

where Ci(t) is a time-dependent function and the
integral in the exponent is actually the charge

(
∫ t

0

[
V/R−1(τ)

]
dτ = q(t)) flown through the network by

the time t. This form of the solution is natural, if we
formally solve Eq. (6) as a linear equation with respect
to Ri(t). Substituting Eq. (7) into Eq. (6), one can find
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FIG. 4: (Color online) Comparison of the asymptotic expres-
sions (Eqs. (10) and (11)) for the time-dependence of the
total memristance R(t) and numerical (exact) solution. The
numerical solution (solid black curve) has been obtained for
the same realization of memristive systems, model and simu-
lation parameters as in Fig. 2. Eq. (10) curve is plotted in
the linear approximation.

the following expression for Ri(t):

Ri(t) = Ri(0)e−βiq(t) + βiVte
−βiq(t)

t∫
0

eβiq(t
′)dt′. (8)

Taking into account that Ri(0) = Roff , the sum of Eqs.
(8) yields

R(t) =

N∑
i=1

e−βiq(t)

Roff + βiVt

t∫
0

eβiq(t
′)dt′

 . (9)

As q(t) can be expressed through R(t) (see the definition
of q(t) below Eq. (7)), Eq. (9) can be considered as the
nonlinear integral equation for R(t).

While it is difficult to find the exact solution R(t) from
Eq. (9), this equation can be effectively used to derive
the asymptotic behavior of R(t) in the most important
limiting cases. In particular, in the short time limit, one
can expand R(t) = R0(1−at+bt2+O(t3)) using unknown
constants a and b, and get q(t) = V (t+at2/2+O(t3))/R0.
Using Eq. (9) one can find

R(t) = NRoff − 〈β〉δV t+
DβV δV t2

2NRoff
+O(t3), t→ 0,

(10)
where δV = V − NVt is the voltage excess above the
combined threshold voltage NVt, and Dβ = 〈β2〉 − 〈β〉2
is the dispersion of switching constants βi. While the first
and second terms in Eq. (10) are related to the evolution
of individual memristive systems, the third term, being

proportional to the dispersion, is always positive and de-
scribes the collective evolution of the network. Note that
the expression (10) is valid only when the second and
third terms are small compared to the first one.

A different asymptotic expression can be found in the
long time limit, namely, when βiq(t)� 1. This limit also
implies the optimal synchronization condition δV � V
as demonstrated below. When βiq(t) � 1, the main
contribution to the right-hand side of Eq. (9) comes from
the upper limit of the integral with respect to t′. Using
this observation one can derive the following main term
of the long time asymptotic

R(t) = (NRoff − βHδV t)(1 +O(δV/V )), δV → +0,
(11)

where βH = 〈1/β〉−1.
To specify the applicability conditions of Eq. (11), one

can calculate q(t) using Eq. (11). Then the condition
βiq(t)� 1 can be presented as

βiV

βHδV
ln

(
NRoff
R(t)

)
� 1. (12)

Eq. (12) can be sub-divided into the optimal synchro-
nization condition δV � V (also observed in our numer-
ical studies) and the condition of long times such that
the total resistance R(t) is much less than its initial value
NRoff . The total switching time T for the network can
be easily computed substituting R(T ) = NRon in Eq.
(11). This gives

T =
N(Roff −Ron)

V −NVt

〈
1

β

〉
, δV � V. (13)

Thus the switching time T is the time it takes for all
memristive systems to change their resistances from Roff
to Ron. In other words, for memristive systems initially
in Roff , it is the shortest time such that Ri(t) = Ron
for any i. We see that the switching time T of the net-
work is inversely proportional to the voltage excess above
the combined threshold voltage NVt and proportional to
the total change of the network resistance. Furthermore,
in the typical situations when Roff � Ron, Ron in the
nominator of Eq. (13) can be omitted.

Fig. 4 shows a comparison of the numerically obtained
solution with the asymptotic expressions given by Eqs.
(10) and (11). Clearly, the asymptotic expressions are in
the excellent agreement with the numerical solution for
R(t).

It is interesting to note that Eq. (11) also delivers a
good approximation for all times when δV � V . This al-
lows to find the approximate expression for individual re-
sistances Ri(t) for all moments of time, which reproduces
exactly the asymptotic behavior (11) for long times and
the first two terms of (10) for short times for the total
resistance R(t). Thus, an approximated expression for
Ri(t) can be obtained substituting Eq. (11) into Eq. (8).
Assuming that δV � V , which is the optimal synchro-
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nization condition, one can obtain

Ri(t) = Roff −
βHδV

N
t−Roff

(
1− βH

βi

)
δV

VtN

+Roff

(
1− βH

βi

)
δV

VtN
e
− βiV

RoffN
t
. (14)

We emphasize that the exponential (last) term in Eq.
(14) decays on a short time scale. Clearly, the ratio of
this short time scale to the total switching time T , Eq.
(13), is δV/V � 1.

Moreover, it is easy to notice that the first two terms
in the right-hand side of Eq. (14) are dominant at long
times. These terms do not depend on the system’s in-
dex i and thus are the same for all memristive systems.
Consequently, the long-time memristances are nearly the
same. This observation confirms our numerical results
(see, Fig. 2(b)).

IV. CONCLUSION

In conclusion, we have discovered an interest-
ing synchronization pehnomenon taking place in one-

dimensional memristive networks with elements charac-
terized by a distribution of switching constants. When
the switching occurs from the high to low resistance state,
the systems with larger switching constants slow down
their switching as the voltage falls across these systems
decrease faster compared to the voltages across the sys-
tems with smaller switching constants. As a result, the
switching of all memristive systems occurs coherently
with nearly the same effective rate regardless the specific
switching constants of individual systems. This simple
picture explains the mechanism of the synchronization
effect that is most pronounced when the applied volt-
age slightly exceeds the combined threshold voltage of
memristive systems. We have also demonstrated that
the network switching time is independent on the num-
ber of memristive systems (for an appropriately scaled
applied voltage) and is defined by the harmonic mean of
switching constants.
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