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In statistical data assimilation one evaluates the conditional expected values, conditioned on
measurements, of interesting quantities on the path of a model through observation and prediction
windows. This often requires working with very high dimensional integrals in the discrete time
descriptions of the observations and model dynamics, which become functional integrals in the
continuous time limit. Two familiar methods for performing these integrals include (1) Monte
Carlo calculations and (2) variational approximations using the method of Laplace plus perturbative
corrections to the dominant contributions. We attend here to aspects of the Laplace approximation
and develop an annealing method for locating the variational path satisfying the Euler-Lagrange
equations that comprises the major contribution to the integrals. This begins with the identification
of the minimum action path starting with a situation where the model dynamics is totally unresolved
in state space, and the consistent minimum of the variational problem is known. We then proceed
to slowly increase the model resolution, seeking to remain in the basin of the minimum action path,
until a path that gives the dominant contribution to the integral is identified. After a discussion of
some general issues, we give examples of the assimilation process for some simple, instructive models
from the geophysical literature. Then we explore a slightly richer model of the same type with two
distinct time scales. This is followed by a model characterizing the biophysics of individual neurons.

PACS numbers: 05.10.Ln, 05.45.Tp, 92.60.Ry, 87.19.II

I. INTRODUCTION

The transfer of information from observations to quantitative, predictive models of the observed physical system
is a challenge in a broad spectrum of fields including meteorology [1, 2], geochemistry [3], and systems biology [4],
among many others.
In each temporal observation window, it is usual that only a sparse set of the D-dimensional model dynamical

variables x(t) are measured. From L-dimensional observations yl(tn); l = 1, 2, ..., L at times tn = {t0, t1, ..., tm = tf},
we must estimate the full D-dimensional state xa(t); a = 1, 2, ..., D. Typically the measurements are sparse, L ≪ D;
We must also estimate any unknown fixed parameters in the model or in the measurement functions hl(x(t)), l =
1, 2, ..., L relating the model output x(t) to the observations yl(t).
The use of measurements in the window [t0, tf ] to estimate Np time-independent parameters p = {p1, p2, . . . , pNp

}
and unknown states completes the model [5] and permits us to test or validate the model through predictions for
t > tf where a selected metric compares new observations y(t > tf ) to new model outputs h(x(t > tf )).
Since the measurements are always noisy and the model always has errors, one requires a statistical description

of the assimilation of information from the observations into the model. Such a description is based on estimating
the conditional distribution of states and parameters P (x(tn)|Y(n)) conditioned on measurements up to time tn :
Y(n) = {y(t0), ...,y(tn−1),y(tn)} to predict the conditional distribution for t > tf . Our focus is not on the evaluation
of P (x(tn)|Y(n)) itself, but on the quantities of physical (or biological) interest: the conditional expected value of
functions G(X) along the path X = {x(t0), ...x(tm−1),x(tm),p} of the state through the observation window and
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beyond. X is a (m + 1)D + Np dimensional vector. Writing the conditional probability distribution P (X|Y) =
P (x(t0), ...,x(tm)|y(t0), ...,y(tm)) as exp[−A0(X)], the expected value of G(X) is

E[G(X)|Y] =

∫

dXG(X) exp[−A0(X)]
∫

dX exp[−A0(X)]
. (1)

This expression for P (X|Y) defines the “action” A0(X).
We do not further explicitly show the dependence of the action on the measurements. In discrete time this is

an integral of dimension D times the number of discrete time steps in the observation plus prediction windows. In
continuous time it is a functional path integral [6, 7].
Important examples of G(X) include the mean or expected path, in which case G(X) = X, moments about this

expected path, and marginal distributions of, say, xb(tk) in which case G(X) = δ(θ − xb(k)) giving P (θ).
The action A0(X) has the exact representation [5] in discrete time

A0(X) =−
m−1
∑

n=0

ln[P (x(n+ 1)|x(n))]− ln[P (x(0))]

−
m
∑

n=0

ln

[

P (x(n),y(n)|Y(n− 1))

P (y(n)|Y(n− 1))P (x(n)|Y(n− 1))

]

=−
m−1
∑

n=0

ln[P (x(n+ 1)|x(n))]− ln[P (x(0))]

−
m
∑

n=0

ln

[

P (y(n)|x(n),Y(n− 1))

]

+ terms independent of X

in which x(n) = x(tn). P (x(n + 1)|x(n)) is the transition probability for the state x(n) at time tn to arrive at the
state x(n+1) at time tn+1, and P (x(0)) is the distribution of the state at time t0 when observations commence. The
dynamics moving the model state x(n) through time resides in P (x(n+ 1)|x(n)).
The deterministic dynamics of the model state is taken to satisfy

dxa(t)

dt
= Fa(x(t)); a = 1, 2, ..., D, (2)

in continuous time, and this becomes

xa(n+ 1) = fa(x(n)) (3)

in discrete time.
The discretization in time of Equation (2) can be explicit or implicit. Either choice defines an action A0(X) as a

function of the components of X. In this paper we will focus on the extrema of the action in X varying all components
of X in both the measurement error term and the model error term. Throughout this paper, the trapezoidal rule is
used to discretize the model equations,

xa(n+ 1) = xa(n) +
∆t

2
[Fa(x(n+ 1)) + Fa(x(n))]. (4)

The model equations could then be written as a function of both x(n) and x(n+1): ga(x(n),x(n+1),p) = 0. When
there is no model error, P (x(n+ 1)|x(n)) = δD+NP (g(x(n),x(n+ 1),p)).
Once a model has been selected by physical considerations, and choices are made for the distributions of errors in

the measurements and of errors in the model, the central challenge of statistical data assimilation is the estimation
of the path integral Eq. (1).
One approach is to use Monte Carlo methods for evaluating the high dimensional integral [8–11].
In this paper we investigate results associated with the estimation of the integral Eq. (1) using Laplace’s method [12].

This is a variational calculation seeking extremum paths Xq of the action, where the Jacobian

∂A0(X)

∂X

∣

∣

∣

∣

X=Xq
= 0, q = 0, 1, .... , (5a)
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and the Hessian

∂2A0(X)

∂X2

∣

∣

∣

∣

X=Xq
is positive definite. (5b)

Laplace’s method also allows the evaluation of corrections to Eq. (1) using any of theXq as the leading approximation
for the expected value. Furthermore, when f (x) is not linear in the model state variables, there may be multiple
solutions to Eq. (5), and we must select which among them provide the most important contributions to the integral.
Finding the extremum path is widely known as 4DVar [1, 2] in the geophysical literature.
Paths with distinct values of A0(X) lead to exponentially different contributions to the expected value path integral

Eq. (1). The path which gives the smallest value of the action,

A0(X
0) = min

Xq
A0(X

q), (6)

X0 is the conditional mode of the distribution and also the maximum likelihood estimate. When the action level
A0(X

0) is much less than any other action level coming from paths Xq 6=0, it exponentially dominates the integral.
In nonlinear problems the search for X0 requires some care, as we will show in the core of this paper. Our goal

here is to expand on the details of an annealing method introduced in Ref.[13] to locate the saddle paths with the
smallest action. Further, we estimate the corrections to the approximation of retaining only X0 as dominating the
integral Eq. (5).
Additionally, we use the annealing method to explore several interesting nonlinear dynamical models not addressed

in our earlier work. These include a model with combined “fast” and “slow” time scales of the dynamics as well as
a standard Hodgkin-Huxley model of an isolated neuron. The latter is a prelude for more complex, biophysically
realistic neuron models both in isolation and within functional networks with biophysical connections among them.
A final section is devoted to comparing this work with the QSVA method [14], which seeks to solve a related problem
by manipulating the length of the assimilation window.

II. FORMULATION OF THE PROBLEM IN DISCRETE TIME AND IN CONTINUOUS TIME

A. Discrete Time

To simplify the discussion we make two familiar assumptions about how the measurement errors and the model
errors enter the expression for the action A0(X): the errors in each are taken to be distributed as a Gaussian,

• the measurement error enters with an inverse covariance matrix Rm(l, k, t) = Rm(l, t)δlk, k, l = 1, 2, ..., L,

• and the model error enters with an inverse covariance matrix Rf (a, b) = Rf (a)δab, a, b = 1, 2, ..., D.

As the dynamics x(n + 1) = f(x(n)) is nonlinear, the overall path integral is not Gaussian with this choice for the
error distributions.
In the presence of Gaussian additive model error, the dynamics satisfies the D-dimensional stochastic discrete time

map

xa(n+ 1) = fa(x(n)) +Rf (a)
−1/2ηa(n), (7)

and each component ηa(n) is Gaussian distributed as N (0, 1). Here we assume there is no cross-covariance between
different state variables, and the case with cross-covariances needs further study. We also assume the measurement
function hl(x(t)) = xl(tn), n = 0, 1, . . . ,m.
The Gaussian error action A0(X) in discrete time takes the form

A0(X) =

m
∑

n=0

L
∑

l=1

Rm(l, n)

2
[xl(n)− yl(n)]

2 − ln[P (x(0))]

+

m−1
∑

n=0

D
∑

a=1

Rf (a)

2
[xa(n+ 1)− fa(x(n))]

2. (8)

The distribution of initial states P (x(0)) in the action is often assumed to be uniformly distributed or Gaussian
distributed. For the uniform distribution case − ln[P (x(0)] is a constant and cancels between the numerator and
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denominator of expected values Eq. (1). When P (x(0)) is Gaussian, suppose the variation of x(0) is given about some
base state xbase, so − ln[P (x(0)] = (x(0)− xbase)

2Rbase/2. This has the form of the measurement term evaluated at
n = 0. This expression can be incorporated into the term with coefficient Rm in the action.
We no longer display − ln[P (x(0))] in the following discussion. The resulting action Eq. (8) we call the Gaussian

error action. Many other actions may be of physical interest, and they depend in detail on our representation of errors
in the measurements and errors in the model.

B. Continuous Time

Although all calculations are performed in discrete time, we use continuous time to gather insight into the saddle
paths for the action, and return to discrete time with the lessons in mind. Let time become continuous between
the initiation of observations at time t0 and the completion of measurements at time tf , we identify the action in
continuous time as

A0(x(t)) =

∫ tf

t0

dtL(x(t), ẋ(t), t) (9)

where the Lagrangian L(x(t), ẋ(t), t), also called the Onsager-Machlup functional [15], is

L(x(t), ẋ(t), t) =
L
∑

l=1

Rm(l, t)

2
[xl(t)− yl(t)]

2

+

D
∑

a=1

Rf (a)

2
[ẋa(t)− Fa(x(t))]

2.

Rm(l, t) is nonzero only near the observations times t ≈ tn.
The transition from discrete to continuous time has a subtlety which we note here, then bypass as we will return

to discrete time for all of our examples and for any applications. As carefully explained in the book of Zinn-Justin [7]
and the papers [16, 17] there is a Jacobian involved in the transformation from discrete to continuous time which
affects the action through a term involving the divergence of the vector field F(x). It adds the term

Θ(0)

∫ tf

t0

dt∇x · F(x(t)), (10)

to the action, where Θ(x) is the Heaviside function. The value of the quantity Θ(0) depends on the stochastic
discretization scheme we choose. Θ(0) = 0, 1/2 corresponding to the Itô and the Stratonovich scheme, respectively.
As noted, we work with the discrete time version of the path, so we do not further consider this term.

C. Laplace’s Approximation: Saddle Paths of the Action A0(x(t))

1. General Results in Continuous Time

In continuous time the expected values are written as [6, 7]

E[G(x(t)|Y] =

∫

Dx(t)G(x(t)) exp[−A0(x(t))]
∫

Dx(t) exp[−A0(x(t))]
, (11)

following Eq. (1). There are no restrictions on the variation of the endpoints in this expected value. This is seen
directly in the discrete time formulation where we integrate G(X) over all locations on the path including the initial
point x(t0) and the ending point x(tm).
The expansion of the action Eq. (9) about saddle paths xq(t); q = 1, 2, . . . , satisfying

δA0(x(t))

δx(t)
|x(t)=xq(t) = 0, (12)
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at x(t) = xq(t) yields, writing δx(t) = x(t)− xq(t),

A0(x(t)) = A0(x
q(t)) + δxa(t)

∂L(x, ẋ, t)
∂ẋa

∣

∣

∣

∣

tf

t0

+

∫ tf

t0

dt δxa(t)

(

∂L(x, ẋ, t)
∂xa

− d

dt

∂L(x, ẋ, t)
∂ẋa

)∣

∣

∣

∣

x(t)=xq(t)

+
1

2

∫ tf

t0

dt δxa(t)Mab(x
q(t), ẋq(t), t, d/dt)δxb(t) + · · · . (13)

The first variation of the action must be zero as a necessary condition for a possible minimum [18]. The integration
by parts term leading to the Euler-Lagrange equations requires at the endpoints that

δxa(t)
∂L(xq(t), ẋq(t), t)

∂ẋq
a(t)

∣

∣

∣

∣

tf

t0

= 0, (14)

which leads to, as δx(t) is not zero,

∂L(xq(t), ẋq(t), t)

∂ẋq
a(t)

∣

∣

∣

∣

tf

t0

= 0, (15)

and are boundary conditions on the saddle path xq(t). These are known as “natural boundary conditions” [18–21].
This is a necessary condition for the minimum path.
The second variation of the action contains the term in (δx(t), δẋ(t)) space

δxa(t)
∂2L(x(t), ẋ(t), t)
∂xa(t) ∂xb(t)

δxb(t)

+2δxa(t)
∂2L(x(t), ẋ(t), t)

∂xa(t) ∂ẋb
(t)δẋb(t)

+δẋa(t)
∂2L(x(t), ẋ(t), t)
∂ẋa(t) ∂ẋb(t)

δẋb(t). (16)

This is familiar from many books on the calculus of variations [18–21]. Sufficient conditions for a minimum of the
action are discussed in [19–21].
The Euler-Lagrange equations determining xq(t) are

Rf (a)

{

d

dt
[ẋa(t)− Fa(x(t))] + [ẋb(t)− Fb(x(t))]

∂Fb(x(t))

∂xa

}

= Rm(l, t)[xl(t)− yl(t)]δal. (17)

Since the variations of the locations in state space δx(tf ) and δx(t0) are unconstrained and independent when we
are evaluating the expected value of a function on the path G(X), the Euler-Lagrange equation is a second order
differential equation in time with endpoint conditions

∂L(x(t), ẋ(t), t)
∂ẋa

= Rf (a)[ẋa(t)− Fa(x(t))] = 0, (18)

at t = t0, tf .
These Euler-Lagrange equations have been considered by Bröcker [22–24] as well as being considered over some

years in the work of Bennett [25, 26]. We will discuss the relation of our work with the work by Bröcker below.

2. Boundary Conditions on the Euler-Lagrange Equations

In most treatments of variational problems in data assimilation, one addresses a slightly different set of boundary
conditions for the Euler-Lagrange equations defining the saddle path. That is because a slightly different question is
asked.
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To see the difference we return to discrete time. We are concerned with the expected value of a function on the
path which includes integration over both the final point in state space x(tf ) as well as the initial point in state space
x(t0). We can rewrite the numerator of the expected value of a function on the path X = {X′,x(0)} as

∫

dX′G(X′,x(0))K(X; tf ;x(0), t0) d
Dx(0). (19)

If we hold off in performing the integral over the initial state at the fixed time t0, then the Laplace approximation
which includes a variational principle for the quantity K(X; tf ;x(0), t0) has natural boundary conditions associated
with the end point x(tf ) which is integrated over and not fixed, and it has the restriction that δx(t0) = 0 as x(0) is
not integrated over in the variational principle.
This leads to the common statement that the relevant path has a fixed initial point and a free end point, changing

the two point boundary value problem to be addressed to the one stated in the literature [26]. Each choice of boundary
conditions is correct for the question posed.

D. Finding Saddle Paths

In continuous time, the saddle path condition is the two point boundary value problem we have described in Eq. (17)
and Eq. (18). There are many discussions of how to numerically solve these [27–29], and in a sense we now use the
collocation solution method discussed in these references by our return to the discrete time problem.
If we begin with the Gaussian error action

A0(X) =
m
∑

n=0

L
∑

l=1

Rm(l, n)

2
[xl(n)− yl(n)]

2

+
m−1
∑

n=0

D
∑

a=1

Rf (a)

2
[xa(n+ 1)− fa(x(n))]

2, (20)

finding saddle paths, where ∂A0(X)/∂X = 0, of this nonlinear function at sizable Rf entails a search in a high
dimensional space in which the saddle paths Xq are located in narrow, possibly deep, valleys not easily found by an
arbitrary selection of an initial path for a numerical optimization routine [8, 14].
We have investigated direct searches of saddle paths for this form of the action using a quasi-Newton BFGS

method [30] and the public domain optimization program [31] called IPOPT. For the BFGS method, the analytical
form of the first-order derivative for the action Eq. (20) is provided to optimization routines; When IPOPT is used, in
addition to the analytical gradient, the Hessian matrix is also presented in analytical form to IPOPT, both of which
are obtained by using a Python script we developed [32]. In each case the paths found via a direct search from a more
or less arbitrary initial selection were not correct. The metric for ‘correct’ is whether the estimated parameters for
the model and the full state of the model at the end of an estimation window, x(tf ), give good predictions for t > tf .
We will see some aspects of this as we begin to explore examples.
We have proposed [13] a strategy for dealing with this ‘submersion’ of the paths with smallest action. The idea is

that when the model errors are forced, by large Rf , to be small, the nonlinearity of the vector field f (x) manifests
itself at the smallest scales in the phase space of the paths X where we are searching. This causes complicated fine
structure seen as multiple local minima [5] in the action, especially when the number of measurements L is too small.
As one reduces Rf , the loss of resolution of the flow of the nonlinear dynamics becomes large, and there is an

averaging effect over the multiple local minima encountered. In fact at Rf = 0, there is no influence of the nonlinear
dynamics of x(n+ 1) = f(x(n)) at all, and the action we are working with then is

A0(X) =

m
∑

n=0

L
∑

l=1

Rm(l, n)

2
[xl(n)− yl(n)]

2. (21)

The minimum of this consists of xl(t) = yl(t) for the observed states with the unobserved states completely unspecified.
The huge degeneracy of this minimum action is broken as Rf increases from zero, and we propose to adiabatically
track the Rf = 0 minimum, which is also the global minimum for Rf = 0, by slowly raising the magnitude of Rf

from zero.
We call this tracking of extremum path in Rf “annealing” for short as it treats the importance of the deterministic

dynamics in a steady, slowly growing manner, as if small Rf corresponds to a high effective temperature in which the
nonlinear interaction among “particles” located at x(t) is initially in a harmonic well centered near the observations
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y(t). As we increase Rf it is as if we cool down a ‘temperature’ proportional to R−1
f and impose structure on the

trajectories x(t). Note our annealing method is totally different from the well-known simulated annealing method [33].
Our ‘annealing schedule’ is written as

Rf = Rf0α
β (22)

with α > 1 and β ≥ 0. We proceed in the following manner

• Start at a small value of Rf = Rf0. We take as an initial path for our optimization algorithm the solution
at Rf = 0 just described with xl(t) = yl(t) and the other elements of the path drawn from a uniform random
distribution covering the dynamical range of their variation. In practice we have selected Rf0 to be between
0.001 and 0.01.

We have also performed this initial stage of the annealing calculation starting at Rf = Rf0 with an initial set of
N0 random choices for the components of X. Since the influence of the dynamics is so small at Rf0, the paths
quickly become those suggested in the previous paragraph. No difference in the subsequent calculations have
been seen by us.

• Using a selected optimization procedure, we then utilize N0 choices for initial paths X
q
0; q = 1, 2, ..., N0 with

xl(t) = yl(t) and randomly chosen unobserved state variables. Fixed parameters in the model or in an observation
function h(x) are also randomly selected over a finite range. The optimization procedure takes these initial paths
and, with Rf = Rf0 (that is β = 0), results in N0 new paths which we call Xq

1; q = 1, 2, ..., N0. We then evaluate
the action A0(X

q
1) on each of these N0 paths. At this early stage we usually find the infinitely degenerate action

values for the initial path X
q
0 have begun to split.

• We proceed by raising the value of Rf from Rf0 to Rf0α, that is β = 1, and use the N0 paths X
q
1 as initial

paths for this application of the optimization procedure. This results in a new set of N0 paths Xq
2.

• The paths Xq
2 are now used as N0 initial paths for Rf = Rf0α

2, that is β = 2. This results in a set of N0 paths
resulting from our optimization procedure which we call Xq

3.

• We continue this annealing schedule until by using the N0 paths Xq
J−1 to initialize the optimization procedure

at β = J − 1 we arrive at a set of N0 paths Xq
J where we terminate the schedule.

When the annealing schedule is completed, we often encounter in our plots of A0(X
q) versus logα[Rf ] a region for

β large enough where some A0(X
q) becomes independent of Rf . The lowest action level that splits off in action level

value from the action on other paths, will, when the number of measurements L is large enough, provide the dominant
contribution to 〈G(X)〉.
Independence ofA0(X

q) fromRf indicates that the model output has matched the deterministic dynamics x(n+1) =
f(x(n)) quite well. The remaining term in the action is then

A0(X) =

m
∑

n=0

L
∑

l=1

Rm(l, n)

2
[xl(n)− yl(n)]

2. (23)

As the values [yl(n)−xl(n)] are distributed asN (0, σ2) by our choice, the measurement error term
∑m

n=0

∑L
l=1[(xl(n)−

yl(n))/σ]
2/2 has a χ2-distribution with L(m + 1) degrees of freedom [34]. The mean and RMS variation of this

distribution over different choices of noise waveforms are (m + 1)L/2 and
√

(m+ 1)L/2, respectively. This level is
shown in our action value versus Rf plots by a heavy horizontal line. When the action levels as a function of Rf reach

this expected χ2 lower limit, we have a path X0 on which the model behavior is consistent with the data within the
noise level of the data.
In the examples we will discuss below, we have selected N0 = 10 ∼ 100 and taken 20 ∼ 50 annealing steps as a

stopping point. We have also used α = 2 on the whole, but also selected α = 1.5 when we chose to take smaller
annealing steps in Rf within our schedule.

III. AN EXAMPLE ILLUSTRATING ANNEALING; LORENZ96 MODEL WITH D = 5

We begin by examining the dynamical equations introduced by Lorenz [35]:

dxa(t)

dt
= xa−1(t)(xa+1(t)− xa−2(t))− xa(t) + ν (24)
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FIG. 1: (color online) Panel (a): Action levels as a function of log2[Rf/Rf0] = β for the Lorenz96 model, D = 5, L = 1, Rf0

= 0.01. As Rf increases, the model error is decreased. The horizontal line shows the expected value of the measurement error
terms in the action. The measurement error term is distributed as χ2 with this expected value. Panel (b): Zooming in on
the Left Panel for large β showing close action levels. The resulting saddle paths all have action levels above the χ2 expected
value for the measurement error action alone. This is an indication that L = 1 is not sufficient for identifying a good path for
the Lorenz96 D = 5 model.

and a = 1, 2, ..., D; x−1(t) = xD−1(t); x0(t) = xD(t); xD+1(t) = x1(t). ν is a fixed parameter which we take to be
in the range 8.0 to 8.2 where the solutions to the dynamical equations are chaotic [36]. The equations for the states
xa(t); a = 1, 2, ..., D are meant to describe ‘stations’ on a periodic spatial lattice.
We perform a twin experiment wherein we generate D time series using a standard adaptive fourth order Runge-

Kutta algorithm with a time step ∆t = 0.025 with no model error. To these we add Gaussian noise with mean zero
and variance σ2 = 0.25 to each time series xa(t). These noisy versions of our model time series constitute our ‘data.
Our choice of σ2 means a signal to noise ratio about 60 dB. We selected ν = 8.17 in these calculations.
The measurement window is from t0 = 0 to tf = 4.0, so m = 160. L ‘measurements’ are made at each time step;

these are the y(tn). The measurement error matrix Rm is taken to have diagonal elements at each measurement time
tn and is zero at other times. Its magnitude is taken as Rm = 1/σ2 = 4. The model error matrix is also taken as
diagonal, with elements along the diagonal Rf = Rf02

β , and we take β = 0, 1, 2, . . . ,. Rf0 was chosen 0.01 for these
calculations.
We begin with one measurement y1(n) among the five possible states, i.e. L = 1, and in Fig. 1 we display the log10

of the action A0(X) evaluated at each of the N0 = 100 saddle paths for Rf = Rf02
β with Rf0 = 0.01 We begin with

β = 0 and increase it to β = 22.
The BFGS quasi-Newton method [30] was used as our search algorithm in this example. The optimization stop-

ping conditions for scaled gradient norm, scaled stepsize norm and function change are all 1 × 10−8 and they are
fixed throughout the annealing procedure. Low tolerance (larger than 1 × 10−6) may cause incorrect results or no
convergence. We provided the gradient of A0(X) in an analytical form to the algorithm. We initialized the search
at Rf = Rf0 with N0 initial paths X = {x(0),x(1), ...,x(m)} as described above. At Rf = Rf0 we selected the
unobserved states at each time step from a uniform distribution in the interval [-10,10]. This is approximately the
dynamic range of state variables in the Lorenz96 model. At fixed Rm each search procedure as we slowly increase Rf

yields N0 saddle paths Xq and associated action levels A0(X
q). As Rf increases many initial paths may lead to the

same action level.
As one can see in Fig. 1 the degenerate action levels at Rf = 0 are split at β = 0 and then rise until, around

β = 12;Rf ≈ 100, two levels split off from the rest and become rather independent of Rf . There are still two quite
close levels. Also shown is the expected value of the χ2-distributed measurement error at 80.5. The distance of the
action levels of the paths giving A0(X) near values about 150 tell us that these paths are unlikely to give consistency
of the model with the data. Using either of these two paths to give us the full model states at the end of the estimation
window tf = 4 to predict beyond tf gives quite inaccurate predictions.
Next we present L = 2 measurements, y1(n) and y3(n), to the model and again evaluate saddle paths as we vary

β. Each path has (m + 1)D = 805 components, so the annealing problem is a search for saddle paths of the action
Eq. (8) in an 805-dimensional space. We take the distribution of the three unobserved states at t0, the beginning of
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FIG. 2: (color online) Panel (a): Action Levels as a function of Rf for the Lorenz96 model, D = 5, L = 2, Rf0 = 0.01. We
used y1(t) and y3(t) as data in the action. Panel (b): Action Levels as a function of Rf for the Lorenz96 model, D = 5, L =
3, Rf0 = 0.01. We used y1(t), y3(t), and y5(t) as data in the action.

the observation window, to be uniform over the dynamical range of x(t0).
At β = 0 the degenerate action levels from Rf = 0 are split slightly. We follow these to larger values of Rf .

(Fig. 2) At low Rf the resolution in path space is very coarse, and our search is successful for finding low lying
action levels. Fig. 2 shows quite clearly that there are many paths with similar action level until we reach β ≈ 12,
and after that only one remains independent of Rf as the other action levels rise. The expected value of the χ2-
distribution of measurement errors in the action is NdataRmσ2/2. This is 161 here, and it is shown in the figure as a
heavy horizontal line. The action level for X0 is very near this χ2 consistency condition suggesting that the path X0

expresses consistency of the model and the data.
When we increase the number of measured time series to L = 3, the results in Fig. 2 show that one path alone

emerges from the degeneracy at Rf = 0 and after β ≈ 12 is again nearly independent of Rf and close to the expected
limit from the χ2 distribution.
To get some insight into how the annealing procedure proceeds in the sequence of estimates for the observed and

unobserved states of the model to which L = 2 ‘data’ time series are presented, we show in Fig. 3 the estimated and
the ‘data’ time courses for both an observed state variable x1(t) and an unobserved state variable x2(t) for selected
values of β = 0, 12 and 21.
In Fig. 3 representative time series which are part of the path for different values of β in the lowest action level are

plotted to illustrate the annealing process in detail. For very small β, say 0, Rf = 0.01, the top two panels of Fig. 3
show the known and estimated components x1(t), observed, and x2(t), unobserved, from one of the saddle paths.
Since Rm ≫ Rf , and the measurement error dominates the overall size of the action, paths are forced to follow the
noisy measurements almost exactly so as to minimize the measurement error, i.e. xl(t) ≈ yl(t). The effect of the
model error term is quite small with Rf = 0.01, the unmeasured states are usually undetermined. Its form depends
on the initial random guess path. In this example, the initial path happens to be chosen near the true path, and the
unobserved state x2 is close to the known data at the beginning and end of the window.
As β is increased to 12, Rf ≈ 40, we have moved from a regime where Rf is quite small to a regime where Rf

has become sizable. The role of the model error is no longer insignificant. The trajectory of the observed state x1(t)
is smoother, passing through the middle of the noise fluctuations, but not tracking the noise as was done at β = 0.
The greater Rf , the more information is input from the model. This information from the model helps the observed
state filter out the noise to some extent. When β increases up to 21, Rf ≫ Rm, it enforces the model more and more
exactly, xa(n + 1) ≈ fa(x(n)). Both observed states and unobserved states converge to the true path for the lowest
action level. The size of action A0(X) matches the observation error residual NdataRmσ2/2.
It is important to note that if we begin our search for the saddle paths Xq at large values of Rf , we are almost sure

to miss the actual path X0 which gives the lowest action level, since the Hessian matrix of A0(X) is ill-conditioned
when Rf is large and the lowest action level occupies a tiny corner of the large (here 805 dimensional) path space.
See Fig. 4.6 in [8].
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FIG. 3: (color online) Estimation results for one observed state variable x1(t) and one unobserved (not assimilated) state
variable x2(t) during the annealing procedure. Panels (a, b): β = 0. Panels (c, d): As β increases to 12, the estimated
observed state becomes smoother. Panels (e, f): The observed and unobserved state variables arrive at their true states when
β is large enough. Here β = 21.

IV. CORRECTIONS TO THE APPROXIMATION OF THE DOMINANT SADDLE PATH Xq TO 〈G(X)〉

The path integral formulation of 〈G(X)〉 allows more than just the leading variational approximation to this expected
value, as is always the case in the Laplace method. The idea is to identify the path X0 with the smallest action level
and then expand the integral in X about X0.
Near X0 we write

A0(X) = A0(X
0) + (X−X0)α1

γ(X0)2α1α2
(X−X0)α2

+ · · · , (25)

and the Hessian matrix γ(X0)2 = A
(2)
0 (X0)/2 is positive definite, if X0 gives a minimum of the action.

Changing integration variables to Uα = γαβ(X
0)(X − X0)β leads to the numerator of 〈G(X)〉 in Eq. (1) arising

from X0

∫

dX exp[−A0(X)]G(X) =

exp
[

−A0(X
0)
]

det γ(X0)

∫

dU exp
(

−U2 − V
) [

G(X0) +W
]

(26)



11

where

V (U,X0) =

∑

r=3

A(r)(X0)α1...αr

r!
[γ(X0)−1U]α1

· · · [γ(X0)−1U]αr
,

W (U,X0) =

∑

k=1

G(k)(X0)α1...αk

k!
[γ(X0)−1U]α1

· · · [γ(X0)−1U]αk
.

In the denominator we replace the numerator term G(X) = G(X0) +W (U,X0) by unity.
The terms in this integral are evaluated by expanding the Taylor series contributions V (U,X0) and W (U,X0) in

powers of U, and performing the resulting Gaussian integrals in U. Terms with odd powers of U vanish by symmetry.
The contributions to leading order in 1/Rf coming from the path X0 for E[G(X)|Y] are

E[G(X)|Y] =G(X0) +

∫

dU exp
(

−U2
)

√
π(m+1)D

{

1

2
G(2)(X0)[γ(X0)−1U]2 − A(4)(X0)

24
G(X0)[γ(X0)−1U]4

−A(3)(X0)

6
G(1)(X0)[γ(X0)−1U]4 +

A(3)(X0)2

72
G(X0)[γ(X0)−1U]6

}

+O

(

1

R2
f

)

(27)

From the form of the action in Eq. (20) we see that for large Rf each factor of γ(X0) is of order
√

Rf , and each

‘vertex’ A
(4)
0 (X0) and A

(3)
0 (X0) is of order Rf . The Gaussian integrals over U are discussed in the opening chapters

of Ref.[7].
Statistics such as the covariance about the saddle path X0 may be evaluated by selecting G(X) to be the matrix

in path (a, n) = α space as

G(X) = (X−X0)α (X−X0)β

= UηUκ(γ(X
0)−1)κα (γ(X0)−1)η β.

The Gaussian integral

∫

dU UαUβ exp
(

−U2
)

, (28)

is easily performed, giving

〈(X−X0)α (X−X0)β〉 =
1

2
(γ2(X0)−1)αβ, (29)

which behaves as 1/Rf for large Rf , implying a steep, narrow minimum in path space.
These results are specific for the form of the action in Eq. (20), and may not apply for other choices for the

distribution of noise in the measurements or the distribution of the errors in the models. Distributions with power
law or ‘fat’ tails require additional scrutiny.

V. ENDPOINT CONDITIONS ON THE MINIMUM PATHS

In the integral for conditional expected values Eq. (1), when expressed in discrete time, each of the integrals for
states

∫

dDx(n) along the path X = {x(0),x(1), ...,x(m)} is unconstrained as we do not specify or hold fixed any of
the state values in X. Yet, when we proceed to the continuous time limit, as we have argued from the derivation of
the Euler-Lagrange equations the canonical momentum ∂L(x, ẋ, t)/∂ẋ(t) must vanish at the temporal end points of
the integration.
We investigated this by examining the saddle paths for β = 13 using the Lorenz96 model with D = 5 and L = 2.

In Fig. 4 we show the canonical momentum pa(t) = Rf (a)[ẋa(t) − Fa(x(t))] for a = 1, ..., 5 scaled by the maximum
value within the observation window.
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FIG. 4: (color online) Five canonical momenta pa(t) = Rf [ẋa(t)−Fa(x(t))] of one local minimum path for the Lorenz96 model,
D = 5, L = 2. β = 13. Rf (a) = Rf for all a = 1, ...,5. At the endpoints t = 0 and t = 4, all the pa(t) go to zero, satisfying
the boundary conditions associated with the vanishing of the first variation of the action. Each pa(t) is scaled by its maximum
magnitude over 0 ≤ t ≤ 4

We randomly picked one of the saddle paths at β = 13, and we evaluated the ẋ(t) in the canonical momentum
using the second-order central finite difference scheme

ẋ(n) =
x(n+ 1)− x(n− 1)

2∆t
+O(∆t2),

for interior points in the observation window. We maintained second-order accuracy for the evaluation of ẋ(t) at the
boundary by using

ẋ(0) =
−3x(0) + 4x(1)− x(2)

2∆t
+O(∆t2)

ẋ(m) =
3x(m)− 4x(m− 1) + x(m− 2)

2∆t
+O(∆t2).

The scaled trajectories in t0 ≤ t ≤ tf of the five components of canonical momentum pa(t) are plotted in Fig. 4,
which shows the required boundary condition is satisfied rather well. As this boundary condition is necessary for an
extremum of the action when the end points are not constrained, this result may be only a consistency check on the
accuracy of our calculation. Of course, it is good that the result is positive.

VI. FURTHER EXAMPLES

To further explore the annealing method we examine an example from the atmospheric sciences literature [35] and
an example involving a standard Hodgkin-Huxley neuron model. The first has both fast and slow variables, namely
fast and slow time scales in the governing differential equations, representing small scale (fast) and large scale (slow)
atmospheric variations. The challenge to a variational method is to reliably capture both time scales in identifying
an accurate saddle path. The second moves away from the simple vector fields in the Lorenz96 model, and fluid
dynamical models in a general sense, which are at most quadratic in their nonlinearities. The kinetics of gating
variables associated with voltage dependent conductances in neurons involves parameters and states entering the
vector fields through exponentials reflecting the underlying statistical properties of the cellular processes.

A. Lorenz96 model with both fast and slow variables

Dynamical systems varying with several distinct time scales are commonly seen in earth system models. In the
same paper where Lorenz introduced the Lorenz96 model we reported on earlier, he also introduced a modified model
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with both fast and slow variables to study the local instability responsible for convective activity. [35] This model is
given by

dxk(t)

dt
=− xk−1(t)(xk−2(t)− xk+1(t))− xk(t) + ν

− hc

b

kJ
∑

j=J(k−1)+1

zj(t);

dzj(t)

dt
=− cbzj+1(t)(zj+2(t)− zj−1(t))− czj(t)

+
hc

b
xfloor[(j−1)/J]+1(t). (30)

where k = 1, 2, ..., Dslow = K; j = 1, 2, ..., Dfast = JK and floor[x] is the floor function. x0(t) = xK(t), x−1(t) =
xK−1(t), etc. and likewise for the z(t) variables. The first equation describes the linked dynamics of a set of K
slow, large-amplitude variables xk(t), each of which is associated with J fast, small-amplitude variables zj(t) whose
dynamics are described by the second equation. zj(t) represents a convective-scale quantity coupling with xk(t) that
favors the convective activity. They can be visualized as sectors on a lattice circle (Figure 1 in Ref.[37]). Each xk(t)
sector contains many zj(t) sectors. We chose Dslow = K = 5 and Dfast = J = 5; this means that five zj(t) sectors are
contained in one xk(t) sector. The detailed time scales for xk and zj are determined by the parameters h, c, b. We
follow Lorenz and select h = 1, c = 10, b = 10, so the fast variables zj(t) vary approximately 10 times more rapidly
than the slow variables xk(t), while their amplitudes are about one tenth of those of the xk(t). The forcing parameter
ν is taken to be 18 following Wilks’ work to make both xk(t) and zj(t) chaotic [37].
To generate our data, we integrate the slow equations with a time step ∆t = 0.001 for the temporal window

t = [0, 4] = 4000∆t using a standard adaptive fourth order Runge-Kutta scheme. From these time series ‘data’ are
obtained by adding white Gaussian measurement noise to the computed time series: N (0, 0.5) for xk(t) and N (0, 0.05)
for zj(t).
Fixing the parameters h, c, b and f at the values used to generate the data, we seek to estimate the unobserved

state variables as L < K(J+1) time series are presented to the model. As above we perform our calculation using the
annealing method. Following our definition, Rm equals the inverse of the variance of measurement noise, i.e. Rm = 4
for xk(t) and Rm = 400 for zj(t) when the corresponding variables are measured, and 0 otherwise.
Instead of choosing the same Rf value for every variable as we did in our illustrative example Lorenz96 model, the

values of Rf need to be determined by how rapidly the variables changes. The Rf works as a penalty parameter during
the annealing process. A more rapidly varying variable requires a larger Rf to regulate its fluctuations, and vice versa.
By manipulating the values of Rf , we can ensure the model error terms are of the similar scale. Therefore, during
the variational process, all the elements of each path from different variables will be well adjusted simultaneously to
the path.
As we stated above, the amplitude of the dzj(t)/dt is approximately ten times smaller than that of the dxk(t)/dt,

so the variance of model error for xk(t) is about 100 times larger. The Rf ’s, as the inverse of model error variance,
are chosen to be

Rf0 =

{

0.01 for xk(t)

1 for zj(t).

According to our results above in the Lorenz96 D = 5 model the action level plots suggest that when measurements
of y1(t), y3(t) are presented, all the unmeasured states can be accurately estimated and lead to excellent prediction. We
proceed then by presenting the noisy x1(t) and x3(t), namely, y1(t), y3(t) to the fast/slow model, and then gradually
increase the number of noisy measurements of zj(t) until we can find the consistent lowest action level we expect.
We call the total number of measurements L and recognize it is comprised of 2 observations of the xk(t) and L − 2
observations of the zj(t).
The action level plots are shown in Fig. 5. We start the annealing calculation with N0 = 100 initial random paths,

so that whether there are paths located at the expected lowest action level is a stochastic event. When L ≤ 13, it is
rare to find a path finally reaching the expected lowest action level. The same calculations for L = 12, 13 are repeated
10 times, and no action level near the overall expected values is observed. Fig. 5 shows one example of L = 13 such
that no action level levels out with increasing Rf . This suggests none of the paths is consistent with the model and
that model errors are amplified as Rf increases. It is a sign that indicates the information provided by the selected
measurements is not enough. Another sign denoting lack of information in the measurements is that there are many
close action levels near the expected lowest action level as shown in Figure 1 of Ref.[13].
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FIG. 5: (color online) Panel (a) Action Levels as a function of Rf for the Lorenz96 Fast/Slow model, K = 5, J = 5: when
L = 13 we used noisy measurements of x1(t), x3(t) and z2j−1(t)’s with j = 1, 2, . . . , 11 as measured variables. At L = 14, z23(t)
is added; at L = 15, z25(t) is also added. Panel (b) Zooming in on the action levels in the Left Panel for large β. Note that
when L = 14 and L = 15, the lowest action level splits off from the other allowed action levels corresponding to other paths
meeting the saddle path condition.

It is worth pointing out that not having enough measurement information is not the only possible cause of having
no levels becoming independent of Rf for large Rf . Anything introducing significant non-zero model errors can cause
this as well. For example, numerical discretization error in action may appear to be important in fast/slow dynamical
systems when one doesn’t use a small enough observation time step to meet the requirement of the resolution of their
fastest dynamics. In the Lorenz96 fast/slow model K = 5, J = 5 if we use ∆t > 0.0025, one can observe this even
when L = 14.
We added another measurement to the action, and the complicated action levels at L = 13 are immediately reduced

to three distinct levels when 12 ≤ β ≤ 19 and then collapses into two levels, including one associated with the expected
value, after β ≥ 20. Adding in z25(t), we found all of the 100 random initial paths converge to the solution of the
consistent action minimum.
The estimated state variables of the Lorenz96 fast/slow model at L = 14 are displayed in Fig. 6. Predictions are

obtained by advancing the model forward in time using the estimated state variables at t = 4.0 as an initial condition.
(Fig. 7) Both estimation and prediction show excellent agreement with the data generated in this twin experiment.
In time the prediction loses its accuracy because of the chaotic nature of solutions to this dynamical system. This is
especially apparent for the fast variables zj(t).
The annealing method is successful in locating a dominant lowest action path even in the presence of distinct times

scales in the dynamics. One must sample the observations fast enough to capture the higher frequency variations of
the fast variables. In the annealing search for lowest action levels, one must also select the ratios of the maximal
values of Rf to reflect the different dynamical time scales.

B. Standard Hodgkin-Huxley neuron model: NaKL model

We selected a fairly standard Hodgkin-Huxley (HH) neuron model [38, 39] consisting of four state variables: the
voltage V (t) across the cell membrane as well as three voltage dependent gating variables for Na+ and K+ channels
m(t), h(t) and n(t). The equation governing changes in voltage across the cell membrane is current conservation with
conductances for Na+ and K+ ions through the membrane that depend on the voltage V (t). This reflects the change
in permeability to these ions of proteins that transect the membrane and change their conformation as a function of
the voltage across the membrane. The specific forms of the voltage dependent conductivities in this HH model are
taken from textbook descriptions based on the 1940s and 1950s work of Hodgkin, Huxley, Katz, and many others. The
reversal potentials are determined by the competition of diffusion associated with ion concentration differences within
and without the cell and transport of charged ions by the electric field associated with the difference in voltage across
the membrane. The Nernst equation which determines these reversal potentials is directly from statistical physics.
The cell responds to external currents as a driving force by its cross membrane voltage V (t) rising if the current
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FIG. 6: (color online) Data, estimated and predicted time series for the Lorenz96 Fast/Slow model with K = 5, J = 5 and
L = 14. f = 18. We used noisy versions of the x1(t), x3(t) and of the z2j−1(t), j = 1, 2, . . . , 12 as measured variables. In the
Panel (a) x4(t) is an unobserved slow variable. In the Panel (c) z23(t) is an unobserved fast variable. In the Panel (b)
and (d) both of the fast variables z6(t) and z24(t) are observed.
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FIG. 7: (color online) Zoom in on the data, estimation, and prediction of the x4(t), z6(t), z23(t) and z24(t) variables in the
Lorenz96 fast/slow model.

causes depolarization of the cell, or the voltage decreases when the cell becomes more polarized. (Fig. 8) The rise in
voltage triggers an instability in the phase space of the HH model associated with a sudden influx of Na+ ions which
is then counterbalanced by a flow of K+ ions out of the cells as the voltage rises to order + 50 mV. All this takes
place on the order of 5 ms and is seen as a ‘spike’ in the voltage time series.
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FIG. 8: (color online) Panel (a) Voltage response of the standard Hodgkin-Huxley neuron model with Na+, K+ and leak
channels, our NaKL model, in response to the applied (injected) stimulus current shown in the Panel (b)

The model is governed by the following four first-order differential equations:

C
dV (t)

dt
=Iinj(t) + gNam(t)3h(t)(ENa − V (t))

+ gKn(t)4(EK − V (t)) + gL(EL − V (t))

da(t)

dt
=
a0(V (t))− a(t)

τa(V (t))
a(t) = {m(t), h(t), n(t)}

a0(V ) =
1

2
+

1

2
tanh

(

V − Va

∆Va

)

τa(V ) =τa0 + τa1

(

1− tanh2
(

V − Va

∆Va

))

In these equations the gion’s are maximum conductances for the ion channels, the Eion are reversal potentials for
those ion channels, Iinj(t) is the external stimulating current injected into the neuron. This current is selected by the
experimenter and has no independent dynamics.
The gating variables a(t) are taken to satisfy first order kinetic equations and range between zero and unity. The

overall strength of an ion channel is set by the maximal conductances, and this represents the number of individual
ion channels. These are phenomenological choices.
The quantities a0(V ) and τa(V ) are the voltage dependent activation function and the voltage dependent time

constant of the gating variable a(t). The forcing to the cell Iinj(t) is known to us. In our parametrization of the
cell dynamics there are 19 fixed parameters and three unobserved state variables a(t) = {m(t), h(t), n(t)} to be
determined. All a(t) lie between zero and one.
Only the voltage across the cell membrane is measurable in real neurobiological experiments, however, successful

data assimilation, in effect, ‘measures’ the gating variable time series as well as the unknown parameters. We present
only noisy time series of V (t) to the model; these are our y(t) in the notation we have used for the general discussion
above.
The parameters used to generate data are listed in Table I. The waveform of the injected current is chosen to be a

combination of step functions and segments of a chaotic time series taken from one of the variables of the Lorenz63
model [40]. This current is displayed in the bottom panel of Fig. 8. A standard adaptive fourth order Runge-Kutta
solver is used to produce the data using time steps of ∆t = 0.025ms, and white Gaussian noise with an RMS level of
1mV is added to the V (t) time series to represent the noise accompanying the measurements in laboratory biological
experiments. This voltage time course is in the top panel of Fig. 8.
The previous two examples, the Lorenz96 D = 5 model and the Lorenz96 fast/slow model contain only quadratic

nonlinear terms in their differential equations. The difficulties of state and parameter estimation result from their
chaotic trajectories. The NaKL model in the selected parameter region is not chaotic, and the challenge of data
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TABLE I: Known and estimated parameters for the NaKL model. We also display the bounds used for the nonlinear search
algorithm.

Parameters Known Estimated Search Lower Bound Search Upper Bound

gNa 120.0 108.4 50.0 200.0

ENa 50.0 49.98 0.0 100.0

gK 20.0 21.11 5.0 40.0

EK -77.0 -77.09 -100.0 -50.0

gL 0.3 0.3028 0.1 1.0

EL -54.0 -54.05 -60.0 -50.0

C 0.8 0.81 0.5 1.5

Vm -40.0 -40.24 -60.0 -30.0

∆Vm 0.0667 0.0669 0.01 0.1

τm0 0.1 0.0949 0.05 0.25

τm1 0.4 0.4120 0.1 1.0

Vh -60.0 -59.43 -70.0 -40.0

∆Vh -0.0667 -0.0702 -0.1 -0.01

τh0 1.0 1.0321 0.1 5.0

τh1 7.0 7.76 1.0 15.0

Vn -55.0 -54.52 -70.0 -40.0

∆Vn 0.0333 0.0328 0.01 0.1

τn0 1.0 1.06 0.1 5.0

τn1 5.0 4.97 2.0 12.0

assimilation comes from the richer nonlinearity in the dynamics of the gating variables and the sensitivity of the
model behavior to changes in parameter values.
In the numerical optimization used to find the saddle paths for any model one must specify search bounds for each

parameter and each state variable. The goal is to find appropriate choices for these values that constrain the model
states and parameters to biologically acceptable regions. The bounds for the voltage V (t) are taken as −150mV and
+70mV based upon our solutions to the equations. The gating variables are bounded between 0 and 1, since they
represent the probability whether ion channels are open or closed.
The optimization is implemented with IPOPT using an interior-point method [31]. We found the interior-point

method both more stable and substantially faster than the L-BFGS-B method [41].
In this twin experiment only a noisy voltage V (t) is ‘measured’ and presented to the model; so L = 1. As the

dynamical range of voltage is a hundred times larger than that of the gating variables, we first calculated the action

levels with R
(V )
m = 1, R

(V )
f0 = 10−3, R

(m)
f0 = 10, R

(h)
f0 = 10, R

(n)
f0 = 10 and α = 3/2. The largest β was taken as 50.

Also we decreased α from 2 to 3/2 so that the pace of increasing resolution in model state space is slower than in
our earlier examples as we increment changes in Rf . This allows us to stay well within the basin of attraction of the
lowest action level.
The top panel of Fig. 10 displays the action level plot with the configuration above. When 25 ≤ β ≤ 39, there are

several different levels, and they reveal the expected action level after β ≥ 40. The action level plot suggests that the
voltage measurement alone is sufficient to determine the three unobserved state variables as well as the 19 parameters.
The estimates of these parameters are displayed in Table I.
We can select the values of Rf0’s for each state variable according to our knowledge about the amplitudes and time

scales of the state variables by looking at the time series of solutions of the model. The time constants of gating
variables characterize the their response to the change of voltage. The sodium activation variable m(t) is the fastest,
with a time constant of several hundreds of microseconds, which is a little bit slower than V (t). h(t) and n(t) are

much slower having a time constant of a few milliseconds. We set the ratio of R
(m)
f0 /R

(V )
f0 = 5 × 104 and raised the

ratio of R
(n)
f0 /R

(m)
f0 and R

(h)
f0 /R

(m)
f0 from 1 to 10 to compensate for the effects induced by different time constants.

With Rm = 1, R
(V )
f0 = 10−3, R

(m)
f0 = 50, R

(h)
f0 = 500, R

(n)
f0 = 500, the action level plot in the bottom panel of Fig. 10

shows this configuration of Rf0 can effectively enforce that most saddle paths stay near the expected lowest action
level.
The detailed action levels can depend on the choice of Rf0. In the NaKL example when the ratios of R

(n)
f0 /R

(m)
f0
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FIG. 9: (color online) Panels (a, b): Data (black), estimated (red) and predicted (blue) state variables V (t),m(t) for the
NaKL model when only the noisy membrane voltage V (t) is measured and presented to the model. Panels (c,d): Data (black),
estimated (red) and predicted (blue) state variables h(t), n(t) when only the noisy membrane voltage V (t) is measured and
presented to the model

and R
(h)
f0 /R

(m)
f0 are as large as 100, we often observed another action level with a value close to the lowest one. This

can also depend on the specific choice of the N0 initial paths with which we start the annealing.
A lesson we learn from this example is that we should take both the amplitude and the time scale of the state

variables into consideration when selecting the scale of Rf values. The proper configurations of Rf values enlarge the
probability to have the candidate paths converge to the expected action level, and also accelerate the convergence
rate to the optimal paths.

VII. DISCUSSION

A. Connection with Bröcker’s Results

The annealing method has a close relationship, and in some places a significant overlap with two very nice papers [22,
23] and a quite valuable and pedagogical Summer School presentation by J. Bröcker [24]. He considers the formulation
of the assimilation problem in continuous time and identifies an action which corresponds to our A0(X).
Missing in his discussions is the context of the path integral to be used to evaluate expected values of functions

on the path, so no method is presented to evaluate the accuracy of the variational result as a function, say, of Rf .
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FIG. 10: (color online) Action levels as a function of Rf for the NaKL model with only the noisy membrane voltage V (t)

measured and presented to the model. Panel (a): we selected R
(V )
f0 = 10−3, R

(m)
f0 = 10, R

(h)
f0 = 10, R

(n)
f0 = 10 and α = 3/2.;

Panel (b): Rm = 1, R
(V )
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(n)
f0 = 1000, and α = 3/2

He identifies the boundary conditions on the Euler-Lagrange equations for the extrema of the action, and recognizes
with great care how one selects among the possibilities.
His formulation of the actual action differs from ours in that he adds to the deterministic equations ẋ(t) = F(x(t))

a control term which is employed in moving the output of a model toward the observations, then he imposes this
control via a Lagrange multiplier. The Euler-Lagrange equations in Eq. (11) of Ref.[24] are, happily, in his notation
the same as our Eq. (17). In Section 3, especially Exercise 3.1 of Bröcker’s Summer School notes [24] he shows that
his approach and our yield the same extremum conditions on the action.
Importantly he recognizes and explores with insight the manner in which the model error term in the action and

the measurement error term in the action ‘balance’ to direct the solution to a chaotic model equation to those regions
of phase space where the observations provide information about the model solutions.
Bröcker does not consider the question of how many measurements are required to allow the search for extrema of

the action to be achievable [42] or whether any of the allowed extrema are, in fact, the overall minimum of the action.
He does stress the importance of the model error term in the action and formulates its appearance in a very clear and
useful fashion.
Our use of an annealing method to address these latter two questions has roots in our own work [5] and has

connections with Bröcker’s work. The route we follow now is to return to discrete time formulations of the action
with a focus on the questions one wishes to answer in the use of the data assimilation methods in physical and
biological problems: (1) What is the expected value of the state and parameters of the model system at the end of an
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observation window–this includes unmeasured as well as measured states. (2) What are the RMS errors about this
expected state ? (3) What is the accuracy, including RMS errors, of the predictions of the model, conditioned on
information transferred to it by the data, for times after the observation window.

B. Comparison with the quasi-static variational assimilation (QSVA) Method

There is another strategy for determining the best path for a selected model with chaotic trajectories given observed
data known as the quasi-static variational assimilation (QSVA) method [14]. In this approach the known equations
of motion are initialized with some x(0)(t = 0) and integrated forward a small step in time of length τ . A cost
function comparing the known observations with the model output over that time step τ is minimized to adjust the
initial condition x(0)(t = 0) → x(1)(t = 0). Then the time interval is extended to 2τ and starting with x(1)(t = 0)
the equations of motion are integrated forward to 2τ . The difference between the orbit from the initial condition
x(1)(t = 0) is compared via the cost function to data in the longer interval 2τ and the cost function is minimized
taking x(1)(t = 0) → x(2)(t = 0). This repeated adding increments of time to the observation window until it is Nτ
long, and a final x(N−1)(t = 0) is found via minimizing the cost function over the interval up to Nτ . Starting with this
final selection of initial condition x(N−1)(t = 0) a trajectory to time Nτ and beyond is generated using the equations
of motion. This gives a path through the estimation window [0, Nτ ] and beyond for prediction. By choosing the
original initial condition x(0)(t = 0) within a resolution ball of uncertainty and drawing N0 different selections, one
can generate N0 different paths during both the estimation and prediction windows. In the paper [14] the Lorenz
1963 model was used with parameters set to produce chaotic orbits, and it was assumed all the state variables were
observed.
We have made a direct comparison of the QSVA approach with our annealing method. We used the Lorenz96

model with D = 5 and L = 3 to generate ‘data’, and then we added noise of the same level with variance σ2 = 1/4
to the observations. We observed L = 3, y1(t), y3(t), and y5(t) and in choosing x(0)(t = 0) for QSVA we selected
the unobserved components y2(0), y4(0) from a uniform distribution in the interval [−10, 10]. We then evaluated (1)
N0 = 100 initial conditions arriving at 100 final selections of initial conditions using time steps of τ = 4∆t = 0.1
where ∆t = 0.025 and (2) a second numerical trial with τ = 4∆t = 0.004 where ∆t = 0.001 with N0 = 60 initial
conditions. We generated the data with a fourth-order Runge-Kutta integrator for the D = 5 Lorenz96 equations
with forcing f = 8.17. The minimization of the cost function

C(x(0), N) =
N
∑

n=0

L
∑

l=1

(xl(n)− yl(n))
2 (31)

at each step to find an improved x(K)(0) was performed using a quasi-Newton BFGS method [30]. The estimation
window was taken as 160 ∆t = 4, and the prediction window ranged from 4 to 8.
We compared this calculation of initial conditions and estimated and predicted orbits with the annealing method

described in Sec.III using annealing up to β = 30 as shown in the right panel of Fig. 2.
To compare the outcome of the two approaches we display the following results for the first set of calculations with

∆t = 0.025 and N0 = 100:

• In the autonomous Lorenz96 model D = 5 there is one unstable direction with positive Lyapunov exponent
λ = 0.53 and one neutral direction as it is a differential equation. We projected the N0 = 100 solutions from
QSVA into the plane of these two directions along with the location in the same plane of the first state x(0)
from the annealing process. These are shown in Fig. 11.

• The outcome of the annealing estimations gives the whole path in the time interval [0,4], including x(t = 0) and
x(t = 4) at the start and end of the interval, respectively. The predictions of annealing method are obtained in
two ways: one integrates dynamical model Eq. (24) forward from x(t = 0) and the other one starts from the end
of the estimation window x(t = 4) directly which can largely reduce the numerical errors introduced by chaos.
(Fig. 13) However, QSVA only allows the first option.

• We evaluated the RMS error for both the annealing and QSVA calculations by comparing the model output in
all state variables both in the prediction window. The prediction RMS are defined as

RMS =

√

√

√

√

1

DN

2N
∑

n=N+1

D
∑

a=1

(xa(n)− ya(n))2.
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FIG. 11: (color online) Lorenz96, D = 5, L = 3, projection of x(0) on the neutral W0 and unstable Wu manifolds for annealing
with β = 30 and for QSVA; N0 = 100 and ∆t = 0.025. The Panel (b) zooms a portion of the Panel (a) near the annealing
solution.

We performed a second set of calculations with ∆t = 0.001 and N0 = 60 initial conditions. We projected the
N0 = 60 solutions from QSVA into the plane of these two directions, unstable and neutral, along with the location
in the same plane of the first state x(0) from the annealing process. The projection and a zooming in on the small
values of the error are shown in Fig. 12. The histogram of RMS errors during the prediction window are then shown
in Fig. 13.
Our conclusion is that the QSVA method, while straightforward to implement, may not do as well in the realistic

case of noisy sparse data, L < D, which is likely to be encountered in realistic situations. It is clear that as one
decreases the time step between iterations of the QSVA protocol, the error as seen in the projection onto the unstable
and neutral directions at the end of the assimilation window decreases, yet there are quite a few instances when the
error is quite large. Similarly, in the histogram of the RMS errors in the prediction window, as shown in Fig. 12 shows
much better results than for the larger value of ∆t in the first calculation.
The annealing results are rather the same in each case with a clear clustering of errors in the neutral/unstable

plane near small errors, and a tight cluster of RMS prediction errors. We can conclude that the annealing method
produces a much narrower distribution of candidates for the path with smallest action level when dealing with noisy,
sparse data than the QSVA method in the same conditions. QSVA does produce a selection of paths with excellent
initial conditions for prediction, but these come along with paths quite far from those with small errors. How one is
to choose among the paths with large deviations from small errors is not entirely clear in the QSVA algorithm applied
to the circumstances presented here.
The two critical differences in this comparison are that the annealing methods seeks paths as the outcome of the

variational principles, and it surveys those paths and selects that which gives rise to the minimum observed value
of the action. It should also be noted, as we mentioned earlier in the paper, that when one looks for a path with
minimum action in the deterministic case, called strong 4DVar or large Rf , the procedure does not find the desired
minimum [8]. QSVA utilizes models with no model error (Rf → ∞) throughout.

VIII. SUMMARY

Transferring information from noisy, sparse measurements to a quantitative, predictive model of complex systems
has been examined here in the context of variational principles based on Laplace’s method [12] for approximating
high dimensional integrals. Our attention is on the conditional expected value of functions G(X) on the path X =
{x(0),x(1), ...,x(m),p} of a D-dimensional model dynamical system when presented with L measurements y(tn) at
times within an observation window {t0, t1, ..., tm}. The variational principle seeks extrema of the action A0(X) =
− ln[P (X|Y)], where Y is the collection of observations. In the presentation of the variational calculations, we
provided a comparison of the formulations in discrete time and continuous time. Calculations are performed in the
latter, though insights are often achieved in the former as well. By casting the question in terms of the expected value
of functions along the path Eq. (1), we are able to both estimate the dominant constibutions to the expected value
as well as the corrections associated with an expansion of the integrand about the allowed extremum paths where
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FIG. 12: (color online) Lorenz96, D = 5, L = 3, projection of x(0) on the neutral W0 and unstable Wu manifolds for annealing
with β = 30 and for QSVA; N0 = 60 and ∆t = 0.001. The Panel (b) zooms in on a portion of the Panel (a) near the
annealing solution.
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FIG. 13: Lorenz96, D = 5, L = 3, Panel (a) Histogram of RMS prediction error for annealing with β = 30 and for QSVA
with ∆t = 0.025, N0 = 60. Panel (b) Histogram of RMS prediction error for annealing with β = 30 and for QSVA with
∆t = 0.025, N0 = 100

∂A0(X)/∂X = 0.
In this paper we also discussed some details of a procedure [13] for annealing, through the slow introduction of

model accuracy, which yields the path having the smallest value of the action. This path dominates the integral with
exponentially larger contributions than paths with larger action levels. In the case of a Gaussian error action Eq. (8)
where the measurement errors are Gaussian and the model errors are Gaussian, we argued the as the accuracy of the
model increases, namely Rf becomes large, the corrections to the contribution of the path with the lowest action level

decrease as powers of R−1
f . We do not have a similar argument for other distributions of model or measurement error.

We investigated several instructive models of dynamical systems: (1) the Lorenz96 model [35] with D = 5, (2) the
Lorenz96 model with fast and slow variables [35], and (3) the standard Hodgkin-Huxley model with Na+, K+, and
leak channels [38, 39]. In each case we found that the annealing method which starts at zero model resolution Rf = 0
then slowly increases Rf using the variational solution at any value of Rf to initialize the variational calculation at
the next larger value of Rf shows action levels associated with the allowed saddle paths that split as Rf/Rm is about
100 leaving a lowest action level to dominate the expected value integrals.
A section of the paper compares the QSVA method [14] to the annealing method explored here. The Lorenz96

model with D = 5 and L = 3 noisy measurements was used in the comparison. The annealing method consistently
produces allowed extremum paths with small errors and good predictions while the QSVA approach produces paths
with a large range of errors, the best of which allow excellent predictions beyond the observation window.
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