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One of the most widely used methods for community detection in networks is the maximization
of the quality function known as modularity. Of the many maximization techniques that have been
used in this context, some of the most conceptually attractive are the spectral methods, which
are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been
limited by and large to the division of networks into only two or three communities, with divisions
into more than three being achieved by repeated two-way division. Here we present a spectral
algorithm that can directly divide a network into any number of communities. The algorithm
makes use of a mapping from modularity maximization to a vector partitioning problem, combined
with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm
with previous approaches and find it to give superior results, particularly in cases where community
sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world
networks and find that it produces results in good agreement with expectations for the networks
studied.

I. INTRODUCTION

Community detection, the division of the vertices of
a network into groups such that connections are dense
within groups and sparser between them, has been a
topic of vigorous research, particularly within statisti-
cal physics, for some years [1]. A broad range of different
approaches to the problem have been tried, but perhaps
those in widest current use are methods based on modu-
larity maximization. Modularity [2] is a scalar objective
function which assigns a numerical score to any division
of a network into communities, with higher scores be-
ing associated with divisions that are better in the sense
of having more edges within communities and fewer be-
tween them. Modularity maximization detects commu-
nities by finding the divisions that have the highest mod-
ularity scores. Unfortunately, the exhaustive numerical
maximization of modularity over all divisions of a net-
work is known to be an NP-hard task [3], computation-
ally tractable only for the very smallest of networks, so
we are forced to rely on approximate optimization heuris-
tics, a large number of which have been tried. These in-
clude greedy algorithms [4, 5], simulated annealing [6, 7],
extremal optimization [8], genetic algorithms [9], and
the widely used multiscale “Louvain method” of Blon-
del et al. [10], which has been incorporated into a number
of common software packages.
In this paper we focus on another class of algorithms

for modularity maximization, the spectral algorithms,
which are based on the examination of the leading eigen-
values and eigenvectors of the so-called modularity ma-
trix [11]. These methods are of interest for a num-
ber of reasons. First, they give high-quality results in
practical situations while also being fast, the eigenvalues
and vectors normally being calculated using the Lanc-
zos method [12], which is highly efficient for the sparse
matrices that arise in typical network problems. Second,
they are conceptually attractive, being based on well-
understood principles of linear algebra. And third, they

are amenable to formal analysis, for instance using ran-
dom matrix theory [13], allowing one to make precise
statements about their performance.
Spectral methods, however, do have their problems. A

primary one is that it is difficult to construct a simple and
principled spectral algorithm for dividing a network into
an arbitrary number of communities. Good algorithms
exist for two- and three-way divisions, and repeated two-
way divisions can sometimes produce good multiway di-
visions, but sometimes not [11, 14]. One possible ap-
proach for direct multiway community detection has been
proposed by Gong et al. [15] and makes use of several
leading eigenvectors of the modularity matrix simultane-
ously. This method, however, divides the network into
2k communities if k eigenvectors are used, which cannot
be optimal since it is known that the optimal division
has at most k + 1 communities [16]. Another approach
that also uses several leading eigenvectors is to represent
the leading eigenvectors as points in a high-dimensional
space, then divide up those points using a standard data
clustering method—the most popular choice is k-means
clustering, as employed for instance in [17]. This method,
which is analogous to previous algorithms for the dif-
ferent but related problem of Laplacian spectral graph
partitioning [18, 19], is attractive for its simplicity and
ease of implementation. On the other hand, while the
strong similarity between graph partitioning and mod-
ularity maximization [16, 20] makes it natural to think
that k-means would work in this situation, it is not clear
what quantity, if any, the k-means approach is optimiz-
ing. In particular, the algorithm is not derived as an
approximation to modularity maximization, so there are
no formal guarantees that it will indeed maximize mod-
ularity, and in practice, as we show in this paper, there
are situations where it can fail badly.
In this paper we introduce a different method for

single-step, multiway, spectral community detection.
Our method is not a generalization of the previous two-
way method, which is based on a relaxation of the dis-
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crete modularity optimization problem to a continuous
optimization that can be solved by differentiation. In-
stead the method is based on the observation, made pre-
viously in [16], that modularity maximization is equiva-
lent to a max-sum vector partitioning problem. (A sim-
ilar equivalence for the graph partitioning problem was
explored in [21, 22].) We propose a simple heuristic for
the rapid solution of vector partitioning problems and ap-
ply it to the task in hand to create an efficient multiway
community detection algorithm.

II. SPECTRAL COMMUNITY DETECTION

AND VECTOR PARTITIONING

The modularity Q is a score assigned to a given di-
vision into any number of communities of a given net-
work, such that “good” divisions—those in which most
edges fall within communities and few edges fall between
them—get a high score and “bad” divisions a low one.
Formally, the modularity is equal to the fraction of edges
that fall within communities minus the expected fraction
if edges were placed at random [2]. Consider an undi-
rected, unweighted network of n vertices and define an
adjacency matrix A to represent the network structure,
with elements Aij = 1 if vertices i and j are connected by
an edge and 0 otherwise. Now consider a division of the
vertices of this network into k non-overlapping groups,
labeled by integers 1 . . . k, and define gi to be the label
of the group to which vertex i belongs. Then the modu-
larity is given by [5]

Q =
1

2m

∑

ij

[

Aij −
didj
2m

]

δgi,gj , (1)

where di is the degree of vertex i, m is the total number of
edges in the network, and δst is the Kronecker delta. The
modularity may be either positive or negative (or zero),
with a maximum value of +1. Positive values indicate
that the number of edges within groups is greater than
one would expect by chance, and large positive values are
considered indicative of strong community structure.
For convenience we also define the modularity matrix

to be the symmetric n× n matrix B with elements

Bij = Aij −
didj
2m

, (2)

in terms of which the modularity (1) can be written

Q =
1

2m

∑

ij

Bijδgi,gj . (3)

Given that
∑

iAij = dj and
∑

i di = 2m, every row and
column of the modularity matrix must sum to zero:

∑

i

Bij =
∑

i

Aij −
∑

i

didj
2m

= 0, (4)

which implies that the uniform vector 1 = (1, 1, 1, . . . ) is
an eigenvector of the modularity matrix with eigenvalue
zero, a result that will be important shortly.
Now consider the problem of dividing a network with n

vertices into k communities. If good divisions have high
modularity scores and bad divisions low scores, we can
find good divisions by maximizing modularity over divi-
sions. Exact maximization is known to be very slow [3],
so we turn instead to approximate methods. Follow-
ing [16, 22], we note that the delta function in Eq. (3)
can be written as

δgi,gj =

k
∑

s=1

δs,giδs,gj , (5)

and since the modularity matrix is symmetric it can al-
ways be written as an eigenvector decomposition

Bij =

n
∑

l=1

λlUilUjl, (6)

where λl is an eigenvalue of B and Uil is an element of
the orthogonal matrix U whose columns are the corre-
sponding eigenvectors. Without loss of generality, we will
assume that the eigenvalues are numbered in decreasing
order: λ1 ≥ λ2 ≥ · · · ≥ λn. Combining Eqs. (3), (5),
and (6), we now have

Q =
1

2m

∑

ij

n
∑

l=1

λlUilUjl

∑

s

δs,giδs,gj

=
1

2m

n
∑

l=1

λl

∑

s

[

∑

i

Uilδs,gi

]2

. (7)

We observe that (apart from the uninteresting lead-
ing constant) this is a sum over eigenvalues λl times the

nonnegative quantities
∑

r

[
∑

s Uilδs,gi
]2
, so the largest

(most positive) contributions to the modularity are typ-
ically made by the terms corresponding to the most pos-
itive eigenvalues. A standard approximation, used in es-
sentially all spectral algorithms, is, instead of maximiz-
ing the entire sum, to maximize only these largest terms,
neglecting the others. That is, we approximate the mod-
ularity by

Q =
1

2m

p
∑

l=1

λl

∑

s

[

∑

i

Uilδs,gi

]2

. (8)

for some integer p < n. At a minimum, we maximize
only those terms corresponding to positive values of λl.
(Maximizing ones corresponding to negative λl would re-
duce, not increase, the modularity.) In effect, we are
making a rank-p approximation to the modularity ma-
trix, based on its leading p eigenvectors, then calculating
the modularity using that approximation rather than the
true modularity matrix.
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Noting that all λl in Eq. (8) are now positive, we can
rewrite the equation as

Q =
1

2m

k
∑

s=1

p
∑

l=1

[

∑

i

√

λlUilδs,gi

]2

. (9)

We define a set of n p-dimensional vertex vectors ri with
elements

[

ri

]

l
=

√

λlUil, (10)

in terms of which the modularity is

Q =
1

2m

k
∑

s=1

p
∑

l=1

[

∑

i∈s

[

ri

]

l

]2

=
1

2m

k
∑

s=1

∣

∣

∣

∣

∑

i∈s

ri

∣

∣

∣

∣

2

, (11)

where the notation i ∈ s denotes that vertex i is in
group s.
In other words, we assign to each vertex a vector ri,

which can be calculated solely from the structure of the
network (since it is expressed in terms of the eigenvalues
and eigenvectors of the modularity matrix) and hence is
constant throughout the optimization procedure. Then
the modularity of a division of the network into groups is
given (apart from the leading constant 1/2m) as a sum
of contributions, one from each group s, equal to the
square of the sum of the vectors for the vertices in that
group. Our goal is to find the division that maximizes
this modularity.
Generically, problems of this kind are called max-sum

vector partitioning problems, or just vector partitioning
for short. In the following section we propose a heuristic
algorithm to rapidly solve vector partitioning problems
and show how it can be applied to perform efficient multi-
way spectral community detection in arbitrary networks.
We have not yet said what the value should be of the

constant p that specifies the rank at which we approx-
imate the modularity matrix in Eq. (8). We have said
that p should be no greater than the number of posi-
tive eigenvalues of the modularity matrix. On the other
hand, as shown in [16], if p is less than k − 1 then the
division of the network with maximum modularity al-
ways has less than k communities, since there will be at
least one pair of communities whose amalgamation into
a single community will increase the modularity. Thus p
should be greater than or equal to k − 1. In all of the
calculations presented in this paper we make the minimal
choice p = k−1, which gives the fastest algorithm and in
most cases gives excellent results. However, it is worth
bearing in mind that larger values of p are possible and,
in principle, give more accurate approximations to the
true value of the modularity.

III. VECTOR PARTITIONING ALGORITHM

Vector partitioning is computationally easier than
many discrete optimization tasks. In particular, it is

solvable in polynomial, rather than exponential time. A
general k-way partitioning of n different p-dimensional
vectors can be solved exactly in time O(np(k−1)−1) [23].
Thus if we use the leading two eigenvectors of the mod-
ularity matrix to divide a network into two communities
the calculation can be done in time O(n), as shown previ-
ously in [16]. However the running time quickly becomes
less tractable for larger numbers of communities. As dis-
cussed above, for a division of a network into k commu-
nities we must use at least k−1 eigenvectors, which gives

a running time O(nk2
−2k). Even for just three commu-

nities this gives O(n3), which is practical only for rather
small networks, and for four communities it gives O(n8)
which is entirely impractical. For applications to real-
istically large networks with k > 2, therefore, we must
abandon exact solution of the problem and look for faster
approximate methods.
Previous approaches to vector partitioning include that

of Wang et al. [24], who suggest dividing the space of
vectors into octants (or their generalization in higher di-
mensions) and looking through all 2k−1 of them to find
the k octants that contain the largest numbers of vec-
tors. Then we use these as an initial coarse division and
assign the remaining vectors to these groups by brute-
force optimization. This method works reasonably well
for small values of k but is not ideal as k becomes larger
because the number of octants increases exponentially
with k. Richardson et al. [14] proposed a divide-and-
conquer method that works by splitting the space into oc-
tants again, but then splitting these into smaller wedges,
and repeating until further subdivision gives no improve-
ment. This method works well for the k = 3 case with
two eigenvectors but does not generalize well to higher k.
Alpert and Yao [22] proposed a greedy algorithm that
works for any value of k by adding vectors one by one
to the set to be partitioned, with vectors of larger mag-
nitude being added first (on the grounds that these con-
tribute most to the sums in Eq. (11)). This method works
well when the largest magnitude vectors are distributed
evenly among the final groups, but more poorly when
they are concentrated in a few groups. Unfortunately,
as we show in Section IVA, when network communities
are of unequal sizes the largest vertex vectors do indeed
tend to be concentrated in a few groups and the method
of [22] works less well.
Here we introduce an alternative and well-motivated

heuristic for finding the solution to vector partitioning
problems for general values of k. The algorithm is analo-
gous to the k-means algorithm for the standard data par-
titioning problem. The k-means method is an algorithm
for partitioning a set of data points in any number of di-
mensions into k clusters in which we start by choosing k
index locations or centroids in the space. These could be
chosen in several ways: entirely at random, at random
from among the set of data points, or (most commonly)
as the centroids of some initial approximate partition of
the data. Once these are chosen, we compute the dis-
tance from each data point to each of the k centroids
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and divide the data points into k groups according to
which they are closest to. Then we compute the k cen-
troids of these new groups, replace the old centroids with
the new ones, and repeat. The process continues until
the centroids stop changing.
Our algorithm adopts a similar idea for vector parti-

tioning, with points being replaced by vectors and dis-
tances by vector inner products. We start by choosing
an initial set of k group vectors Rs, one for each group or
community s, then we assign each of our vertex vectors ri
to one of the groups according to which group vector it
is closest to, in a sense we will define in a moment. Then
we calculate new group vectors for each community from
these assignments and repeat. The new group vectors
are calculated simply as the sums of the vertex vectors
in each group:

Rs =
∑

i∈s

ri, (12)

so that the modularity, Eq. (11), is equal to

Q =
1

2m

∑

s

∣

∣Rs

∣

∣

2
. (13)

We observe the following property of this modularity.
Suppose we move a vertex i from one community s to
another t. Let Rs and Rt represent the group vectors
of the two communities excluding the contribution from
vertex i. Then, before the move, the group vectors of
the communities are Rs + ri and Rt, and after the move
they are Rs and Rt + ri. All other communities remain
unchanged in the meantime and hence the change ∆Q in
the modularity upon moving vertex i is

∆Q =
1

2m

[

|Rs|
2 + |Rt + ri|

2 − |Rs + ri|
2 − |Rt|

2
]

=
1

m

[

R
T
t ri −R

T
s ri

]

. (14)

Thus the modularity will either increase or decrease de-
pending on which is the larger of the two inner products
R

T
t ri and R

T
s ri. Or, to put that another way, in order

to maximize the modularity we should assign vertex i to
the community whose group vector has the largest inner
product with ri.
This then defines our equivalent of “distance” for our

k-means style vector partitioning algorithm. Given a set
of group vectorsRs, we calculate the inner product R

T
s ri

between ri and every group vector and then assign ver-
tex i to the community with the highest inner product.
Note, however, that the group vectors Rs and Rt ap-

pearing in Eq. (14) are defined excluding ri itself. To be
correct, therefore, we should do the same thing in our
partitioning algorithm. For every vertex vector ri there
will be one group vectorRs that contains that vertex vec-
tor (in the sense of Eq. (12)) and before calculating the
inner product for that group we should subtract ri from
the group vector. In practice this subtraction typically
makes little difference when the network is large—the

R1

R2

R3

r1

FIG. 1: Depiction of the operation of our vector partitioning
heuristic for, in this case, a set of two-dimensional vectors be-
ing divided into three groups. The blue lines and dots denote
the individual vectors. The red lines are the group vectors.
(The magnitudes of the group vectors have been rescaled to
fit into the figure—normally they would be much larger, since
they are the sums of the individual vectors in each group.)
The dashed lines indicate the borders between communities,
which are determined both by the angles and relative magni-
tudes of the group vectors. For example, the vector labeled r1
will be assigned to group 1 in this case, because it has its
largest inner product with R1.

subtraction or not of a single vertex from a large group
is not going to change the results much. In many cases,
therefore, one can omit the subtraction step. On the
other hand, the algorithm is not significantly slower with
the subtraction, so one could also argue for its inclusion,
purely on grounds of correctness. We do include it in the
calculations of this paper, but in the end it makes little
difference to the results.
Our complete vector partitioning algorithm is the fol-

lowing:

1. Choose an initial set of group vectors Rs, one for
each of the k communities.

2. Compute the inner product RT
s ri for all vertices i

and all communities s, or (Rs − ri)
T
ri if vertex i

is currently assigned to group s.

3. Assign each vertex to the community with which it
has the highest (most positive) inner product.

4. Update the group vectors using the definition of
Eq. (12).

5. Repeat from step 2 until the group vectors stop
changing.

See Fig. 1 for an illustration of the working of the algo-
rithm.
The algorithm is efficient, with a time complexity of

O(nk) for each iteration of steps 2 to 4. Total running
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time depends on the number of iterations required to
reach convergence, for which we do not have any theo-
retical results. In practice, however, the number of iter-
ations is small—around half a dozen or less in most of
the examples we have looked at—and one could reduce
the number further by halting the algorithm when the
changes become small or after some maximum number
of iterations, just as some k-means implementations also
do. As discussed below, one may also want to repeat
the entire calculation more than once with different ini-
tial group vectors (step 1) to avoid poor results due to
unlucky initial conditions.
We still need to decide how the initial group vectors

are to be chosen. In the simplest case we might just
choose them to be of equal magnitude and point in ran-
dom directions. However, if there is community structure
in the network then we expect the vertex vectors to be
clustered, pointing in a small number of directions, with
no or few vectors pointing in the remaining directions.
It makes little sense to pick initial group vectors point-
ing in directions well away from where the clusters lie,
so in practice we have found that, rather than giving the
group vectors random directions, we can get good results
by picking them randomly from among the vertex vectors
themselves. This ensures that, if most vectors point in
a few directions, we will be likely to choose initial group
vectors that also point in those directions. (The group
vectors must also be pointing in directions at least 90
degrees away from one another, otherwise one can al-
ways increase the modularity in Eq. (13) by merging two
groups together.)
Note that we need only pick k−1 of the k group vectors

in this fashion, the final vector being fixed by the fact
that the group vectors sum to zero. To see this, recall
that the uniform vector 1 = (1, 1, 1, . . .) is always an
eigenvector of the modularity matrix, which implies that
the elements of all other eigenvectors—i.e., the columns
of the orthogonal matrix U—must sum to zero (since
they must be orthogonal to the uniform vector). Then
the definition of Eq. (10) implies that

n
∑

i=1

[

ri

]

l
=

√

λl

n
∑

i=1

Uil = 0, (15)

and hence

n
∑

i=1

ri = 0, (16)

and

∑

s

Rs =
∑

s

∑

i∈s

ri =

n
∑

i=1

ri = 0. (17)

Thus, once we have chosen k − 1 of the group vectors
randomly, the final one is fixed to be equal to minus the
sum of the rest.
Since there is a random element in the initialization

of our algorithm, its result is not always guaranteed to

be the same, even when applied to the same network
with the same parameter values; it may give different
results for the modularity on different runs. In applica-
tions, therefore, we typically do several runs of the al-
gorithm with different initial conditions, choosing from
among the results the community division that gives the
highest value of the modularity.

IV. APPLICATIONS

In this section we give example applications of our
method, first to computer-generated test networks and
then to two real-world examples.

A. Synthetic networks

For our first tests of the method we look at a set of
computer-generated (“synthetic”) benchmark networks
that contain known community structure. Our goal is
to see whether, and how accurately, the algorithm can
recover that structure. In our tests we make use of
networks generated using the degree-corrected stochastic

block model [25]. The stochastic block model (not degree-
corrected) is a generative model of community-structured
networks whose origins go back to the 1980s [26, 27].
Vertices are divided into groups and edges are placed
between pairs independently at random with probabil-
ities ωst that depend only on the groups s, t that the
vertices belong to. If the diagonal probabilities ωss are
larger than the off-diagonal ones, then the network will
display classic “assortative” community structure with
more connections within groups than between them. The
stochastic block model is unrealistic, however, in gener-
ating a Poisson distribution of vertex degrees, which is
quite different from the highly right-skewed distributions
commonly seen in real networks. The degree-corrected
block model remedies this problem by fixing the (ex-
pected) degrees of the vertices at any values we choose.
In this model edges are placed independently between
pairs of vertices i, j with probability didjωst, where di is
the desired degree of vertex i. For a detailed discussion
see [25].
Our tests consist of generating a number of networks

using the degree-corrected block model, analyzing them
using our algorithm, then comparing the communities
found with those planted in the networks in the first
place. To quantify the similarity of the two sets of
communities, planted and detected, we make use of a
standard measure, the normalized mutual information or
NMI [29, 30]. The (unnormalized) mutual information of
two sets X,Y of numbers or measurements is defined to
be

I(X ;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (18)

where p(x, y) is the joint probability or frequency of
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FIG. 2: Normalized mutual information (NMI) as a function of the parameter δ for communities detected in randomly generated
test networks using the vector partitioning algorithm of this paper (red squares) and the k-means method (blue triangles). The
networks consist of n = 3600 vertices each, divided into three communities thus: (a) equally sized communities of 1200 vertices
each; (b) communities of sizes 1800, 1200, and 600; (c) communities of sizes 2400, 900, and 300. Each data point represents
the highest NMI found over 20 runs of the relevant algorithm with different random initializations, averaged over 100 networks.
The vertical dashed line in panel (a) indicates the position of the detectability threshold below which all methods must fail [28].

x and y within the data set and p(x), p(y) are their
marginal probabilities. The mutual information mea-
sures how much you learn about one of the two sets of
measurements by knowing the other. If X and Y are
uncorrelated then each tells you nothing about the other
and the mutual information is zero. If they are perfectly
correlated then each tells you everything about the other
and the mutual information takes its maximum value,
which is equal to all of the information that either set
contains, which is simply the entropy, H(X) or H(Y ), of
the set.
Having the maximum value of the mutual information

be equal to the entropy is in some ways inconvenient,
since we don’t know in advance what that value will be.
So commonly one normalizes the mutual information by
dividing by the mean of the entropies of the two sets,
thus:

NMI(X ;Y ) =
I(X ;Y )

1
2 [H(X) +H(Y )]

. (19)

This normalized value falls in the interval from zero to
one, with uncorrelated variables giving zero and perfect
correlation giving one.
The NMI is commonly used to quantify the match be-

tween two clusterings of the vertices of a network. In
the present case, the original assignments of vertices to
groups in the block model (the “planted communities”)
are used as one set of measurements X and the assign-
ments found by our algorithm (the “detected communi-
ties”) are the other Y . An NMI of 1 denotes perfect
recovery of the planted partition; an NMI of 0 indicates
complete failure.
In the tests presented here we use networks of n = 3600

vertices divided into k = 3 communities and with two dif-
ferent (expected) degrees: half the vertices in each group
have degree 10 and the other half have degree 30. The

parameters ωst are varied in order to tune the difficulty
of the community detection according to

ωst = (1− δ)ωrandom
st + δωplanted

st , (20)

where δ is a parameter that varies from zero to one and

ωrandom
st =

1

2m
, ωplanted

st =
δst

∑

i∈s di
, (21)

with m being the total number of edges in the net-
work, as previously. With this choice, the parameter δ
tunes the edge probabilities from a value of didj/2m
when δ = 0, which corresponds to a purely random
edge distribution with no community structure at all
(the so-called configuration model [31–33]), to a value
of didj/

∑

i∈s di within each group s and zero between
groups when δ = 1—effectively three separate, uncon-
nected configuration models, one for each group, which
is the strongest form of community structure one could
have. This choice of ωst also has the nice property that
the expected fraction of within-group edges that a vertex
has is the same for all vertices.
We have tested our algorithm on these networks us-

ing two eigenvectors to define the vertex vectors ri (the
minimum viable number). The results are shown as a
function of the parameter δ in Fig. 2, along with results
for the same networks analyzed by clustering the vertex
vectors using the k-means algorithm of Ref. [17].
As δ → 1 the community structure in the network

becomes strong and any reasonable algorithm should be
able to detect it. As we approach this limit our algorithm
assigns 100% of vertices to their correct communities and
the NMI approaches one. Conversely as δ → 0 the com-
munity structure in the network vanishes and neither al-
gorithm should detect anything, so NMI approaches zero.
Furthermore, it is known that there is a critical strength
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(a) vector partitioning (b) k-means

FIG. 3: Illustration of the division of a synthetic three-group
network using (a) the algorithm of this paper and (b) the
k-means algorithm. Shapes indicate the planted communi-
ties while colors indicate the communities found by the two
algorithms. Observe how the k-means algorithm assigns a
significant portion of vertices belonging to the red and green
communities incorrectly to the blue one, while the vector par-
titioning approach does not have this problem. The network
in this case has n = 4000 vertices with communities of size
3000, 500, and 500.

of the structure—which translates to a critical value of
our parameter δ—below which the structure is so weak
that no algorithm can detect it [28]. This “detectability
threshold” is marked in Fig. 2a with a vertical dashed
line. Above this point it should be possible to detect the
communities, albeit with a certain error rate, and indeed
we see that both algorithms achieve a nonzero NMI in
this region.
As the figure shows, the vector partitioning algorithm

does as well or better than k-means in almost all cases.
In panel (a) the three communities in the network have
equal sizes, and in this case the two algorithms perform
comparably, there being only a small range of parameter
values in the middle of the plot where vector partitioning
outperforms k-means by a narrow margin. In panels (b)
and (c) the communities have unequal sizes—moderately
so in (b) and highly in (c)—and in these cases vector par-
titioning does significantly better than k-means. Indeed
for unequal group sizes the k-means algorithm fails to
achieve perfect community classification (NMI = 1) even
in the limit where δ = 1. The reason for this is illustrated
in Fig. 3, which shows a scatter plot of the vertex vectors
for an illustrative example network along with the com-
munities into which each algorithm divides the vertices
(shown by the colors). As the figure shows, when the
groups are unequal in size the largest group is closer to
the origin than the smaller ones—necessarily so since the
centroid of the vertex vectors lies at the origin (Eq. (16)).
This tends to throw off the k-means algorithm, which by
definition splits the points into groups of roughly equal
spatial extent. The vector partitioning method, which
is (correctly) sensitive only to the direction and not the
magnitude of the vertex vectors, has no such problems.

Agent-based Models

Mathematical Ecology

Statistical Physics

Structure of RNA

FIG. 4: Four-way division into communities of a collaboration
network of scientists at the Santa Fe Institute. Different colors
and shapes indicate the communities discovered by the vector
partitioning algorithm of this paper. The communities split
roughly along lines of research topic.

B. Real-world examples

Our next two example applications are to real-world
networks, two collaboration networks among scientists.
The first, taken from Ref. [34], represents scientists work-
ing at the Santa Fe Institute, an interdisciplinary research
institute in New Mexico. The vertices in the network
represent the scientists and the edges indicate that two
scientists coauthored a paper together at least once. The
network is small enough to allow straightforward visual-
ization of the results and is interesting in that the scien-
tists it represents, in keeping with the interdisciplinary
mission of the institute, come from a range of different
research fields, in this case statistical physics, mathemat-
ical ecology, RNA structure, and agent-based modeling.
It is plausible that the communities in the network might
reflect these subject areas.
Figure 4 shows the result of a four-way community di-

vision of this network using vertex vectors constructed
from the first three eigenvectors of the modularity ma-
trix. Overall the results mirror our expectations, with
the four subject areas corresponding roughly to the four
communities found by the method. We note, however,
that there are also four vertices in the middle-right of the
figure that are clearly misclassified as being in the “agent-
based models” group when they would be more plausi-
bly placed in the “structure of RNA” group. This illus-
trates a potential weakness of the algorithm: the defin-
ing feature of these vertices is that their vertex vectors
have very small magnitude, meaning that they do not
strongly belong to any group. For such vertices even a
small error—such as that introduced by making our low-
rank approximation to the true modularity matrix—can
alter the direction of the vertex vector substantially and
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FIG. 5: The 21 communities found in a collaboration network of network scientists using the algorithm proposed in this paper.

hence move a vertex to a different group. Problems like
this are, in fact, common to many spectral algorithms
and are typically handled by combining the algorithm
with a subsequent iterative refinement or “fine tuning”
step, in which individual vertices or small sets are moved
from group to group in an effort to improve the value of
the modularity [11, 14]. The spectral algorithm is good
at determining the “big picture,” rapidly doing an overall
division of the network into broad groups of vertices; the
subsequent fine tuning tidies up the remaining details.
Based on the results we see here, our algorithm might be
a good candidate for combination with a fine tuning step
of this kind.
Our second real-world example is a collaboration net-

work of scientists working in the field of network science
itself and is taken from Ref. [16]. Apart from being rather
larger than the Santa Fe Institute network, at 379 scien-
tists, this network also differs in that all its members are,
ostensibly at least, studying the same subject, so there is
no obvious “ground truth” for the communities as there
was in the previous example, or even for how many com-
munities there should be. Choosing the number of com-
munities into which a network should be divided is a deep
problem in its own right, and one that is not completely
solved. Here, however, we simply borrow a technique
from the literature and estimate the number of commu-

nities in the network by counting the real eigenvalues of
the so-called non-backtracking matrix that are greater
than the largest real part among the complex eigenval-
ues. (For a discussion of why this is a good heuristic,
see [35].) In the present case this suggests that there
should be 26 communities in the network, so we choose
k = 26 for our community detection algorithm and con-
struct the vertex vectors from the leading 25 eigenvec-
tors of the modularity matrix. The results are shown in
Fig. 5. In fact, in this case we find that the algorithm
does not make use of all 26 communities—the figure con-
tains only 21. Nonetheless, the algorithm has succeeded
in finding a division with high modularity: the modular-
ity value is Q = 0.83, comparable to the value given for
example in [14] for the same network. We note, however,
that, as is typical for larger values of k, the algorithm
finds a range of different divisions of the network in dif-
ferent runs that all have competitive modularity. The
existence of competing good community divisions in the
same network is a well-known phenomenon and has been
previously discussed for instance by Good et al. [36].
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V. CONCLUSIONS

In this paper we have described a mapping of a mul-
tiway spectral community detection method onto a vec-
tor partitioning problem and proposed a simple heuristic
algorithm for vector partitioning that returns good re-
sults in this application. We have tested our method on
computer-generated benchmark networks, comparing it
with a competing spectral algorithm that makes use of
k-means clustering, and find our method to give superior
performance, particularly in cases where the sizes of the
communities are unequal. We have also given two exam-
ple applications of our method to real-world networks.
There remain a number of open questions not answered

in this paper. Although the algorithm we propose is sim-
ple and efficient, it is only approximate and we have no
formal results on its expected performance. The algo-
rithm also assumes we have prior knowledge of the num-

ber of communities in the network, where in reality this
is not usually the case. Determining the number of com-
munities in a network is an interesting open problem.
Finally, as we (and others) have pointed out, the best
community detection methods are typically hybrids of
two or more elementary methods. It would be interest-
ing to see how the vector partitioning algorithm we pro-
pose works in combination with other methods. These
problems, however, we leave for future work.

Acknowledgments

The authors thank Maria Riolo and Raj Rao Nadaku-
diti for helpful conversations. This research was funded
in part by the US National Science Foundation under
grants DMS–1107796 and DMS–1407207.

[1] S. Fortunato, Phys. Rep. 486, 75 (2010).
[2] M. E. J. Newman and M. Girvan, Phys. Rev. E 69,

026113 (2004).
[3] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoe-

fer, Z. Nikoloski, and D. Wagner, in Proceedings of the

33rd International Workshop on Graph-Theoretic Con-

cepts in Computer Science, Lecture Notes in Computer
Science No. 4769 (Springer, Berlin, 2007).

[4] M. E. J. Newman, Phys. Rev. E 69, 066133 (2004).
[5] A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev.

E 70, 066111 (2004).
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