
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Simple and efficient self-healing strategy for damaged
complex networks

Lazaros K. Gallos and Nina H. Fefferman
Phys. Rev. E 92, 052806 — Published 10 November 2015

DOI: 10.1103/PhysRevE.92.052806

http://dx.doi.org/10.1103/PhysRevE.92.052806


A simple and efficient self-healing strategy for damaged complex networks

Lazaros K. Gallos and Nina H. Fefferman
Department of Ecology, Evolution, and Natural Resources,

Rutgers University - New Brunswick, NJ 08901, USA and

DIMACS, Rutgers University - Piscataway, NJ 08854, USA

The process of destroying a complex network through node removal has been the subject of
extensive interest and research. Node loss typically leaves the network disintegrated into many
small and isolated clusters. Here we show that these clusters typically remain close to each other
and we suggest a simple algorithm that is able to reverse the inflicted damage by restoring the
network’s functionality. After damage, each node decides independently whether to create a new link
depending on the fraction of neighbors it has lost. In addition to relying only on local information,
where nodes do not need knowledge of the global network status, we impose the additional constraint
that new links should be as short as possible (i.e. that the new edge completes a shortest possible
new cycle). We demonstrate that this self-healing method operates very efficiently, both in model
and real networks. For example, after removing the most connected airports in USA, the self-healing
algorithm re-joined almost 90% of the surviving airports.

I. INTRODUCTION

A property of critical importance for complex networks
is their resilience to damage or attack [1–5]. One fas-
cinating demonstration of the underlying complexity of
these systems is that compromise in structure can be
substantial even after the loss of a very small number of
nodes [6, 7]. The repercussions to the network from this
structural compromise can be immense, usually result-
ing in complete loss of communication among the sur-
viving nodes and therefore a complete destruction of the
intended network functionality. Because of the obvious
importance for practical applications, the robustness of a
network’s structure to damage has continuously remained
the focus of intensive research in the network science lit-
erature [8–13].
Even though we now have a thorough understanding

of complex network disintegration, the inverse process of
‘healing’ a network is much less understood. Is there
a direct relationship between healing structural features
and restoring function? What does it really take for a
network to restore its functionality after losing some of
its nodes? While there are various types of healing, one
realistic approach is to consider the case in which dis-
abled nodes have been permanently removed and cannot
be resurrected, but the surviving nodes can still generate
new links to other surviving nodes. Of course, a node
could trivially create as many new links as possible, but
in many realistic settings the cost and time associated
with establishing a new link can be high. We then need to
optimize the network functionality given the constraints
of rebuilding costs [14]. As a natural first case, we ex-
plore the scenario in which optimal network functional-
ity is achieved under the structural condition that all the
nodes are connected in one large cluster. In this way, ev-
ery node can reach any other node in the network, even
if the connecting path may be long. This reflects systems
such as communication networks [15, 16] electrical grids
[17, 18], air traffic [19] and shipping routes [20], etc. Ad-
ditional requirements can be imposed, for example the

maximum path between any two nodes can be bounded
[21], or entirely different cases for structure and function
can be explored (e.g. function is optimized when the net-
work structure has a particular degree distribution, or is
highly modular, etc.), but as a first approach our only
metric here is the size of the largest cluster.

A. The Duality of Structure and Function

A basic, but fundamental insight is that healing can
be employed with one of two possible goals in mind. The
first goal can be to fix the structure in a way that the
topology remains as close to the original network as possi-
ble. For example, descriptions of some social groups have
revealed particular degree distributions and one natural
inclination in healing a damaged social network might
be to restore edges by focusing on this aspect of repair.
However, degree distribution itself is unlikely to support
social function. For features such as social identity or
support from a close group of friends, the structural fea-
tures of modularity and clustering are more important.
Therefore, if we are attempting repair in order to restore
function, we may decide to ignore entirely the impact
to degree distribution from repair, instead adding back
links that restore (for example) local clustering coeffi-
cient. Since damage can alter both structural and func-
tional features, it is easy to consider repairing structure
since regaining initial structure should provide restored
initial function. Critically, however, it may not be that
one and only one structural feature can support the orig-
inal function. The main question is therefore to discover
efficient strategies that can restore network functionality
through the addition of new links. In a recent work, re-
dundant (dormant) links were considered to be activated
after damage and it was shown that they can restore
functionality in infrastructure trees [22, 23]. Similarly,
healing in interdependent networks was shown to prevent
cascading failures [24]. In a different approach, nodes
were allowed to spontaneously recover and become active
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again, leading to an interesting behavior of phase-flipping
where the network switches between high-activity and
low-activity modes [25, 26]. Under different definitions of
network function in which a global minimum traffic flow
must be maintained and each node has a particular flow
capacity that must be redistributed in case of damage,
the network functionality can be restored by mitigation
strategies [27, 28].
One critical and under-discussed feature of damage, es-

pecially in inhomogeneous complex networks, is that the
impact from the loss of a single link on overall function
can differ drastically depending on where that link oc-
curs in the local and global structure. Loss of a single
link that uniquely connects two otherwise disconnected
components of a network will have a greater impact to
functions (such as the one we study) that rely on the
size of the largest cluster than would the loss of one of
the three links that make up a triangle. While obvious,
it is nevertheless important and profound that we con-
sider healing as a process that should focus on areas of
the network in which the most damage has been done to
the function, rather than to the structure. In the case
of our largest connected component example, this means
we should focus more effort towards creating new edges
that restore connectivity to nodes that are most direly
impacted in their ability to relay messages.

B. Local Repair for Global Function

Phrased in this way, it may seem as though the only
option is to analyze global network structure in order
to understand which nodes are most critical to restoring
function. Such a global algorithm could potentially lo-
cate the optimal solution by mapping the current state
of the network and adding only the links that are missing
to restore functionality. However, this centralized plan-
ning may not always be feasible, since it may cost a lot in
terms of advance planning, communication between the
central authority and the individual nodes, the time that
it takes to transmit all relevant information, the possibil-
ity that communication takes place through the network
itself and the central node may have been functionally
disconnected from this critical communication, as well as
any combination of the above factors which may limit the
ability of constructing one central plan and communicate
it to all the surviving nodes. Luckily, there is no need for
this type of centralized global analysis. We proceed to
propose a self-organizing healing algorithm that exploits
this heterogeneity feature of damage while relying only
on local information accessible to each node, and with
low cost from the construction of new links.
Since one of our goals will be to limit the amount of

centralized information that will be necessary before re-
pair to the network can begin, we propose purely local
definitions of damage that can be assessed by each node.
To make this distinction clearly, in this work optimal
‘healing’ will refer to adding new links so that every node

can reach any other node in the system, and the term
‘self-healing’ indicates that individual nodes decide on
their own whether they need to create new links or not.

C. Self-Healing Algorithm to Restore Function

We here demonstrate that our self-healing model can
restore connectivity function very efficiently in two differ-
ent ways. Firstly, we show effective restoration of func-
tion with the creation of very few new links relative to the
number lost to damage. We demonstrate the effective-
ness of the method through the size of the healed largest
component, the number of nodes that need to form new
links, and the changes in modularity compared to the
original network. We further show this is true even if we
impose cost constraints on the length of new links (i.e.
the number of links in the shortest path required to con-
nect the two nodes without the addition of the new link).
Secondly, we show that a null healing model (in which the
same number of links are constructed randomly) achieves
a drastically lesser restoration of function. We analyze
the efficiency of our self-healing algorithm over various
network topologies and in cases of both random-node-
removal damage and when damage is targeted to affect
only specific, high-structural-impact nodes. Based on
this ‘uneven damage to function’ perspective, we show
that relatively inexpensive, rapid healing may be rela-
tively easy to achieve, even in the absence of global in-
formation.

To formalize the problem, we consider the simplest
possible case of an isolated complex network which un-
dergoes a loss of a fraction of its nodes, resulting in a
possible loss of large-scale connectivity. To mitigate this
loss of function, each node can then generate one new
link in an attempt to restore connectivity. As mentioned
above, this is a trivial problem without any additional
constraints because connecting to random nodes would
result in a structure similar to an Erdos-Renyi network.
In our work, we study what conditions are necessary and
sufficient to restore connectivity under the constraints
that: a) establishing a new link is costly and that cost
is borne by the node initiating the link, b) the new links
are as short as possible (based on the path distances of
the undamaged network), and c) the decision is purely
local, so that a node does not know anything about the
network state, except for its own neighborhood. We show
that these conditions can be easily met through a simple
local-decision algorithm, based on the number of surviv-
ing neighbors. There is no need to transfer any infor-
mation between nodes, and the only requirement is that
a node can know if a neighbor within a given distance
remains alive or not.
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FIG. 1. (Color online) Cluster distance after damage. (A) A
toy network. (B) A number of nodes are removed from the
network. (C) The remaining clusters in the network. (D) We
consider each cluster to be one unit. The distance between the
clusters, rsep, is measured according to the distances of cluster
nodes in the original network. (E) The change of inter-cluster
distance, rsep, as a function of removed nodes, p, for model
and real networks after random node removal. (F) The change
of inter-cluster distance, rsep, as a function of removed nodes,
p, for model and real networks after targeted node removal.

II. RESULTS

A. Impact of node removal

The first step in identifying efficient healing algorithms
is to determine the state of the network immediately af-
ter the removal process. This topic has not received at-
tention in the existing literature, which instead mainly
focuses only on the properties of the largest connected
cluster. For the purpose of a healing algorithm, we con-
sider all the clusters that remain in the system after a
fraction p of system nodes have been removed. A possi-
ble measure that can quantify the extent of damage is the
minimum distance between these clusters, rsep, which we
define as the minimum possible distance from a node in
the cluster to any other node in any other cluster. Since
all clusters are disconnected, this distance is calculated in
terms of the original network. In practice, we renormalize
the damaged structure in the following way (Fig. 1A-D):
Every cluster is substituted by one super-node. All these
super-nodes are obviously isolated. We restore all the re-
moved nodes and links among them. The links that were
connecting removed nodes with any node contributing
to a super-node result in a link between the super-node
and the removed node (we also remove any double links).
In this renormalized network, we can then calculate how
close the super-nodes are to each other. Obviously, this
distance is bounded by the minimum value of rsep = 2.
Notice also that this distance is different from the dis-
tance between a random node in the cluster and other
clusters, since it is solely determined by the one node in
the cluster which is closest to another cluster.

Intuitively, the inter-cluster distance is small in cen-
tralized networks and is large in sparse, extended net-
works. For example, in a star network where all nodes
are connected to a central node, the distance rsep can
never be larger than 2 independent of how many nodes
we remove. In a one-dimensional lattice this distance can
become very large, especially when p becomes large and
the gap among surviving clusters increases rapidly. Our
focus on inter-cluster distance is to enable estimation of
the most efficient length for the healing links. If, for ex-
ample, typical inter-cluster distances were rsep = 5 then
it would be pointless to add links much shorter than that.
Similarly, since one of our goals is to minimize the cost,
calculating rsep allows us to avoid constructing unneces-
sarily long links.

We studied the two typical cases of node removal in
complex networks: random removal and targeted attack.
In Fig. 1E we show the average 〈rsep〉 over all clusters as
a function of the fraction of randomly removed nodes, p.
In model networks, such as the two-dimensional square
lattice, Erdos-Renyi, and scale-free networks, the value of
〉rsep〈 remains close to 2 until roughly p = 0.5. When we
remove a larger percentage of the nodes the inter-cluster
distance increases up to 〈rsep〉 ∼ 2.5−3. In real networks,
on the other hand, the average distance never increases
significantly, independently of the value of p.

In targeted attacks we remove the nodes in decreas-
ing order of their degree. As expected, the targeted at-
tack leads to increasing damage and consequently the
inter-cluster distance increases in most of the networks
(Fig. 1F), with the exceptions of the email network and
the square lattice. The email network includes many
strong hubs and, as a consequence, node distances are
very short, which also reflects on the inter-cluster dis-
tances. For lattices, a targeted attack is the same as ran-
dom removal, because the degree distribution is a delta
function. Since ER networks also have a narrow degree
distribution, one might expect that the inter-cluster dis-
tance in ER networks would also be independent of the
attack strategy. In Fig. 1, we find that the opposite is
true. The average distance 〈rsep〉 increases rapidly after
p = 0.5, and at p = 0.9 it reaches the highest value we
observed, 〈rsep〉 ∼ 4.5. This is a result of the absence of
hubs. When the majority of the highest-connected nodes
have been removed, the small remaining clusters consist
only of low degree nodes, which have a low probability
of being close to each other since there are no hubs to
centralize the network.

So, in general, we observe that the isolated clusters are
relatively close to each other, and the inter-cluster dis-
tances remain for the largest part close to the minimum
value of 〈rsep〉 = 2, at least for random removals, while
in very few cases does it reach 〈rsep〉 = 3 or more under
targeted attacks.
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B. Description of the method

The basic idea of the self-healing method is that each
node monitors the fraction, q, of its neighbors that re-
main alive. If this fraction falls below a given threshold
qc, e.g. qc=50%, then the neighbor attempts to establish
a new link. This link can be at a maximum distance of
rmax, where distances are always measured as path length
in the original network. If there is no node within this
distance, then the node abandons its attempt to build
a new connection. Importantly, in agreement with the
above findings on inter-cluster distance, we show that
even if the maximum distance is the smallest possible,
i.e. rmax=2, large-scale connectivity is still restored even
though the node has no information about whether or
not the new link will connect to the largest cluster, or
even if it will connect to a different cluster than the one
it currently belongs to.
This process can be dynamic, so that nodes do not

even need to be aware that there is an attack, as long
as they can monitor how many of their links lead to live
nodes, in which case they can respond immediately and
attempt to create a new link. This real-time healing is
more effective than if the nodes can only attempt to heal
once an attack is completed (e.g. surprise attacks, or
cases in which new link construction is risky until an
attack has concluded) and obviates the need for rigorous
definitions of global attacks vs local damage. Here, we
show that the self-healing algorithm is efficient, even in
this worst-case scenario, where the nodes do not have the
capacity to respond until the attack is over.
The order parameter, which quantifies the large-scale

connectivity, is the fraction of the live nodes that belong
in the largest connected component, denoted by P1(p)
after the attack, and by P2(p) after the healing process.
The implementation of this model includes three steps
(Fig. 2A-D), which are as follows:

1. A fraction p of the N nodes initially in the system is
removed from the network. The size of the remain-
ing largest connected cluster, P1(p), is expressed as
a fraction of the remaining nodes.

2. Each of the remaining nodes decides independently
if it needs a new link, depending on whether the
fraction of its remaining neighbors q = kdam/korig
exceeds a given threshold qc (for any given node,
kdam is the number of neighbors after damage, and
korig is the original number of neighbors of this
node). We denote the fraction of the surviving
nodes that need healing, i.e. those whose degree
has fallen below the threshold, as f .

3. These fN(1−p) nodes attempt to find a new neigh-
bor within a distance rmax. If such a neighbor is
found, the nodes establish the new link. The frac-
tion of nodes that succeed to establish a new link
is fs ≤ f . These new links then result to a new

A B C D

E

FIG. 2. (Color online) Demonstration of the self-healing algo-
rithm. (A) The initial structure of a toy network. (B) Three
nodes, indicated by green (light gray), are removed from the
network along with all their links. (C) The nodes which have
lost half or more of their neighbors (blue nodes, empty sym-
bols) will seek new connections. (D) These nodes will choose
to connect to a random surviving node, if its distance r in the
original A network is at most rmax. Here we use rmax = 2. (E)
(Left panel) Network of airport connections in USA. (Middle
panel) A targeted attack removes the 20% most connected
airport nodes, and results to a disconnected network. The
removed nodes are shown in green (light gray). (Right panel)
The nodes that have lost more than 50% of their neighbors
(shown in blue, dark gray) try to establish new links within
distance rmax = 2. The new links (red lines) restore the large-
scale network connectivity.

large cluster that includes a fraction of P2(p, qc)
[≥ P1(p)] nodes.

The size of the largest cluster, P1(p), indicates the ex-
tent of damage to the structure immediately after the
nodes removal. A value close to P1(p) = 0 means that the
remaining nodes are isolated in small clusters and they
cannot access each other. The plot of P1(p) as a func-
tion of p represents the well-studied percolation process of
the largest cluster as we increase the number of removed
nodes. The plot of P2(p, qc) can be used to estimate the
efficiency of the healing process. After the self-healing
process, the largest cluster becomes P2(p, qc) ≥ P1(p),
since we have added links in the structure. The differ-
ence between the two sizes is a measure of the process
success.

C. Self-Healing of the Airport Network

As a real-world example, we can demonstrate how the
airport network in USA can be influenced by attacks and
healing (Fig. 2E). The unperturbed network (left panel)
is quite dense and contains a large number of connections,
condensed in many hub nodes. After an intentional at-
tack on 20% of the most connected nodes (middle panel),
80% of the nodes are still functional but are barely con-
nected to other nodes, since most of the traffic was di-
rected through the hubs. The original network contains
332 nodes, so after the removal of 66 nodes we are left
with 266 nodes. The largest cluster size connects only
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30 of these nodes (P1 ∼ 15%), and the surviving nodes
are either completely isolated or belong to very small
clusters. After we apply the self-healing algorithm (right
panel), the connectivity is restored and the largest cluster
grows to 235 nodes (P2 ∼ 88%). Of course, the network
becomes less centralized as hubs are removed and local
connections are added during healing, so that the net-
work topology changes, but the important part is that
the functionality is restored and the network becomes
navigable again. Now, it is possible to reach practically
any node, independently of the origin. In this example
it is also easy to see that the new connections have to
remain close to the healing node, since the cost of long-
range connections may be prohibitively high.

D. Self-Healing in Model Networks

The most interesting cases are those where the damage
destroys the large-scale connectivity (i.e. P1(p) tends to
0). The question now becomes how easy it is to bring
P2(p, qc) as close to 1 as possible. Therefore, the main
quantities to compare are the values of P2 vs P1. An ideal
process would correspond to a plot of values as close to
the horizontal y = 1 line as possible. This means that,
independent of the initial damage, the self-healing pro-
cess guarantees complete connectivity. The worst-case
scenario, on the other hand, is a y = x line along the
diagonal, indicating that there is no benefit from the self-
healing process.
In Fig. 3 we show the evolution of P1(p) and P2(p) as

a function of the removed percentage of nodes, p, in a
random removal process. The results for lattices, Erdos-
Renyi, and scale-free networks are well known and we
recover the typical curves for P1(p) [29]. The self-healing
process results in significantly larger critical points for
lattice and ER networks. This delay indicates that even
though a network has been fully disintegrated, our heal-
ing algorithm can reconstitute one large cluster of size
P2(p) among the surviving nodes. This improvement is
obvious even for large threshold values, such as qc=0.75,
when a node delays adding a new link until it has lost
more than 75% of its neighbors. As we relax this thresh-
old to qc=0.5 the largest cluster reaches higher values
over a wider p interval. Lowering this threshold even
more did not produce noticeable improvement. There-
fore, in the following analysis we fix this value to qc=0.5.
Each node seeks new connections within a maximum

distance rmax, and for the results seen in Fig. 3 we used
the minimum possible distance, i.e. rmax=2. As we in-
crease the radius of possible new connections the con-
nectivity becomes easier to achieve for a number of rea-
sons. First, there are more options because the node
can create a link, even if all second-neighbors have been
removed. Second, the effect of long-range shortcuts is
known to favor large-scale connectivity [30]. For exam-
ple, if the attack results in small, isolated clusters, then
short-range shortcuts will tend to remain within the same
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FIG. 3. (Color online) Fraction of surviving nodes in the
largest cluster as a function of the removed nodes, p. The
panels correspond to: (A) Two-dimensional square lattice,
(B) Erdos-Renyi network with average degree 〈k〉 = 3, (C)
Random scale-free network with degree exponent γ = 2.5, and
(D) Random scale-free network with degree exponent γ = 3.
The network size in all cases was N = 105 nodes. Black
(lower) lines indicate the cluster size P1(p), after the initial
removal of nodes. The red (middle) lines represent the clus-
ter size after the healing process, P2(p; 0.75), where a node
decides to search for new connections if it has lost at least
qc = 75% of its original neighbors. The blue (upper) line
shows the healed cluster size, P2(p; 0.5), for a corresponding
threshold of qc = 50%. The healing distance in all cases is
rmax = 2.

cluster and cannot assist in bridging between different
clusters. On the other hand, long-range shortcuts will
have a much higher probability of bridging otherwise un-
connected parts of the network because they can choose
nodes that are far from the immediate neighborhood of
their initiator [31]. The problem with this approach, of
course, is that the associated cost of long links may be-
come significantly higher. It is important, therefore, to
know if the minimum possible cost is enough to restore
the network structure.

E. Efficient Cost-Constrained Repair

As we will demonstrate below, in the absence of cost
restrictions, higher values of rmax improve the repair re-
sults, with the optimum case being that rmax is unre-
stricted and the node can randomly choose any other
surviving node in the system. This is a trivial theoreti-
cal result, because long-range links can connect isolated
clusters which are far from each other in case of extended
damage. Importantly, however, beyond this trivial re-
sult, we show that the minimum value of rmax=2 is al-
ready sufficient to restore network structure. We there-
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FIG. 4. (Color online) (A) Snapshots of the healing process
in a square two-dimensional lattice, after removing p = 50%
of the nodes. The nodes that survived the attack are shown
in gray color, with black nodes indicating the largest cluster
after a fraction, fs, of the surviving nodes have generated a
new link. The healing links are shown in green (light gray on
black nodes). (B) Evolution of the largest cluster size during
healing, as a function of the percentage of surviving nodes, fs,
that establish a new link. From top to bottom, the fraction
of removed nodes increases in steps of 0.1, from p = 0.1 to
p = 0.9 (or to the value indicated on the plot). The starting
point of each curve at fs = 0 corresponds to the largest cluster
size immediately after the removal of p nodes. The end point
of each curve indicates the final cluster size after the end of
the healing process.

fore focus our discussion by reporting only results for this
worst-case scenario.

In Fig. 4 we present many examples of the self-healing
process, for both model and real-world networks. A lat-
tice structure offers the simplest example of self-healing.
In Fig. 4A we present a toy example, in a lattice where
p = 50% of the nodes have been removed. As we add
the links to a fraction fs of the nodes that have lost more
than half of their neighbors, the size of the largest cluster
increases and presents essentially a typical second order
percolation transition. This behavior is verified in the
first panel of Fig. 4B, where the large-scale connectivity
is easily restored for values of p ≤ 0.6. The second-order
transition is observed in all the model networks, but only
when the values of p reach close to their critical values pc.
For p < pc, the initial largest cluster at fs = 0 extends
over a non-zero fraction of the remaining nodes and, no-
tably, there is no transition in these cases. The linear
increase of the largest cluster size indicates that the new
links attach small clusters to the spanning cluster, and
there is never any other cluster of significant size. The
absence of a transition is observed in all real networks,
even when the initial largest cluster is very small. For
instance, at p = 0.9, the largest cluster size of the co-
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FIG. 5. (Color online) How the largest cluster size changes
after healing, P2(p), as a function of the largest cluster size
before healing, P1(p). Results are presented for model and
real-world networks. The percentage of nodes removed is rep-
resented by the color of a node, increasing from right to left
from p = 0.1 to p = 0.9. Each scattered point corresponds to
a different realization of the process in each network. The effi-
ciency of the healing process is demonstrated by the fact that
all the points tend to be far from the diagonal, which would
indicate no improvement, and remain close to the maximum
efficiency value of P2(p) = 1.

authorship network starts at less than P1 = 5% and with
healing it increases almost linearly up to P2 70%. Notice
that in these plots the process does not necessarily go
up to fs = 1, since not all nodes need, or can find, new
connections according to the rules of the algorithm.

We then compare the value of the cluster size at the end
of healing, P2, with the cluster size before healing, P1, for
different values of p (Fig. 5). In lattices, we know that
close to the threshold p ∼ 0.5 the system is in the criti-
cal phase so that a small number of links are enough to
restore connectivity. However, in the plot we can see the
large improvement that healing brings to the tolerance
of the system. Even though the network disintegrates
very rapidly as we remove more nodes and increase p to
p ∼ 0.6, the largest cluster after self-healing practically
includes all remaining nodes, so that P2 ∼ 0.95. Moving
from p = 0.6 to p = 0.7 causes a much greater damage
which cannot be restored via our self-healing process and
P2 abruptly drops to P2 ∼ 0. In practice, the self-healing
algorithm has managed to delay the location of the crit-
ical point from p ∼ 0.5 to p ∼ 0.7. This simple behavior
of either a fully connected or fully disconnected cluster
is rather idiosyncratic of the highly organized configura-
tion of nodes in the lattice, which is not found in random
models and real-world networks, as we show below.

The Erdos-Renyi network (with average degree 〈k〉 =
3) follows a similar pattern where removing 70% of the
nodes results to isolated clusters, P1(p) ∼ 0. After heal-
ing with our algorithm the largest cluster size encom-
passes a large part of the remaining nodes, P2(p) ∼ 0.8.
This striking difference indicates that the remaining clus-
ters remain close to criticality and relatively close to each
other, since they can be merged when nodes add new lo-
cal links with rmax=2. Similar improvement is found for
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the case of scale-free networks with different degree ex-
ponents.

F. Model vs Real-World Networks

An important difference between random model net-
works and real-world networks is usually the level of orga-
nization. For instance, typical empirical networks exhibit
higher degrees of clustering and modularity, features that
are missing in the randomly built networks [32]. Never-
theless, this organization can potentially drastically im-
pact the outcome of the healing process. In the examples
that we studied (Fig. 5) we see that self-healing is equally,
if not more, efficient in restoring the largest cluster in
empirical networks. In certain cases, e.g. the friendship
social network in Irvine or the email exchange network,
practically all the surviving nodes belong to the same
cluster after healing, even though the starting network
state is highly disintegrated, i.e. P1(p) < 0.2. Of partic-
ular importance is the result for the network of airport
connections, because it is a spatially embedded structure
and we can approximate spatial distance with network
distance, at least to demonstrate the principle that longer
jumps may be very costly to implement. The example
highlights the importance of small rmax values. If an air-
port closes down then the traffic needs to be redirected
to another airport in the general area, but it is imprac-
tical if this distance remains unrestricted. Additionally,
in this example connectivity is crucial for the network to
be functional (one needs to be able to reach any destina-
tion). Under the conditions of our self-healing algorithm,
the large-scale connectivity was almost certain in all our
simulations, with more than 80% of the nodes belonging
in the largest cluster. The large fluctuations, especially
in the extreme case where 90% of the nodes have been
removed, are the result of the small network size, which
includes 332 nodes. This demonstrates that healing may
become unpredictable for very small networks, where one
or two links may be enough to connect the small number
of clusters.
The percentage of nodes that find themselves with

fewer neighbors than the threshold increases with the
number of nodes that are removed. These nodes do not
necessarily manage to find a new neighbor within the dis-
tance rmax=2, either because all these nodes have been
removed or because there is already a connection. As we
show in Fig. 6, all nodes in lattice and in model random
networks manage to find a new neighbor as long as less
than 50% of the initial nodes have been removed. As the
extent of damage increases, a larger percentage of nodes
need new connections, but less than half of those manage
to do that. On the contrary, in real networks all nodes
manage to find new connections almost independently of
the extent of damage in the network.
Even though functionality is restored, since the ma-

jority of nodes can now communicate with each other
through the structural repair that reconnected a large
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FIG. 6. (Color online) Fraction of the surviving nodes that
successfully established new connections, fs, as a function
of the fraction of nodes, f , that attempted to establish new
connections following the removal of a percentage p of nodes.
The value of p increases from left to right. The points that are
closer to the diagonal indicate a higher percentage of success.

cluster, it is not clear what impact restoration of this
particular structural feature may have on other topolog-
ical/structural features. We therefore study the effect
on the modularity of the healed network compared to
the modularity of the undamaged network as an exam-
ple of a potentially important structural feature which
is not necessarily correlated to the size of the largest
cluster. We use the standard definition for modular-
ity Q, as the fraction of links between modules, minus
the expected number of links within these modules for
a random graph with the same node degree distribution
[32]. For Fig. 6 we report the maximum possible value
of Q, using the algorithm from Ref. [33]. In Fig. 7 we
show changes in modularity after a random removal of
pN nodes and the application of the self-healing algo-
rithm. A common trend in both model and real networks
is that modularity increases considerably with increasing
p. This shows that the healing effect tends to create sig-
nificantly stronger modules, and nodes tend to become
more connected within the same network area. Of course,
this is the result of the short-range links in the presented
simulations, where rmax=2. In practice, the healing al-
gorithm replaces the links that are removed with local
links, enhancing thus the modular character of the net-
work. The only instances where modularity decreases are
at large values of p in the model networks. This result
can be explained by Fig. 6 where only a small percentage
of nodes manage to find new connections and therefore
the form of the resulting structure is not very different
than the damaged structure.

G. Self-Healing vs Random Repair

The efficiency of our method can be tested against
a random insertion of links under a similar set of con-
straints, as for the self-healing algorithm. For example,
we can add the same number of links at the same dis-
tance, but random nodes are chosen to create new links,
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FIG. 7. (Color online) Effect of the self-healing process on
the network modularity, as a function of the removed nodes.
The modularity at p = 0 corresponds to the original network
modularity. For p > 0, we consider the modularity of the
network after healing with rmax = 2.

rather than those who have lost most of their neigh-
bors. In this way, we can detect if the crucial factor
is the number of edges or the particular features of the
nodes that select to establish new connections. Even if
our model results did not exceed those of random inser-
tion, our method is based on a self-organized algorithm
that provides a simple local decision scheme, where there
is no need for a central authority to coordinate actions
around the network. Still, we demonstrate below that
our method, which we tested in a number of model and
real-world networks, significantly exceeds the results of
random decisions.
We assess the effectiveness of the algorithm by com-

paring our results to such a null model. In this way,
we can determine if there is a benefit to choosing which
nodes create new links based on qc. For each realization
of nodes removal with the self-healing algorithm we cal-
culated how many new links were introduced in the sys-
tem, resulting to P2(p). We then added the same number
of links to the damaged network, but this time the link
originated from a random node instead of the node that
had lost more than a fraction qc = 50% of its neigh-
bors. These new links were established within a distance
rmax=2, so that the total cost remained the same in both
cases. The result in the top row of Fig. 8A shows that
the self-healing algorithm performed better in all cases
compared to this null model. The reason is that when a
random node decides to establish a new link, it is possi-
ble that many of its neighbors still survive and the new
link does not bring together isolated parts of the network.
This is also why when the removed percentage of nodes
is small, e.g. 10-20%, there is no increase in the largest
cluster size, unless we use the nodes that have lost most
of their neighbors.
We also studied the effect of rmax on the results

(Fig. 8). As expected, we find that as we increase the
maximum distance for new connections, the repair pro-
cess becomes more efficient. As shown in the plot for
the self-healing algorithm, rmax = 3 is already enough
to completely restore connectivity among all the remain-
ing nodes, practically under any conditions. The optimal
case is found for rmax ≥ 4. The results for the random
model are consistently inferior to those of our algorithm.
The trend of better healing with increasing rmax remains,
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FIG. 8. (A) Top row: Comparison of the result for the self-
healing algorithm (filled symbols) with adding the same num-
ber of links starting from random nodes (empty symbols). In
both cases, rmax = 2. Bottom row: Comparison of the self-
healing algorithm (continuous lines) with the random case
(dashed lines), for different rmax values. From bottom to top:
rmax=2, 3, 4, and ∞. (B) Comparison of the largest cluster
size after an intentional attack.

but now even for unrestricted rmax = ∞, the value of the
repaired largest cluster cannot reach the optimal value,
P2(p) = 1.

H. Random vs Targeted Attack

Until now, we studied the healing process on networks
where the nodes were randomly selected for removal. An-
other important removal technique simulates intentional
attack on the network, where nodes are removed in de-
scending order of their degree, i.e. the highest connected
nodes are removed first. This attack requires a much
smaller percentage of removed nodes to destroy the net-
work, since all the hubs that glue the network together
are removed and the network disintegrates into small
pieces. The self-healing algorithm is efficient in this case,
too (Fig. 8B). The critical value of p for a scale-free net-
work with degree exponent γ=2.5 moves from p ∼ 0.05
to p ∼ 0.5. This is a huge difference that allows the
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network to operate even after losing the most connected
nodes in its backbone. Similarly, in the case of the air-
port connection network, the removal of the hubs leads
to a disconnected network when 20% of the nodes are re-
moved, but the healed network manages to preserve the
largest cluster even if more than 60% of the nodes are
removed.

III. DISCUSSION

In this paper we make explicit a fundamental feature
of damage in complex networks and use it to design a
very simple self-healing algorithm to restore connectivity-
based function. We show that even just this simple ex-
ample is enough to restore large-scale connectivity in a
severely damaged network, while keeping the reconnec-
tion cost low. In this particular scenario of structure
enabling function, a node decides based on its own link
losses to add a new link to one of its second neighbors
(provided at least one survives) without considering any
other parameter. This approach has the added benefit
that it is strictly local, and every node can make the deci-
sion autonomously. The cost is also lower with this strat-
egy compared to selecting random nodes for the same
number of links.

The critical insight that working to restore function
may not rely on restoring the initial structure allowed us
to design a threshold, qc. This threshold acts as a natural
filter to direct the addition of the links towards the areas
where function has been most affected by the damage in
this connectivity-based scenario.

In fact, this strategy represents a worse-case scenario,
because the nodes make new connections only after the
removal of all nodes, or equivalently if the attack takes
place faster than the nodes can react. In an alternate ver-
sion, the algorithm could be applied in a dynamic fashion
so that a node continuously monitors its neighbors and
decides to add new links based on current information,
i.e. as soon as it notices that the number of its neighbors
falls below the threshold. Under this scenario, a node
could establish more than one new links during the pro-
cess and it would be easier to preserve long-range connec-
tivity, simply because of the addition of a larger number
of links. What we showed above is that this extension is

not necessary since a similar result can be achieved with
much fewer new connections.
A few interesting parallels can be drawn between the

self-healing algorithm and Achlioptas processes [34]. In
the latter, we start from an empty network of N nodes
which grows by adding new links according to the pro-
cess rules. These rules can either favor or discourage the
emergence of a largest cluster. In our case, the starting
point is an already fractioned network, and the goal is
to merge all clusters into one giant network with as few
links as possible. A key difference is that we only use
local decisions, while in typical Achlioptas processes the
information of the involved cluster sizes is required.
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IV. APPENDIX: DATASETS

We analyzed four different networks, based on the fol-
lowing datasets:

1. Email network: Email messages sent at the Com-
puter Sciences Department of London’s Global
University http://lisgi1.engr.ccny.cuny.edu/

~makse/SOCIAL/Emailcontacts.dat.gz.

2. Cond-mat co-authorship: The network of co-
authorship in preprints submitted to the cond-mat
section of arxiv.org [35].

3. Irvine social network: The dataset was down-
loaded from http://toreopsahl.com/datasets/

#online_social_network and has been analyzed
in [36]. It includes online messages sent among
students at the University of California, Irvine,
through a Facebook-like Social Network.

4. USA airport network: A link indicates that
two networks are connected by a direct flight.
This dataset refers to flights in 1997 and can
be downloaded at http://vlado.fmf.uni-lj.si/
pub/networks/data/mix/USAir97.net.
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