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A general model for random walks (RWs) on networks is proposed. It incorporates damping and
time-dependent links, and it includes standard (undamped, noninteracting) RWs (SRWs), coalescing
RWs and coalescing-branching RWs as special cases. The exact, time-dependent solutions for the
average numbers of visits (w) to nodes and their fluctuations (σ2) are given, and the long-term σ-w

relation is studied. Although σ ∝ w1/2 for SRWs, this power law can be fragile when coalescing-
branching interaction is present. Damping, however, often strengthens it but with an exponent
generally different from 1/2.

PACS numbers: 89.75.Hc, 89.20.Hh, 89.75.Da

I. INTRODUCTION

Complex networks have diverse applications in biol-
ogy [1–4], finance [5], traffic [6, 7], the world-wide web [8],
social networks [9], etc. In these networks, random walks
(RWs) are often used as a generic model for the flow of the
quantity of interest [2–4, 6, 8]. Two RW models, namely,
the standard RW (SRW) and the coalescing RW (CRW),
are of particular interest because of their widespread ap-
plications. For SRW, its applications are well-known.
On the other hand, a specialized version of CRW can be
mapped to the voter model [10], which has numerous ap-
plications such as spatial conflict [11], diffusion-controlled
reaction [12], opinion dynamics [9, 13], population genet-
ics [14], etc. In a SRW, non-interacting random walk-
ers (RWers) freely diffuse on the network, whereas in a
CRW, RWers reaching a node coalesce into one before
moving to the next node. Interestingly, these two seem-
ingly distinct RW models can be treated under one uni-
fied framework, because in either model RWers reaching
the same node become indistinguishable. Capitalizing
on the indistinguishability, we present in this paper a
general formalism that covers SRW and CRW as special
cases, handles the flow loss (damping) that is prevalent
in most networks, and can be applied to networks with
time-dependent links. We give the exact solutions for the
average number of visits (wi) to node i and its variance
(σ2

i ) at any given time.
Calculating σ with full time-dependence can be useful

for many reasons. First, when σ is used to define ex-
treme events [15, 16], its short-time solution is helpful
in disaster preparedness. Second, systems with intrin-
sic time-dependence may never reach equilibrium and
require a fully time-dependent solution. For instance,
effective disease control requires good estimates of the
growth/movement of the infected population and their
fluctuations as functions of time. Third, it allows us to
broaden the scope of the extensively studied CRW model
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to include its long-time σ-w relation, which, to the best of
our knowledge, has not yet been explored. This relation,
however, has been extensively studied in other context.
For example, Menezes and Barabasi [8] studied several
real-world networks and found σ ∝ wα, with α close to
either 1/2 or 1. They argued that strong external driv-
ing causes α ≈ 1 and that α can be smaller (still ≥ 1/2)
when the externally induced fluctuations are modest. For
a SRW, Meloni et al. [17] showed analytically that absent
any external force α = 1/2 in the stationary regime and
that in some cases even a small external drive can result
in an α close to 1. Defining w to be the total number
of visits to a node multiplied by a power of its degree,
Eisler and Kertesz [18] concluded that 0 < α < 1 even
when there is no external driving. Duch and Arenas pro-
posed a model in which, after arriving at a node, nonin-
teracting RWers wait in a queue to be processed. They
showed that in the absence of a driving force α can vary
between 1/2 and 1 [6]. Huang et al. showed that for
small networks the power law fails [19]. To compare with
the aforementioned results, we also provide the long-time
σ-w relations for both the SRW and CRW.

II. MODEL

In our model, RWers, each carrying one unit of infor-
mation (content), are injected into an undirected net-
work (with N vertices) through “source” nodes. At a
given time, the numbers of RWers entering the network
through different source nodes are assumed to be uncor-
related and independent of the content already present in
the system. However, these numbers and also the entry
points (source nodes) may change with time. Containing
no disjointed component, the network is represented by
A(t), a generally time-dependent adjacency matrix. To
incorporate damping, we take an approach that is sim-
ilar to that of Bonner et. al. [20], i.e. the content of
each RWer is multiplied by a factor of r < 1 after each
time step (unlike “mortal” RWers [21, 22], the RWers in
our model do not die instantly). Therefore, the RWers
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arriving at node m at time t may not carry the same con-
tent. The total weight wm(t) of node m is defined as the
sum of the contents of all RWers arriving at this node at
time t. Before diffusing at time t + 1, the weight wm(t)
is equally redistributed between Nm(t) new independent
RWers. In other words, the RWers reaching a node first
coalesce and then branch to identical RWers each carry-

ing wm(t)
Nm(t) unit of information. This aspect of our model is

different from that of the branching RW models (widely
studied in the mathematical literature [23]) in which the
weight is not conserved (i.e. after branching the RWers
carry the same weight as the original RWer). This ef-
fectively introduces a “mixing” interaction that leads to
indistinguishability. The number of packets arriving at
node m at time t and those departing at t + 1 (Nm(t))
may differ. However, if they are set equal and r = 1,
SRW is recovered. The model reduces to the CRW, if
Nm(t) = 1, which in turn can be considered as a special
case of coalescing-branching RW (CBRW) where Nm ≥ 1
is independent of both wm(t) and t. In our analysis we
consider the general case in whichNm(wm(t), t) is a func-
tion of wm(t) and t. At time t + 1, the Nm(wm(t), t)
packets move independently to one of nm(t) neighbors of
node m with probability 1/nm(t).
Let w(t) be a row vector whose elements are the total

weights of the nodes of the network, and ws(t) be a row
vector representing the injected content into the system
at time t. A possible value for w(t+ 1) is then given by:

w(t+ 1) = rw(t)P(t) +ws(t), (1)

where P(t) is a row-stochastic matrix whose average
〈P(t)〉, denoted by P (t), is given by Pij(t) = Aij(t)/ni(t).
Equation 1 for the average values can be written as

w(t + 1) = r
∑

w

π
w
w(t)〈P(t)〉

w
+ ws(t),

where the sum is over all possible values of w(t), π
w

is
the probability of the weight vector to be w(t), 〈•〉

w
is

the average of • provided that the weight vector is w(t),
w(t) ≡ 〈w(t)〉, and ws(t) ≡ 〈ws(t)〉 = ws(t). Although
in general P(t) depends on w(t), it is easy to see that
〈P(t)〉

w
= 〈P(t)〉 = P (t), and hence

w(t+ 1) = r w(t)P (t) + ws(t), (2)

Using Eqs. 1 and 2 one finds the following for the co-
variance matrix C(t) ≡ 〈wT (t)w(t)〉 − w(t)Tw(t):

C (t+ 1) = r2[P (t)TC(t)P (t) +X(t)] (3)

X(t) = 〈P(t)Tw(t)Tw(t)P(t)〉 − P (t)T 〈w(t)Tw(t)〉P (t),

where T denotes transpose.To find X(t), we notice

〈Pmi(t)wm(t)2Pmj(t)〉=
∑

w

π
w
〈Pmi(t)Pmj(t)〉wwm(t)2.

Assuming that node i is connected to node m and that

there are Nm packets present at this node, one can write

〈P2
mi〉 =

Nm
∑

n=1

P(n)

(

n

Nm

)2

=
Nm + nm − 1

Nmn2
m

P(n) =
Nm!

n!(Nm − n)!

(

1

nm

)n (

1−
1

nm

)Nm−n

where P(n) is the probability for node i to receive n (out
of Nm) packets (dependence on time and wm(t) have
been omitted for simplicity). Given that node i has re-
ceived n packets, the average number of packets sent to
node j 6= i is (Nm − n)/(nm − 1), and so

〈PmiPmj〉 =
Nm
∑

n=1

P(n)
n(Nm − n)

N2
m(nm − 1)

=
(Nm − 1)

n2
mNm

,

provided that nodes i and j are both connected to node
m. In other words

〈PmiPmj〉 =
δij
Nm

Pmi +
Nm − 1

Nm

PmiPmj . (4)

Note that when calculating X(t), terms containing
〈wm(t)wk(t)〉 cancel out, and hence Eq. 4 can be used to
find

X(t) = −P (t)T diag(v(t))P (t) + diag(v(t)P (t)), (5)

where diag(v(t)) is a diagonal matrix whose diagonal
elements are the components of vector v(t) given by
vm(t) = 〈wm(t)2/Nm(wm(t), t)〉.

III. RESULTS AND DISCUSSION

Equations 3 and 5 are valid for any RW model that
follows Eq. 1 and provide an exact, recursive solution for
time-dependent fluctuations in a network with a time-
dependent adjacency matrix. However, in the rest of this
paper we assume that {Aij} are time-independent, and
mainly focus on the effect of r on the solutions for the
special cases of SRW, CRW and CBRW under special
conditions. One should keep in mind that, for given r
and ws, in a time-independent network, w(t) is the same
for all RWs that are described by the proposed model,
and is given by

w(t) =

t
∑

n=0

ws(t− n)rnPn.

However, σ(t) (a vector consisting of the node-wise stan-
dard deviations) depends on the details of the RW model,
i.e. v(t). It should also be noted that both w(t) and σ(t)
depend on ws and how it varies with time. For simplicity,
here we only consider RWs in which ws(t) either is a con-
stant or vanishes after t = 0 (ws(t > 0) = 0; RWers are
injected into the system only at t = 0). The latter case
(ws(t > 0) = 0) is considered only for undamped SRW
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and a special but important case of undamped CRW in
which RWers enter the system from all nodes at t = 0. In
what follows, we first calculate w(t) and σ(t) (for some
important special cases) in the absence of damping, and
then investigate the effect of damping. In each case the
long-term σ-w relation is also studied, while the formal
asymptotic analyses are provided in the Appendix.

A. Undamped RWs (r = 1)

In an undamped RW on a time-independent network,
the solution for w(t) is further simplified to w(t) =
∑t

n=0 ws(t − n)Pn. If RWers are injected into the net-
work only at t = 0, i.e. if ws(t > 0) = 0, we get
w(t) = ws(0)P

t. On the other hand, when ws is con-
stant we have

w(t) = ws

t
∑

n=0

Pn,

which may be rewritten as

w(t) = NRW(w∞t+ w1 + w2),

where NRW =
∑

i wsi is the number of RWers in-
jected into the system at each time step, w1 =

1
NRW

ws

∑

∞

n=0(P
n − P∞) is a constant, and w2 =

− 1
NRW

ws

∑∞

n=t+1(P
n−P∞) has a decreasing magnitude

with time. Here P∞

ij =
nj

2E with E being the number of
edges in the network. Therefore, when ws is constant,
w(t → ∞) ≈ NRWw∞t, where w∞i

= ni

2E . This ex-
pression for w(t → ∞) is equivalent to the previously
reported formula for SRW (see, for example, [24]). As
mentioned before, the solution for σ(t) depends on the
type of RW. In the following paragraphs we consider a
few cases of interest.

1. SRW when ws(t > 0) = 0

With Nm(t) = wm(t), a SRW has v(t) =
〈wm(t)2/Nm〉 = w(t). Assuming ws(t > 0) = 0 (w(t) =

ws(0)P
t) Eq. 3 is simplified to C̃(t) = PT C̃(t − 1)P =

P tT C̃(0)P t, where C̃(t) = C(t)− diag(w(t)). Therefore,

σ(SRW; t)(2) = w(t)−ws(0)(P
t)(2) = ws(0)[P

t−(P t)(2)],

where (2) denotes element-wise square and σ(t)(2) is a
vector consisting of the diagonal elements of C(t) (note
that C(0) = 0 and that w(0) = ws(0)). If the smallest
eigenvalue λm of P is not −1, P t≫1 approaches P∞ [15,
24]. However, when λm = −1, P t≫1 alternates between
two matrices whose average converges to P∞. Therefore,

σ(SRW; t → ∞)(2) ≈ NRW(w∞ − aw2
∞
),

where a = 1 + δλm,−1. This result is in agreement with
the previously reported long-term σ for SRW (see, for
example, [15]).
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FIG. 1. (Color) Plots of σ and w at different times for all
nodes of a scale-free (γ = 3) [25] with 1000 nodes, traversed
by coalescing RWers that have entered the system from all
nodes at t = 0. The nodes are sorted based on their degrees,
i.e. if the index of node i is higher than that of node j, then
ni ≥ nj . After a long enough time both w and σ (although
with different time scales) converge to values that only depend
on the node degrees.

2. SRW with a constant ws

If the SRWers enter the system at a constant rate and
from the same sources, i.e. if ws is constant, we can add
their variances to get

σ(SRW; t)(2) = w(t) − ws

t
∑

n=0

(Pn)(2). (6)

Since the total number of SRWers at t is NRWt and the

long-time variance for a single SRWer is w∞ − aw
(2)
∞ , we

get σ(2)(SRW; t → ∞) = NRWt(w∞ − aw
(2)
∞ ). Hence,

if ni/2E ≪ 1 (e.g. for typical large networks), we get
σ(2)(SRW; t → ∞) ≈ w(t → ∞), which indicates α ≈
1/2 for SRW

3. CRW when wsi = δt0

In a CRW, lacking a simplified short-term solution sim-
ilar to Eq. 6, one must use Eq. 3 to find σ(t) (Here
Nm = 1 and vm(t) = 〈wm(t)2〉 = wm(t)2 + σm(t)2). As
an example, we consider a special case of CRW in which
undamped CRWers are injected from all nodes into a
time-independent network at t = 0. This example is of
special interest becuase it can be mapped to the exten-
sively studied voter model [10]. However, previous stud-
ies focus on calculating the average time for all RWers to
coalesce. Our results complement published reports by
giving a solution for w and σ. Using a random scale-free
network, we solve the time-dependence of w and σ, as
shown in Fig. 1. The figure indicates that after a short
time, nodes with the same degree do not necessarily have
the same w or σ2. After a long time, however, nodes with
the same degree converge to the same values. This be-
havior is expected, because all RWers eventually coalesce,
after which the model becomes equivalent to a SRW.
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4. CBRW with a constant ws

It can be shown (see the Appendix) that when ws

is constant and for large t, C(t) = C∞t2 + O(t) for
CRW and CBRW. Substituting this asymptotic form into
Eqs. 3 and 5 (with v(t) = (1/Nm)(wm(t)2 + σm(t)2)), we

find the diagonal elements of C∞ (called σ
(2)
∞ (CBRW))

to be (see the Appendix)

σ(2)
∞

(CBRW) = (N2
RW/a)[w∞B − aw(2)

∞
], (7)

where

B = [I +DQ (I −Q)−1]−1,

Dml = δml

Nm − 1

Nm

,

Q =

∞
∑

n=0

[P (Pn)(2) − (Pn+1)(2)],

and I is the identity matrix. Remember that a CRW has
Nm = 1 (for all m), thus B = I and the result is very
similar to that of SRW, albeit the latter grows linearly
with time. In addition, if ni/2E ≪ 1 (e.g. for typical
large networks), SRW has σ(2)(t → ∞) ≈ w(t → ∞)
while CRW has σ(2)(t → ∞) ≈ NRWt

a
w(t → ∞), both

indicating that α ≈ 1/2. Note that one should investigate
the relation bwtween σ and w̃ = w − ws rather than w,
because the added RWers at each step (ws(t)) do not
diffuse until the next step. However, at this limit w ≈ w̃.
In Fig. 2 (a), where log-log plots of σ vs w̃ are shown,

we see that the data points corresponding to CRW (top
line), and those associated with SRW (bottom line), lie
on lines with slopes that are very close to 1/2 (α = 0.498).
On these two lines, each point represents a population of
nodes with the same degree that also have the same w̃
and σ. For comparison, Fig. 2 (a) also shows the results
for the CBRW (where B is not the identity matrix) when
branching occurs based on the node degrees (i.e. Nm =
nm). In this case, nodes with the same degree do not
necessarily have the same σ. Although α = 0.502 (when
a least-square fitting is applied to the entire data set),
the quality of the fit, measured by R2, is lower (0.963).

5. Generalized CBRW with a constant ws

CBRW, which includes CRW as a special case, can be
furthur generalized to incorporate a branching probabil-
ity q. In such a model, which we call generalized CBRW
(GCBRW), the content of node m either branches, with
probability q, into Nm > 1 packets or moves as one
(Nm = 1), with probability 1− q. It is easy to show that
for such a model Eq. 7 is valid if D is replaced by qD. For
comparison with CRW (q = 0) and CBRW (q = 1), the
results for q = 0.5 are also shown in Fig. 2(a). Interest-
ingly, a much larger spread in σ is observed for GBCRW
when q = 0.5. Again α remains close to 1/2 (0.504), al-
though the fit quality is poor (R2 = 0.688), suggesting

that the power law can be fragile upon introduction of
coalescing-branching interaction among the RWers.

B. Damped RWs (r < 1)

We now discuss the important effect of damping,
present in most real-life networks. For example, pro-
tein degradations by proteases can be viewed as damp-
ing in protein-protein interaction networks [2–4]. Damp-
ing also brings out a fundamental difference between
GCBRW/CBRW/CRW and SRW: unlike GCBRWers,
SRWers are generally distinguishable when r < 1. With
multiple damped SRWers (dSRWers), Eq. 1 does not hold
(although the problem is solvable, see the Appendix). To
preserve indistinguishibility, the simplest choice is to in-
troduce the coalescing-branching interaction among the
RWers in GCBRW or its variants. Here, we compute the
long-term (steady state) σ for a GCBRW in which ws

and Nm are time-independent. The steady state has

w = ws

∞
∑

n=0

rnPn = ws(I − rP )−1.

Also, C(t + 1) = C(t) = C and X(t) = X are
constants, hence Eq. 3 can be solved to get C =
∑∞

n=0 r
2n+2PnT

XPn or σ(2) = v Q (the diagonal values
of C), where Q is generalized to incorporate damping,
i.e.

Q =

∞
∑

n=0

r2n+2[P (Pn)(2) − (Pn+1)(2)].

Note that for a GCBRW, vm(t) = (σ2(t) + w2(t))K,
where K = I − qD. Hence

σ(GCBRW; t = ∞)(2) = w(2)
[

(I −KQ)−1 − I
]

. (8)

Equation 8 implies that, unlike the r = 1 case, the
nodes do not necessarily cluster based on their node de-
grees. In fact, as shown in Fig. 2 (b), when r ≪ 1 and
with a single source, the nodes are clustered based on
their distances from the source, because the RWers tak-
ing the shortest path from the source to a given node
carry much larger weights than the others. Thus, both
node degrees and proximity to the source may contribute
to node population formation. As demonstrated in Fig. 2
(c), these two competing effects can significantly change
α. The figure indicates that when there is only one
source and in a damped (r ≤ 0.95) scale-free network
with 1000 nodes, σ and w̃ can be well fitted (R2 > 0.95)
by a power-law relation with α > 1/2. Indeed, αs larger
than 1/2 have been reported in real-world complex net-
works [17, 26]. However, α < 1/2 can occur depending
on the network size (see the Appendix). Interestingly,
deviation of α from 1/2 is significant even when damp-
ing is very small (especially for CBRW, i.e. q = 1), a
phenomenon that is expected to be more pronounced in
larger scale-free networks (see the Appendix).
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FIG. 2. (Color) (a) Plots of σ vs w̃, calculated using Eqs. 2,
3 and 5 at t = 6 × 105, are shown for a scale-free network
with 1000 nodes when r = 1. (b) logarithmic σ-w̃ plots are
shown for CRW and CBRW with a randomly picked source
and when r = 0.1. Equation 8 was used to calculate σ. When
computing Q, the series was truncated after n terms, where
n is the first integer for which rn < 10−16. The nodes are
color-coded based on their distances from the source. (c) The
average α is plotted as a function of r and for different values
of q for a GCBRW, when there is only one source. An α was
calculated corresponding to each node (selected as the single
source) and the results were averaged. In each case α was
computed by a least-square linear fit. The error bars show
three times the standard deviations in α.

Evidently, the system parameters such as r, q (if such
a probability is introduced in the model), and the num-
ber of sources influence how the (w̃, σ) pairs scatter on
the log-log plane, thus determining the goodness of a
power-law fit. A complete investigation of how the data
distribution, e.g., the shapes of data point clusters and
the spread size within each cluster, varies with the sys-
tem parameters is beyond the scope of the current study,
but it definitely deserves to be further investigated.

IV. CONCLUSIONS

In summary, our RW model incorporates three dis-
tinguishing features: time-dependence, information loss
(damping, r ≤ 1), and coalescing-branching interac-
tions among RWers. This model is general and in-
cludes widely studied SRW and CRW (and its variants
CBRW/GCBRW) as special cases. Exact, node-wise so-
lutions are provided for w̃ and σ. For time-independent
networks, we also numerically investigate, when t ≫ 1,
whether σ and w̃ are related by a power law. It is shown
that in undamped (r = 1) GCBRW, although a power-
law relation (σ ∝ w̃α) can be fitted with α ≈ 1/2, the
quality of fit can be poor for intermediate q values. How-
ever, for a single source and when the pervasive damping

effect is considered, the power-law relation becomes ro-
bust (R2 > 0.95 for r ≤ 0.95) with a new twist: the
exponent α can easily take a value other than 1/2.
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APPENDIX

A. Asymptotic behavior

As shown in the main text, for an undamped system
with time-independent ws and P , we have

w(t) = NRW(w∞t+ w1 +O(t−η)),

where NRW =
∑

i wsi is the number of RWers in-
jected into the system at each time step, w1 =

1
NRW

ws

∑∞

n=0(P
n − P∞) does not depend on time, and

η > 0. This solution is valid for any RW model that is
described by Eq. 1, including SRW and CBRW.
For the covariance matrix, we assume the asymptotic

form

C(t) = C∞tβ +O(tν) (ν < β),

and find β and C∞. Note that C∞, and any other coeffi-
cient in the asymptotic expansion, has the following prop-

erty P∞
T

C∞P∞ = 0. To prove this, we observe that for

any matrix X , [P∞
T

XP∞]ij = (ninj/(2E)2)sum(X),
where sum(X) denotes the sum of all elements of

X . Therefore, for any vector v, P∞
T

[−PTdiag(v)P +

diag(vP )]P∞ = P∞
T

[diag(v(P − I))]P∞ vanishes, be-
cause

∑

k vk =
∑

k,k′ Pk′kvk′ (recall that
∑

k Pk′k = 1).
Thus, Eq. 3 implies that

P∞
T

C(t+ 1)P∞ = P∞
T

C(t)P∞

= · · · = P∞
T

C(0)P∞ = 0,
(A1)

because C(0) only has zero matrix elements. Hence, any
coefficient in the asymptotic expansion of C(t) must also
satisfy Eq. A1. In the following subsections we use the
asymptotic expansion of w(t), and Eq. A1 to find the
asymptotic behavior of σ(2)(t) in SRW and CBRW, pro-
vided that P and ws are time-independent.

1. SRW

Since w(t → ∞) = NRWw∞t, Eq. 6 suggests that, in a
SRW and in the limit of large t, the leading term of σ(2)(t)
grows linearly (or slower) with time. This is because the
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second term in Eq. 6 cannot be larger than the first.
Therefore, β ≤ 1 and we first attempt the largest possible
β value, i.e., C(t) = C∞t + O(tν), where ν < 1. Recall
that for a SRW v(t) = w(t) = NRW(w∞t+w1+O(t−η)).
Substituting these values in Eqs. 3 and 5 and keeping
the leading terms, we find

C∞ = PTC∞P+

NRW[−PTdiag(w∞)P + diag(w∞P )]
(A2)

Equation A2 can be iteratively solved to get C∞ =

NRW

∑

∞

n=0 P
nT

[−PTdiag(w∞)P +diag(w∞P )]Pn. The

diagonal elements of C∞ are then given by σ
(2)
∞ =

NRWw∞Q, where Q =
∑∞

n=0[P (Pn)(2) − (Pn+1)(2)].

Noting that w∞P = w∞ and w∞(P∞)(2) = w
(2)
∞ , we

find w∞Q = w∞ − aw
(2)
∞ . Thus

σ(2)
∞

(SRW) = NRW(w∞ − aw(2)
∞

). (A3)

To find the subleading term of σ(2)(t), we assume

C(t) = C∞t+ C1t
ν +O(tν0) (ν0 < ν < 1),

and find the largest ν for which C1 does not vanish. For
any ν > 0, substituting C(t) in Eq. 3 and taking the
subleading contributions (terms in tν) results in C1 =

PTC1P = P∞
T

C1P
∞ = 0. If ν = 0, however, the same

procedure results in

C1 = PTC1P+

NRW[−PTdiag(w1)P + diag(w1P )]− C∞.
(A4)

Solving this equation iteratively, we find the following for
the diagonal elements of C1 (denoted by ρ1)

ρ1 = NRWw1Q− g(C∞), (A5)

where g(•) = (
∑∞

n=0 P
nT

•Pn)diag, and (x)diag is a vector
comprising the diagonal elements of the matrix x.

2. CBRW

Assuming Nm is also time-independent, we consider
the asymptotic form C(t) = C∞tβ + O(tν) and find the
largest β for which C∞ is nonzero (here ν < β). In a
CBRW, v(t) = (σ(2)(t) + w(2)(t))K with K = I − D,
where (as defined in the main text) Dlm = δlm

Nm−1
Nm

.

Therefore, v(t) takes the asymptotic form of v(t) =
v∞tµ + O(tµ0), where µ0 < µ, µ is the maximum of 2
and β, and

v∞ = (b1σ
(2)
∞ + b2N

2
RWw(2)

∞ )K, (A6)

where b1 and b2 are either 0 or 1 depending on β: if
β < 2, b1 = 0 and b2 = 1, if β = 2, b1 = b2 = 1, and if
β > 2, b1 = 1 and b2 = 0. Note that for the special case
of CRW, K = I. With the assumption that β ≥ 2, we

substitute C(t) and v(t) in Eqs. 3 and 5 and keep only
the leading terms to find

C∞ = PTC∞P − PTdiag(v∞)P + diag(v∞P ) (A7)

From Eq. A7 we get C∞ =
∑

∞

n=0 P
Tn

[−PTdiag(v∞)P +

diag(v∞P )]Pn or σ
(2)
∞ = v∞Q. If β > 2, and so v∞ =

σ
(2)
∞ K, we find σ

(2)
∞ = 0, showing that in the asymptotic

expansion of σ(2)(t) no term with an exponent larger than

2 exists. If β = 2, v∞ = (σ
(2)
∞ + N2

RWw
(2)
∞ )K, and we

arrive at

σ(2)
∞

= N2
RWw(2)

∞
(F − I) (A8)

where F = [I − KQ]−1. Equation A8 is the same as
Eq. 8 with w replaced by NRWw∞. It is easy to see that
F = (I−Q)−1B, where B = [I+DQ (I−Q)−1]−1. Also,

note that w∞Q = w∞ − aw
(2)
∞ or equivalently w

(2)
∞ (I −

Q)−1 = (1/a)w∞. Therefore, Eq. A8 can be re-written
as Eq. 7.
In a very similar way, one can show that the two sub-

sequent terms in the asymptotic expansion of C(t) are
linear and constant in time, i.e.

C(t) = C∞t2 + C1t+ C2 +O(t−ǫ) (ǫ > 0),

and that C1 and C2 satisfy the following equations

C1 = PTC1P − PTdiag(v1)P + diag(v1P )− 2C∞ (A9)

C2 = PTC2P − PTdiag(v2)P + diag(v2P )− (C∞ + C1),

where v1 and v2 are given by

v1 = (ρ1 + 2N2
RWw∞ ∗ w1)K (A10)

v2 = (ρ2 +N2
RWw

(2)
1 )K,

where ∗ denotes element-wise multiplication. Here ρ1 and
ρ2 are two vectors comprising of the diagonal elements of
C1 and C2 respectively, i.e.

σ(t)(2) = σ(2)
∞ t2 + ρ1t+ ρ2 +O(t−ǫ) (ǫ > 0).

Solving Eqs. A9 one finds

ρ1 = 2N2
RW(w∞ ∗ w1)(F − I)− 2g(C∞)F (A11)

ρ2 = N2
RWw

(2)
1 (F − I)− g(C∞ + C1)F.

It is worth noting that CRW and CBRW can both be
regarded as special cases of GCBRW with q = 0 and
q = 1, respectively (q is the branching probability). The
matrix K for CRW and CBRW is equal to I and I −D
respectively. This suggests that in general for a GCBRW
K = (I − qD). Therefore, in the case of a GCBRW, one

can use the aforementioned equations to calculate σ
(2)
∞ ,

ρ1 and ρ2 with K = (I − qD).
To compare the approximate solution given here with

the exact result obtained from Eq. 3, in Fig. 3 we plot
(in red; light gray in the print version) the maximum
relative difference between the two solutions, i.e.

∆ = max[abs((σ2
ai
(t)− σ2

ei
(t))/σ2

ei
(t))],
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FIG. 3. (Color online) The figure shows the maximum relative
difference (as defined in the text) between the exact variances
and the approximate values. The red line (light gray in the
print version) shows how ∆ decreases when the variances are

approximated by σ
(2)
∞ t2+ρ1t+ρ2. When only the leading term

(σ
(2)
∞ t2) is kept, the decrease in ∆ is much slower (blue line;

dark gray in the print version). However, after a long enough
time, the variances are well approximated by the dominant
term. The results shown in the figure were computed for
the same network used in the main text and for a CBRW. A
similar trend is observed for a GCBRW with different q values
(data not shown).
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t
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δ

FIG. 4. (Color online) For a scale-free network with 1000
nodes, the maximum relative difference between the variances
given by the SRW and CBRW (with the assumptions Nm(t) =
⌈wm(t)⌉, r = 1) is plotted as a function of time.

where σ2
ei
(t) is the exact solution for the variance of the

node i at time t, σ
(2)
a (t) = σ

(2)
∞ t2+ ρ1t+ ρ2, max denotes

maximum, and abs denotes absolute value. The figure
also shows ∆, in blue (dark gray in the print version),
when only the leading term (at large t) is considered, i.e.

when σ
(2)
a (t) = σ

(2)
∞ t2. As expected, in both cases ∆ de-

creases as a function of time, but a much faster decrease
is observed when the constant and the linear terms are
also included in the solution. The results indicate that
after a large enough time σ(2)(t) = σ

(2)
∞ t2 is indeed a

good approximation.

Our results seem to suggest that CBRW differs from

SRW significantly even without damping (r = 1). We
attribute this difference to the packet branching rule at
each node being time-independent. In fact, when Nm is
set to increase linearly with time, i.e. Nm(t) = ⌈wm(t)⌉
(here ⌈x⌉ gives the ceiling of x), at the limit of large t,
CBRW captures the key features of SRW: σ2

m(t → ∞)
grows linearly with t and the leading contribution de-
pends only on node degrees. To verify this, we numeri-
cally calculated σ2

m(t) for such a system and for the SRW,
and, for each node, computed the relative difference be-
tween the two. Figure 4 shows how

δ = maxm{|σ2
m(SRW; t)− σ2

m(t)|/σ2
m(SRW; t)}

varies with time, which clearly shows the convergence of
the two models in the limit of large t.
It is also of interest to investigate how the average total

number of packets Ntot scales with time when Nm(t) =
⌈wm(t)⌉ in comparison with the case of Nm = nm. The
results of our numerical calculations, obatained using a
randomly picked node as source and shown in Fig. 5, in-
dicate that when Nm = nm is time-independent, Ntot

converges to a constant (Fig. 5 (a)). On the other
hand, the figure indicates when Nm(t) = ⌈wm(t)⌉, Ntot,
with a good approximation, increases linearly with time
(Fig. 5 (b)). Note that the constant to which Ntot con-
verges, when Nm = nm, and the slope of the line, when
Nm(t) = ⌈wm(t)⌉, are generally dependent on the num-
ber of sources.

B. Size-dependence of the effect of small damping

In most cases even a small damping significantly
changes the power α when a single source is present. To
investigate how this effect is dependent on the size of the
network, in Fig. 6 (a) we plot the average α as a func-
tion of the number of nodes N for CRW (q = 0), CBRW
(q = 1) and GCBRW with q = 0.5, when r = 0.99.
For each N , the power α was averaged over all nodes of
100 scale-free networks with N nodes. For CBRW and
GCBRW (with q = 0.5), the figure shows a significant
deviation from α = 1/2 for all studied networks. In the
case of a CRW the deviations are smaller, but still signifi-
cant for larger networks. The figure clearly indicates that
damping, even if very small, becomes more and more im-
portant in larger networks. The average R2s are shown
in Fig. 6 (b).

C. Damped SRW

Although a network traversed by multiple damped SR-
Wers (dSRWers) is not described by Eq. 1 (because the
RWers are distinguishable), we can still find σ(2)(t) for
such a system. Since the variance of a dSRWer after t
steps is just r2t multiplied by that of a SRWer at time t,
the following can be written for a dSRW, provided that
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FIG. 5. (Color online) For a scale-free network with 1000 nodes, the average total number of packets Ntot is plotted as a
function of time when (a) Nm = nm and (b) Nm(t) = ⌈wm(t)⌉. A random node was chosen as the source. When the data
shown in (b) are fitted by a straight line (red; light gray in the print version), the slope is 1.06 with R2 being 0.999.
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FIG. 6. (Color online) (a) The average α is plotted vs the number of the nodes in the network N , when damping is very small
(r = 0.99). The error bars represent the standard deviations of α. The top, middle and bottom lines correspond to q = 1,
q = 0.5, and q = 0 respectively. (b) The average R2 is shown. The error bars are the standard deviations of R2. The top,
middle and bottom lines correspond to q = 0, q = 1, and q = 0.5 respectively.

P and ws are constant

σ(2)(dSRW; t) = ws

t
∑

n=0

r2n[Pn − (Pn)(2)]. (A12)
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