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Abstract

Using methods from condensed matter and statistical physics, we examine the transport of

excitons through the photosynthetic complex from a receiving antenna to a reaction center. Writing

the equations of motion for the exciton creation/annihilation operators, we are able to describe

the exciton dynamics, even in the regime when the reorganization energy is of the order of the

intra-system couplings. We determine the exciton transfer efficiency in the presence of a quenching

field and protein environment. While the majority of the protein vibrational modes are treated as

a heat bath, we address the situation when specific modes are strongly coupled to excitons and

examine the effects of these modes on the energy transfer efficiency in the steady-state regime.

Using the structural parameters of the Fenna-Matthews-Olson (FMO) complex, we find that, for

vibrational frequencies below 16 meV, the exciton transfer is drastically suppressed. We attribute

this effect to the formation of a “mixed exciton-vibrational mode” where the exciton is transferred

back and forth between the two pigments with the absorption/emission of vibrational quanta,

instead of proceeding to the reaction center. The same effect suppresses the quantum beating at

the vibrational frequency of 25 meV. We also show that the efficiency of the energy transfer can

be enhanced when the vibrational mode strongly couples to the third pigment only, instead of

coupling to the entire system.
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I. INTRODUCTION

The effective energy transfer in photosynthetic complexes has been one of the focal points

of experimental and theoretical studies over last decades [1–3]. Light energy is absorbed by

the pigments in the antenna systems and subsequently transferred to a reaction center, where

the created electron-hole pairs are separated and the energy is converted to chemical com-

pounds [4, 5]. The process of exciton transfer between the antenna and the reaction center

is of special interest, because of the unprecedented transfer efficiency and recent observa-

tion of the long-lived quantum coherence in the Fenna-Matthews-Olson (FMO) complex of

green sulfur bacteria [6, 7] and marine cryptophyte algae [8, 9]. The understanding of the

energy transfer processes in nature is very important for the development of future artificial

light-harvesting devices. Improved engineering could lead to even better energy-transfer

efficiency, but various challenges should be first identified and overcome.

The discovery of room-temperature quantum coherence gave rise to extended theoretical

studies and to numerous works on the subject [10–28]. Traditional Redfield-type methods

assuming a weak coupling of the excitons to protein environment fail for these systems

[19, 29]. Various approaches have been explored, such as Lindblad [13], small polaron

[10, 20], numerically-exact quasi-adiabatic propagator path integral [19, 21], non-Markovian

quantum state diffusion [23], and hierarchical equations of motion [12, 30]. Among them,

the modified Redfield [31, 32] approach demonstrates its effectiveness in the description of

the population transfer. However, this method fails to describe the coherent dynamics. This

shortcoming has been fixed in the coherent modified Redfield theory (CMRT) [33–35]. In

our paper, we use the method of operator equations of motion for the density matrix [36],

which is based on the same level of approximations as the CMRT, because it is the most

convenient approach for the direct calculation of the energy transfer efficiency.

Exciton transport occurs at elevated temperatures and in the presence of dissipative

environment, as well as in various mechanisms of quenching. Non-photochemical quenching

can decrease the energy transfer efficiency but it can also protect the photosystem in the

case of higher-than-necessary light intensity [37, 38]. The effects of the protein environment

have been widely discussed. In particular, it was suggested that the interaction with the

environment can assist exciton transport [39–46] and, moreover, can lead to a new type of

exitonic-vibrational coherence [47–50]. However, it is still an open question how this type
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of coherence affects the efficiency of the exciton transfer through the chromophore network.

In this paper, we examine the exciton propagation, through a system of many inter-

coupled chromophores, to the reaction center, in the presence of an external excitation,

radiation heat bath, quenching field, and a protein environment considered as a system of

independent oscillators. The main focus here is the coupling to a specific vibrational mode,

which cannot be treated as a heat bath. The coupling strengths of all the surrounding

components are very different, so various levels of approximations should be used [36]. In

particular, the contributions of the quenching and radiation fields, as well as that of the

reaction center, are calculated perturbatively within the secular approximation. The re-

organization energy of the protein environment is of the order of the inter-chromophore

couplings, so we have to incorporate non-Markovian effects. However, in the case of slow

protein motion and high enough temperatures, the dynamics under the time integral can be

simplified. We do not apply this approximation for the strongly-coupled vibrational mode

and also take into account the interplay of the last two processes. For all the above inter-

actions, we take into account the contributions of both diagonal and off-diagonal elements

of the density matrix. The diagonal elements for the vibrational heat bath and for the

strong-coupled vibrational mode are treated exactly, whereas the secular approximation is

used for the off-diagonal elements [33–36].

The couplings of the system to the external light source and to a reaction center are

explicitly included in our Hamiltonian. Therefore, we are able to calculate the rate of energy

transfer to the reaction center and the rate of the energy absorbtion by the system and,

correspondingly, to directly determine the efficiency of the energy transfer. Previously, [45,

46, 51, 52], the efficiency was calculated indirectly by the population of the last chromophore

in the chain. It should be also emphasized that our approach is not restricted to the single-

exciton-propagation case, and the chromophore network can contain as many excitons as

the number of chromophores. However, we neglect the exciton annihilation processes [53]

which are important for the systems with high exciton density. Including such effects are

beyond the scope of our paper and will be addressed in future research.

The couplings of the excitons to a blackbody radiation field and to a quenching field

are also explicitly included in the Hamiltonian. The former is responsible for spontaneous

electron-hole recombination, while the latter is used to describe non-photochemical quench-

ing [37, 38], represented as an Ohmic external force. It is the competition between this

4



quenching and coupling to the reaction center that determines the efficiency of the energy

transfer and the main goal of our work is to determine how the strong coupling to a vibra-

tional mode affects this competition.

Equations obtained for the general case are applied to the model system having the

energetic parameters of the FMO complex but more strongly coupled to the quenching field

and to a vibrational mode. This allows us to compare our results with previous studies

of this complex. We show that for certain frequencies of the vibrational mode, the energy

transfer is strongly suppressed. To explain these results, we determine the time dependencies

of the chromophore populations and show that, for these frequencies, the excitation does not

effectively reach the chromophore coupled to the reaction center, despite the fact that it has

the lowest energy. We argue that this effect is the result of the exitonic-vibrational coherence

[47–50], when the mixed exciton-vibrational mode is formed and the excitation is transferred

between two excitonic states with the emission/absorption of vibrational quanta, instead of

proceeding to the reaction center. Eventually, the excitation energy is lost to the vibrational

heat bath and to the quenching field. The same effect can suppress the quantum beating

which occurs in the populations of the first and second pigments. At a certain frequency of

the vibrational mode, the mixed exciton-vibrational mode forms between the first and sixth

pigments and the exciton is transferred to the sixth chromophore instead of the second one.

The inclusion of additional relaxation channels, such as exciton-exciton annihilation, would

only suppress the energy transfer even more, further supporting our conclusions. However,

if the vibrational mode is strongly coupled to a specific (third) pigment, the efficiency of the

energy transfer is even enhanced.

The rest of the paper is structured as follows. Section II contains the Hamiltonian of the

system. In Section III, we determine the density matrix and derive its equations of motion.

The efficiency of the energy transfer is defined in Section IV. This approach is applied to the

FMO complex in Section V, where we find the dependence of the energy transfer efficiency

on the frequency of the vibrational mode strongly coupled to the system and calculate the

time dependencies of the chromophores populations. Section VI contains the conclusions of

our work.
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II. HAMILTONIAN

We start from the general description of the exciton transfer through a system of N

chromophores when these are coupled to each other, and each one of them can be coupled

to the light source, reaction center, quenching and blackbody radiation fields, as well as the

protein environment. In addition, the interaction with a specific strong vibrational mode is

included. The Hamiltonian of this system consists of the following components:

(i) Unperturbed part

H0 =
∑

n

ǫna
†
nan +

∑

m6=n

Vmna
†
man −

∑

n

(Fne
iω0tan + F ∗

ne
−iω0ta†n), (1)

where a†n and an are the creation and annihilation operators for the excitations of the n-

th chromophore, ǫn is the excitation energy, Vmn is the inter-chromophores energy transfer

amplitude, ω0 is the frequency of the external light, and Fn is the coupling strengths directly

proportional to the dipole moment dn of the n-chromophore. In this form, the interaction

between the chromophore system and the external light is significantly simplified but it allows

us to calculate the absorbed energy and the energy transfer efficiency in very transparent

way. It should be noted that the total number of excitations in the system depends on the

coupling to the light source and can be as many as the number of chromophores. However,

each of them can only be single-populated.

(ii) Coupling to the reaction center

Htrap = −
∑

n

∑

k

(

gknb
†
kan + g∗kna

†
nbk

)

, (2)

where b†k and bk are the creation and annihilation operators for the excitations at the reaction

center having its own Hamiltonian

HRC =
∑

k

ǫkb
†
kbk. (3)

(iii) Interaction with the blackbody radiation and quenching fields

HRec = −
∑

n

(

Qna
†
n +Q∗

nan
)

, (4)

where the operator

Qn = dn(Erad + Equen), (5)
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is proportional to the sum of the fields multiplied by the dipole moment dn. The Hamil-

tonians of the radiation heat bath, HRad, and the quenching field, Hquen, describe the free

evolution of these degrees of freedom.

(iv) Coupling to the protein environment

He−ph = −
∑

j,n

Cjnmjω
2
jxja

†
nan. (6)

We describe the environment, having the Hamiltonian

Henv =
∑

j

(

p2j
2mj

+
mjω

2
jx

2
j

2

)

, (7)

as a set of independent harmonic oscillators with the position xj and momentum pj operators.

The j-th oscillator has a mass mj and a frequency ωj. Here Cjn are the coupling strengths

of the j-th phonon mode and the exciton at the n-th site.

(v) Coupling to a specific vibrational mode

He−vib = −
∑

n

CnMΩ2Xa†nan, (8)

with the Hamiltonian

Hvib =
P 2

2M
+

MΩ2X2

2
, (9)

involving the position X and momentum P operators. Here, M , Ω and Cn are the mass,

frequency, and the coupling strengths, respectively, associated with this vibrational mode.

The time dependence of the unperturbed Hamiltonian, Eq. (1), can be removed by means

of the unitary transformation,

U = exp

(

−i
∑

m

Nmω0t

)

=
∏

m

exp(−iNmω0t), (10)

where Nm = a†mam. Accordingly, the total Hamiltonian has the form

H = HU
0 −

∑

n

(eiω0tQna
†
n + e−iω0tQ†

nan)−
∑

k,n

(e−iω0tgknb
†
kan + eiω0tg∗kna

†
nbk)

−
∑

j,n

Cjnmjω
2
jxja

†
nan −

∑

n

CnMΩ2Xa†nan

+Henv +Hvib +HRC +HRad +Hquen, (11)

where

HU
0 =

∑

n

(ǫn − ω0)a
†
nan +

∑

m6=n

Vmna
†
man −

∑

n

(Fnan + F ∗
na

†
n) (12)
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is the unperturbed Hamiltonian after the unitary transformation. This transformation al-

lowed us to treat the external light exactly. The obtained Hamiltonian is not purely excitonic,

as it includes the ground and excited states mixed by the external light.

III. DENSITY MATRIX AND RATE EQUATIONS

The Hamiltonian, Eq. (12), can be numerically diagonalized, with the determination of

its eigenenergies and eigenfunctions, as

HU
0 |µ〉 = Eµ|µ〉. (13)

Accordingly, we can construct the density matrix in the form

ρµν = |µ〉〈ν|, (14)

and express all operators in terms of this matrix. In particular, the exciton operators are

given by

am =
∑

µν

am;µνρµν =
∑

µν

〈µ|am|ν〉ρµν , Nm = a†mam =
∑

µν

〈µ|Nm|ν〉ρµν . (15)

Correspondingly, the total Hamiltonian of the system can be written as

H = HU
0 −

∑

µν

Aµνρµν , (16)

where Aµν includes contributions of all terms of Eq. (11) not involved in H0. It should

be noted that the external light source is already included in H0 and the basic states are

determined accordingly.

It should be noted that our definition of the density matrix, Eq. (14), is different from

the conventionally used one, as it is transposed [36]. However, the mean values determined

using these two definitions are identical, and Eq. (14) allows us to treat the density matrix

elements ρµν as Heisenberg operators. The corresponding equations of motion are given by

iρ̇µν = [ρµν , H ]− = −ωµνρµν −
∑

α

(Aναρµα −Aαµραν), (17)

where ωµν = Eµ − Eν .

To evaluate specific contributions to Eq. (17), we apply the approach introduced in

Ref. [36], where the set of non-Markovian equations was derived. The coupling strengths of
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the chromophores to surrounding fields are different, and, correspondingly, various levels of

approximations can be used. The details of the calculations are given in the Appendix.

The time evolution of the off-diagonal (µ 6= ν) elements of the exciton matrix 〈ρµν〉(t) is

given by

ρµν(t) = exp [iωµν t] exp
[

−(λ̄ph
µν + λ̄vib

µν ) T t2
]

exp [−Γµν t] ρµν(0), (18)

where λ̄ph
µν and λ̄vib

µν are the reorganization energies associated with the phonon heat bath

and the strongly-coupled vibrational mode, respectively; and the dephasing rate

Γµν = Γph
µν + Γvib

µν + Γrec
µν + Γtrap

µν , (19)

includes contributions of all processes involved. It should be emphasized that the exponential

factor with the quadratic time dependence is caused by fluctuations of the diagonal elements

of the density matrix which are treated exactly, similar to the modified Redfield approach

[31, 32] and CMRT [33–35].

The exciton distribution 〈ρµ〉 over the eigenstates |µ〉 of the Hamiltonian H0 evolves

according to the equation

〈ρ̇µ〉+ γµ〈ρµ〉 =
∑

α

γµα〈ρα〉, (20)

where the relaxation matrix γµα contains contributions, γph
µα and γvib

µα , of the non-diagonal

environment and vibrational operators, as well as contributions of recombination, γrec
µα , and

trapping, γtrap
µα , processes, as

γµα = γph
µα + γvib

µα + γrec
µα + γtrap

µα , (21)

The density relaxation rate is given by

γµ =
∑

α

γαµ. (22)

The steady-state exciton distribution ρ0µ can be found from the equation

γµρ
0
µ =

∑

α

γµαρ
0
α, (23)

taking into account the normalization condition
∑

µ ρ
0
µ = 1.

9



IV. ENERGY-TRANSFER EFFICIENCY

We define the energy-transfer efficiency as a ratio of the average rate of the energy trans-

mission going to the reaction center to the total rate of electromagnetic energy absorption

by the system. The first quantity is given by

WRC =
d

dt
ERC =

∑

k

ǫk〈Ṅk〉, (24)

where Nk = b†kbk. The interaction of the system with the monochromatic light source can be

rewritten in terms of the electric field strength, En(t) = Fne
iω0t +H.c., and the polarization

Pn = a†n + an, as HF = −
∑

n En(t)Pn. Thus, rate of the light-energy absorption has the

form

W = −
∑

n

〈PnĖn(t)〉 ≃ −iω0

∑

n

〈Fne
iω0tan − F ∗

ne
−iω0ta†n〉. (25)

This energy can be determined using the equation of motion for the operator of the total

number of excitations,
∑

m Nm, and can be written in the form of the balance relation:

W = Wm+Wk+WRec = ω0

∑

m

〈Ṅm〉+ω0

∑

k

〈Ṅk〉+iω0

∑

m

〈e−iω0tQ†
mam−eiω0ta†mQm〉. (26)

Correspondingly, the energy transfer efficiency is given by

η = WRC/W. (27)

For the steady state, the total number of excitons in the system is constant, so Wm = 0.

WRC, Wk, and WRec can be calculated similar to the relaxation rates of the Appendix and

they have the forms

WRC =
∑

n

∑

µν

(ω0 − ωµν)|an;µν |
2 ×

{

Γtrap
n (ω0 + ωµν) [1 + n(ω0 + ωµν)] 〈ρ

0
ν〉 − Γtrap

n (ω0 − ωµν)n(ω0 − ωµν)〈ρ
0
µ〉
}

, (28)

Wk = ω0

∑

n

∑

µν

|an;µν |
2 ×

{

Γtrap
n (ω0 + ωµν) [1 + n(ω0 + ωµν)] 〈ρ

0
ν〉 − Γtrap

n (ω0 − ωµν)n(ω0 − ωµν)〈ρ
0
µ〉
}

, (29)

and

WRec = 2ω0

∑

n

∑

µν

|an;µν |
2 ×

{

χ′′
n(ω0 + ωµν) [1 + n(ω0 − ωµν)] 〈ρ

0
ν〉 − χ′′

n(ω0 − ωµν)n(ω0 − ωµν)〈ρ
0
µ〉
}

. (30)

10



V. FMO COMPLEX

In this Section, we apply the equations obtained above to a specific system, an FMO

complex containing seven pigments. We assume that the external light creates the exciton

in the Bchl 1 and the reaction center is coupled to the Bchl 3. Here, we ignore the eighth

Bchl [54] because its role in the energy transfer is not clear yet. In the absence of an external

light source, the energies of the seven exciton sites are given by [55]

ǫ1 = 1543.18 meV

ǫ2 = 1552.48 meV

ǫ3 = 1513.42 meV

ǫ4 = 1529.54 meV

ǫ5 = 1548.76 meV

ǫ6 = 1567.36 meV

ǫ7 = 1543.8 meV (31)

The transfer matrix elements (in meV) are [55]

Vmn =

































−10.87 0.68 −0.73 0.83 −1.7 −1.23

−10.87 3.73 1.02 0.09 1.46 0.53

0.68 3.73 −6.63 −0.27 −1.19 0.74

−0.73 1.02 −6.63 −8.77 −2.11 −7.85

0.83 0.09 −0.27 −8.77 10.06 −0.16

−1.7 1.46 −1.19 −2.11 10.06 4.92

−1.23 0.53 0.74 −7.85 −0.16 4.92

































(32)

In our model, each Bchl can be populated, so we have a total of 128 (=27) basic states.

To determine the energy transfer efficiency, the spectral functions of the environment

should be defined. We use the following form of the spectral function for the heat bath

modes,

Jph(ω) = λph

(

ω

ωc

)

exp

(

−
ω

ωc

)

. (33)

This type of spectral function is used both for the description of the environment in pho-

tosynthetic complexes [56] and for general condensed matter problems [57]. The spectral
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function for the specific vibrational mode is given by

Jvib(ω) = λvibΩ δ(ω − Ω). (34)

The total spectral function, including the contributions of the heat bath modes and a specific

vibrational mode, is shown in Fig. 1. The cut-off frequency ωc is taken to be 18.6 meV and

the frequency of the vibrational mode is chosen to be 10 meV for this figure.

The energy of the external light ~ω0 is taken to be 1573.71 meV. This value is resonant

to the system of 7 Bchls with energies given by Eq. (31). It should be noted that in

the real systems there is always site energy disorder broadening the absorption line of the

photosysnthetic complex but the inclusion of this spectral inhomogeneity into consideration

is beyond the scope of our paper.

To determine the parameters used below, we calculate the efficiency, Eq. (27), for the

absence of strong coupling to a specific vibrational mode. The results are shown in Fig. 2,

the dependence on the coupling to the quenching field at various values of the coupling to

the reaction center, and in Fig. 3, the dependence on the coupling to the reaction center

at various values of the coupling to the quenching field. It is evident from these figures

that for strong coupling to the reaction center and weak coupling to the quenching field,

the efficiency can reach 0.95. To determine the dependence of the energy transfer efficiency

on the frequency of the strongly coupled vibrational mode, we choose the coupling to the

reaction center gnk = 6.6 10−3 meV (with only the third pigment coupled), and the couplings

to the quenching field Qm = 6.6 10−5, 1.92 10−4, and 6.6 10−4 meV. The other parameters

are: temperature T = 77 K, light-Bchl coupling strength F = 10−4 meV (with the light

coupled to the first pigment only), refraction index nrefr = 1.42, heat bath reorganization

energy λph = 4.34 meV, and the reorganization energy of the vibrational mode λvib = 18.6

meV. In this case, the Huang-Rhys factor, defined as the ratio of the reorganization energy

and the vibrational frequency, is larger at low frequencies than the experimental values of

the FMO complex which can be up to 0.018 for specific vibrational modes [58]. We would

like to emphasize that our model chromophore system has only energetic parameters of the

FMO complex but more strongly coupled to the quenching field and to a specific vibrational

mode.

The efficiency, Eq. (27), is shown in Fig. 4 as a function of the frequency of the vibrational

mode. One can see that with decreasing frequency, the efficiency starts to drop at approxi-
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mately 16 meV when the Huang-Rhys factor exceeds 1. One can see that this drop can be

quite significant, up to 4 times at low frequencies and moderate coupling to the quenching

field.

To understand the physical reasons for such significant drop of the energy transfer effi-

ciency, we calculate the time dependence of the pigment populations with the results shown

in Fig. 5(a-f). For initial conditions, we use the situation when the first pigment (coupled

to the light) is populated and all other Bchls are not. These initial conditions are quite

artificial but the redistribution of the initial excitation can be shown in a most illuminating

way for this case. With no strong coupling to the vibrational mode (Fig. 5a), there are

well-known quantum oscillations [12] of populations of the first and second pigments (for

times of about 0.5 ps) and after about 3 ps the exciton energy is mostly transferred to the

third pigment coupled to the reaction center. It should be noted that the fifth, sixth, and

seventh pigments remain unpopulated all the time. Almost the same picture can be seen for

the high frequency of the vibrational mode (Fig. 5f) where the corresponding Huang-Rhys

factor is small. With the frequency decreasing, the fifth, sixth, and seventh pigments start

to be populated and at Ω = 4 meV all seven Bchls are populated almost equally by 3 ps. It

should be emphasized that the energies of the Bchl 3 and Bchl 4, Bchl 4 and Bchl 5, and

Bchl 5 and Bchl 6, are all separated by 16-19 meV. Accordingly, the strong coupling to the

vibrational modes of appropriate frequency with the preservation of “vibronic coherence”

[47–49] can lead to the formation of “mixed exciton-vibrational modes” between correspond-

ing pigments. Similar phenomenology has been observed in quantum dots [59] where the

strong electron-phonon coupling led to a resonant interaction between the discrete (p, 0 LO

phonon) state and the continuum of either (s, 1 LO phonon) or (s, 2 LO phonons). As the

coupling to the vibrational mode is strong, multi-phonon interaction is possible. Formally, it

corresponds to non-vanishing contributions of the high-order Bessel functions of Eqs. (A15)

and (A16). Moreover, one can see from these equations that the interference between the

specific mode and heat bath modes is possible; therefore the energy mismatch preventing

the mixed exciton-vibrational mode formation can be compensated by the heat bath. As

a result, the exciton, which is transferred to Bchl 3 from Bchl 2, does not proceed to the

reaction center, but oscillates between Bchls 3, 4, 5, and 6 and the energy is eventually lost

to the quenching field or the heat bath.

Of special interest is the suppression of the quantum beating between Bchl 1 and Bchl
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2 at Ω = 25 meV, Fig. 5e. It can be a result of similar mixed exciton-vibrational mode

formation. The separation between the energies of Bchl 1 and Bchl 6 is about 24 meV, so

vibration-assisted transfer between these pigments is possible. Correspondingly, the exciton

proceeds to the third pigment, not via Bchl 2 but via Bchls 6, 5, and 4. It should be noted

that the energy efficiency is not suppressed at this frequency.

Our approach allows us to examine the situation when the vibrational mode is deliberately

coupled to a specific pigment. In Fig. 6, we show the energy transfer efficiency at quite

strong coupling to the quenching field, Qm = 6.6 10−4 meV, as a function of the vibrational

mode frequency, when only the Bchl 3 is coupled to the vibrational mode. One can see

that the efficiency is suppressed at low frequencies but not as drastically as in Fig. 4. The

reason for such relatively small suppression is that the mixed exciton-vibrational mode is

formed between the Bchl 3 and Bchl 4 only, with no exciton transfer farther to Bchls 5 and

6. However, it is evident from Fig. 6 that at Ω = 30 meV, the energy transfer efficiency

even exceeds the value for no coupling to the vibrational mode. The corresponding time

dependencies of the pigment populations are shown in Fig. 7. For Ω = 4 meV, Fig. 7a, Bchls

5 and 6 remain unpopulated, in contrast to Fig. 5b, when all the sites are coupled to the

vibrational mode. One can see from Fig. 7b that for Ω = 30 meV the population of Bchl

3 at 3 ps is even higher than that of the unperturbed system, Fig. 5a. Correspondingly,

one can use deliberately coupled vibrations to enhance the efficiency for the case of strong

quenching-field coupling.

VI. CONCLUSIONS

In conclusion, we have developed an approach which allows to study the exciton transfer

through a network, for the case when the reorganization energy is of the order of the inter-

site couplings. Our method is not restricted to the one-particle case, so we can describe

the propagation of several excitons through the system. We have taken into account the

effects of radiative and quenching baths, as well as the coupling to the reaction center,

perturbatively using the secular approximation. We have gone beyond this approximation for

the protein environment, examining the non-Markovian effects as well. While the majority

of the vibrational modes have been treated as a heat bath, we have also included the strong

coupling to a specific vibrational mode into consideration. We have used a high temperature
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(or low frequency) approximation for the dynamics inside the non-Markovian integral for the

heat bath modes, but not for the strongly-coupled vibrational mode. Accordingly, we have

determined the contributions of multi-phonon processes and obtained that the contributions

of the heat bath modes and the vibrational mode are interconnected, as the frequency and

the reorganization energy of the vibrational mode is involved in the relaxation matrix for

the heat bath and vice versa.

We have obtained the efficiency of the energy transfer directly, as the ratio of the en-

ergy transferred to the reaction center and the total energy absorbed by the system. We

have calculated this efficiency for a specific system having the structure and the energetic

parameters of the FMO complex and strongly coupled to the quenching field and to the

vibrational mode and found that this efficiency dropped significantly, if the energy of the

strongly-coupled vibrational mode becomes smaller than 16 meV. We have attributed that

to the formation of “mixed exciton-vibrational modes” where the exciton is transferred back

and forth between two pigments with absorption and emission of vibrational quanta. Ac-

cordingly, the exciton, instead of proceeding to the reaction center from the lowest-energy

Bchl 3, is transferred sequentially to Bchls 4, 5, and 6, and the energy is eventually lost

to the quenching field or to the environment heat bath. We have illustrated this effect de-

termining the time dependencies of the pigment populations and showing that for the low

frequency of the strongly-coupled vibrational mode, the exciton is almost equally distributed

between all the pigments. We have obtained the well-known oscillations in the populations

of Bchl 1 and Bchl 2 and showed that these oscillations are suppressed at the vibrational

mode frequency of 25 meV. This corresponds to the separation of the energies of Bchls 1

and 6 and we attribute this effect to the mixed exciton-vibrational mode between these

pigments and the energy transfer avoiding Bchl 2. It is interesting that it does not affect

the energy transfer efficiency. We have also shown that the efficiency can even be enhanced

if the specific vibrational mode is coupled deliberately to Bchl 3. In this case, the obtained

value exceeds that for the unperturbed complex.
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Appendix A: Contributions of various mechanisms to the evolution of the density

matrix

In this Appendix, we provide the calculations of various contributions to the equation of

motion for the density matrix, Eq. (17). The chromophore sites are weakly coupled to the

radiative and quenching bath, as well as to the reaction center. Hence, the contribution of

these components of the variable A to the Eq. (17) can be treated perturbatively with the

secular approximation. Thus, for the diagonal part, ρµ = ρµµ = |µ〉〈µ|, of the operator ρµν

we obtain

−i〈[ρµ, Hrec +Htrap]−〉 = −
∑

α

(γrec
αµ + γtrap

αµ )〈ρµ〉+
∑

α

(γrec
µα + γtrap

µα )〈ρα〉. (A1)

Recombination events and the trapping of excitations by the reaction center provide the

following contribution to the dephasing of excitonic degrees of freedom (µ 6= ν)

−i〈[ρµν , Hrec +Htrap]−〉 = −(Γrec
µν + Γtrap

µν )〈ρµν〉. (A2)

The relaxation rates are given by

γrec
µα = 2

∑

n

|an;αµ|
2χ′′

n(ω0 + ωµα)n(ω0 + ωµα) +

2
∑

n

|an;µα|
2χ′′

n(ω0 − ωµα)[1 + n(ω0 − ωµα)] (A3)

and

γtrap
µα =

∑

n

|an;αµ|
2Γtrap

n (ω0 + ωµα)n(ω0 + ωµα) +

∑

n

|an;µα|
2Γtrap

n (ω0 − ωµα)[1 + n(ω0 − ωµα)]. (A4)

The dephasing rates consist of two parts, Γrec
µν = Γrec

µ +Γrec
ν , and Γtrap

µν = Γtrap
µ + Γtrap

ν , where

Γrec
µ =

∑

nα

|an;µα|
2χ′′

n(ω0 − ωµα)n(ω0 − ωµα) +

∑

nα

|an;αµ|
2χ′′

n(ω0 + ωµα)[1 + n(ω0 + ωµα)], (A5)

and

Γtrap
µ = (1/2)

∑

nα

|an;µα|
2Γtrap

n (ω0 − ωµα)n(ω0 − ωµα) +

(1/2)
∑

nα

|an;αµ|
2Γtrap

n (ω0 + ωµα)[1 + n(ω0 + ωµα)]. (A6)
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In this expressions, n(ω) = [exp(ω/T )− 1]−1 is the Bose distribution, Γtrap
n is the trapping

rate defined as

Γtrap
n = 2π

∑

k

|gkn|
2δ(ω − ǫk), (A7)

and the imaginary part of the bath susceptibility, χ′′
n(ω), contains contributions of the black-

body heat bath and the Ohmic quenching bath, as

χ′′
n(ω) = (2/3)nrefr|dn|

2(ω/c)3 + αnω, (A8)

with nrefr being the refractive index of the medium.

The interaction with the protein environment cannot be considered weak, and, corre-

spondingly, we cannot use the perturbative approach employed above. Following Ref. [36],

we introduce various spectral densities and reorganization energies as

Jph
µ (ω) =

∑

j

mjω
3
j

2

(

∑

m

Cjm〈µ|Nm|µ〉

)2

δ(ω − ωj),

J̄ph
µν (ω) =

∑

j

mjω
3
j

2

(

∑

m

Cjm〈µ|Nm|µ〉 −
∑

m

Cjm〈ν|Nm|ν〉

)2

δ(ω − ωj)

J̃ph
µν (ω) =

∑

j

mjω
3
j

2

∣

∣

∣

∣

∣

∑

m

Cjm〈µ|Nm|ν〉

∣

∣

∣

∣

∣

2

δ(ω − ωj), µ 6= ν, (A9)

λph
µ =

∫ ∞

0

dω

ω
Jph
µ (ω) =

∑

j

mjω
2
j

2

(

∑

m

Cjm〈µ|Nm|µ〉

)2

,

λ̄ph
µν =

∫ ∞

0

dω

ω
J̄ph
µν (ω) =

∑

j

mjω
2
j

2

(

∑

m

Cjm〈µ|Nm|µ〉 −
∑

m

Cjm〈ν|Nm|ν〉

)2

, (A10)

and

λvib
µ =

MΩ2

2

(

∑

m

Cm〈µ|Nm|µ〉

)2

,

λ̄vib
µν =

MΩ2

2

(

∑

m

Cm〈µ|Nm|µ〉 −
∑

m

Cm〈ν|Nm|ν〉

)2

,

λ̃vib
µν =

MΩ2

2

∣

∣

∣

∣

∣

∑

m

Cm〈µ|Nm|ν〉

∣

∣

∣

∣

∣

2

, µ 6= ν. (A11)

It was shown in Ref. [36] that the contribution of diagonal environmental fluctuations

can be determined exactly and they only affect the off-diagonal elements of the density
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matrix. With inclusion of an additional vibrational mode, the time evolution caused by

these diagonal fluctuations has the form

ρµν(t) = exp [iωµν t] exp
[

−(λ̄ph
µν + λ̄vib

µν ) T t2
]

ρµν(0). (A12)

We evaluate the internal dynamics in the non-Markovian integrals and obtain the follow-

ing contributions of the non-diagonal environment and vibrational fluctuations to Eq. (17).

(It should be noted that high-temperature and low-environment-frequencies approximations

of Ref. [36] have been applied to the heat bath contribution, not to that of the specific single

mode.) The evolution of the diagonal matrix elements is given by

〈−i[ρµ, He−ph +He−vib]−〉 = −
∑

α

(

γph
αµ + γvib

αµ

)

〈ρµ〉+
∑

α

(

γph
µα + γvib

µα

)

〈ρα〉. (A13)

For the off-diagonal elements, we obtain

〈−i[ρµν , He−ph +He−vib]−〉 = −(Γph
µν + Γvib

µν )〈ρµν〉. (A14)

The relaxation matrices are given by

γph
µα =

√

π

λ̄ph
αµT

exp

[

−
λ̄vib
µα

Ω
coth

Ω

2T

]

∞
∑

l=−∞

Jl

[

λ̄vib
µα

Ω

]

∫ ∞

0

dω J̃ph
αµ(ω)n(ω)

×

(

I0

[

λ̄vib
µα

Ω
coth

Ω

2T

](

exp

[

−
(ω + Ωαµ + lΩ− λ̄ph

αµ)
2

4λ̄ph
αµT

]

+ exp
(ω

T

)

exp

[

−
(ω − Ωαµ − lΩ + λ̄ph

αµ)
2

4λ̄ph
αµT

])

+
∞
∑

s=1

Is

[

λ̄vib
µα

Ω
coth

Ω

2T

]{

exp

[

−
(ω + Ωαµ + (l + s)Ω− λ̄ph

αµ)
2

4λ̄ph
αµT

]

+exp

[

−
(ω + Ωαµ + (l − s)Ω− λ̄ph

αµ)
2

4λ̄ph
αµT

]

+exp
(ω

T

)

(

exp

[

−
(ω + Ωαµ + (l + s)Ω− λ̄ph

αµ)
2

4λ̄ph
αµT

]

+ exp

[

−
(ω + Ωαµ + (l − s)Ω− λ̄ph

αµ)
2

4λ̄ph
αµT

])})

(A15)
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and

γvib
µα =

√

π

λ̄ph
αµT

exp

[

−
λ̄vib
µα

Ω
coth

Ω

2T

]

∞
∑

l=−∞

Jl

[

λ̄vib
µα

Ω

]

Ω λ̃vib
αµ n(Ω)

×

(

I0

[

λ̄vib
µα

Ω
coth

Ω

2T

](

exp

[

−
(Ω + Ωαµ + lΩ− λ̄ph

αµ)
2

4λ̄ph
αµT

]

+ exp

(

Ω

T

)

exp

[

−
(Ω− Ωαµ − lΩ + λ̄ph

αµ)
2

4λ̄ph
αµT

])

+
∞
∑

s=1

Is

[

λ̄vib
µα

Ω
coth

Ω

2T

]{

exp

[

−
(Ω + Ωαµ + (l + s)Ω− λ̄ph

αµ)
2

4λ̄ph
αµT

]

+exp

[

−
(Ω + Ωαµ + (l − s)Ω− λ̄ph

αµ)
2

4λ̄ph
αµT

]

+exp

(

Ω

T

)

(

exp

[

−
(Ω + Ωαµ + (l + s)Ω− λ̄ph

αµ)
2

4λ̄ph
αµT

]

+exp

[

−
(Ω + Ωαµ + (l − s)Ω− λ̄ph

αµ)
2

4λ̄ph
αµT

])})

,

(A16)

where

Ωαµ = ωαµ + λ̄ph
µ − λ̄ph

α + λ̄vib
µ − λ̄vib

α (A17)

and Jl(z) and Is(z) are the ordinary and modified Bessel functions, respectively. It should

be emphasized that the heat bath and vibrational contributions are interconnected, as the

vibrational mode is involved in the expression for γph
µα and vice versa. The ratio of the

reorganization energy and the vibrational frequency appeared in the arguments of the Bessel

functions is the Huang-Rhys factor. When it is small (at large frequencies) the high-order

terms would vanish, however for the low-frequency vibrational modes with large Huang-Rhys

factor the multi-phonon processes would have significant contributions.

Similar to Ref. [36], the dephasing rates can be expressed as

Γph,vib
µν = Γph,vib

µ + Γph,vib
ν ,

Γph,vib
µ =

1

2

∑

α

γph,vib
αµ . (A18)
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FIG. 1: Environment spectral function J(ω) including contributions from the heat bath and a

specific vibrational mode with frequency Ω = 10 meV.
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FIG. 2: (Color online) Energy transfer efficiency as a function of the coupling to the quenching

field at various couplings to the reaction center.
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FIG. 3: (Color online) Energy transfer efficiency as a function of the coupling to the reaction center

at various couplings to the quenching field.
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FIG. 4: (Color online) Energy transfer efficiency as a function of the vibrational mode frequency

Ω at various couplings to the quenching field.
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FIG. 5: (Color online) Time dependencies of the pigment populations for various frequencies of

the vibrational mode.
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FIG. 7: (Color online) Time dependencies of pigment populations for various frequencies of the

vibrational mode coupled only to the third pigment.
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