
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stochastic entrainment of a stochastic oscillator
Guanyu Wang and Charles S. Peskin

Phys. Rev. E 92, 052718 — Published 25 November 2015
DOI: 10.1103/PhysRevE.92.052718

http://dx.doi.org/10.1103/PhysRevE.92.052718


Stochastic Entrainment of a Stochastic Oscillator

Guanyu Wang and Charles S. Peskin
Courant Institute of Mathematical Sciences

New York University, New York, New York 10012, USA

In this work we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain,

in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one

state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the

oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment

of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (1) the

number of states of the oscillator approaches infinity as does the probability per unit time of jumping from one

state to the next, so that the natural mean period of the oscillator remains constant, (2) the resetting probability

approaches zero, and (3) the period of the resetting signal approaches a multiple, by a ratio of small integers, of

the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to

study the extent to which entrainment occurs.

I. INTRODUCTION

In the study of linear or nonlinear oscillators, an impor-

tant phenomenon is the synchronization or entrainment of the

oscillator to a given periodic stimulus. This phenomenon is

most often studied in a deterministic context [1–5], in which

the oscillator is modeled by a system of ordinary or partial dif-

ferential equations, and the stimulus is a prescribed periodic

driving function. When noise is considered, the noise is typi-

cally modeled as an additive term [6–9], so that the oscillator

itself is still described by a system of differential equations.

Here, however, we investigate the phenomenon of entrain-

ment in a fully stochastic system, in which the oscillator is

described by a discrete-state continuous-time Markov chain,

and in which the effect of the stimulus on the oscillator is a

reset (that may or may not occur) to a particular state at each

of a sequence of equally spaced times.

The motivation for this work comes from the field of circa-

dian rhythms. Biological cells typically contain biochemical

oscillators, with natural periods of about 24 hours, in which

gene regulation plays a fundamental role. Although these os-

cillators are often modeled by systems of ordinary differential

equations based on macroscopic chemical kinetics [10–13],

a more fundamental approach takes into account the discrete

and stochastic nature of chemical reactions, so that the state of

the system at any particular time is given by the integer num-

bers of molecules of all relevant species that are present at that

time, and these integer numbers change in a stepwise manner

whenever, by chance, a chemical reaction occurs [12, 14–16].

An important issue in the field of circadian rhythms is the

entrainment of these cellular circadian clocks by the external

ambient light signal, which has a 24-hour period. Since the in-

fluence of light on the cellular circadian oscillators most likely

occurs indirectly, through chemical (e.g., hormonal) signals

(the details of which are not, at present, known), this, too, is a

stochastic process, subject to the same kind of molecular noise

that is intrinsic to the clock mechanism itself. Thus, we are led

to consider a stochastic oscillator, stochastically entrained.

We do not claim, however, that the particular model con-

sidered here is a good model for the circadian clock of any or-

ganism. Both the oscillator and the entrainment mechanism in

the present paper are drastically oversimplified in comparison

to biological reality. Nevertheless, we hope that some of the

phenomena revealed here, and also some part of the method-

ology employed here to analyze those phenomena, will turn

out to be useful in the study of circadian rhythms.

II. STOCHASTIC OSCILLATOR

A. An n-State Model

The oscillator we study has n states, state 0, 1, ..., n−1. As

Figure 1 shows, we arrange them on a circle, so arithmetic on

state j will be mod n. The oscillator has a mean period T , and

the probability per unit time for a transition from one state to

the next is n
T

. Our entraining stimulus has period S. At any

time t which is an integer multiple of S, the oscillator is set to

state 0 with probability p.
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FIG. 1. An n-state oscillator with transition rate n

T
and resetting

probability p.

B. Analysis and Simulation of the Oscillator

Let Pj(t) be the probability of the oscillator being in state

j at time t. Then

dPj

dt
=

n

T
(Pj−1 − Pj) (1)



with mod n arithmetic on j. Equation (1) holds on any interval

of time of the form

rS < t < (r + 1)S (2)

where r is any non-negative integer. At each of the special

times t = rS, we have the jump condition

Pj(rS
+) = (1 − p)Pj(rS

−) + p δj0 (3)

Now we look for solutions of the system (1-3) that are periodic

with period S, which means

Pj(t) = Pj(t+ S) (4)

In that case, we only need to consider the interval (0, S), and

Equation (3) becomes

Pj(0) = (1− p)Pj(S) + p δj0 (5)

where 0 here means 0+, and S means S−.

1. Solution by Discrete Fourier Transform

Let

P̂k(t) =

n−1
∑

j=0

Pj(t) e
−i 2π

n
jk (6)

Pj(t) =
1

n

n−1
∑

k=0

P̂k(t) e
i 2π

n
jk (7)

Note that

1 =
n−1
∑

j=0

δj0 e
−i 2π

n
jk (8)

δj0 =
1

n

n−1
∑

k=0

1 · ei
2π
n

jk (9)

Substituting these expressions into (1-5), we get

dP̂k

dt
=

n

T
(e−i 2π

n
k − 1) P̂k (10)

P̂k(0) = (1 − p) P̂k(S) + p (11)

The solution of (10) is

P̂k(t) = P̂k(0) exp((e
−i 2π

n
k − 1)

nt

T
) (12)

⇒ P̂k(S) = P̂k(0) exp((e
−i 2π

n
k − 1)

nS

T
) (13)

(11)
===⇒ P̂k(0) =

p

1− (1− p) exp((e−i 2π
n

k − 1) nS
T
)

(14)

(12)
===⇒ P̂k(t) =

p exp((e−i 2π
n

k − 1) nt
T
)

1− (1− p) exp((e−i 2π
n

k − 1) nS
T
)

(15)

Then, taking the inverse discrete Fourier transform will give

us the solution Pj(t) for t ∈ (0, S).

2. Stochastic Simulation

Instead of looking for a solution formula, we can also in-

vestigate the behavior of the system by simulating it stochas-

tically, so we simulate L independent systems with initial state

random so that their behaviors will not be biased. We set

the probability of each state at the initial time as a random

number normalized so that the sum of these numbers is 1,

and then we use these probabilities when we select one state

as the starting state randomly. Then if we simulate a large

enough number of systems, we can expect that at each time

step t = 0,∆t, 2∆t, ..., the fraction of systems being in state

j should be a good approximation of Pj(t). Here we are not

in the periodic steady state, so we compute Pj(t) by solving

the system (1-3) by Euler’s method.

To compare the stochastic simulation result with the numer-

ical solution, at each time step, we make a histogram of the

fraction described above for each state j, with the curve Pj

solved by Euler’s method superimposed, as shown in Figure

2. Figure 2 verifies that the observed fraction is approximately

equal to the computed probability.
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FIG. 2. (Color online) Comparison of the fraction of systems in state

j at time t and the probability Pj(t) of the oscillator being in state j

at time t = 0, T, S+, and 2S−. We simulate 80000 oscillators with

n = 20, T = 50s, S = 100.25s, and p = 0.2. The bars represent

the fractions, and the curve is the plot of Pj . Here Pj(t) is the nu-

merical solution of Equations (1-3). The total time simulated is 2S.

Agreement is enforced at t = 0 by setting Pj(0) equal to the actual

fraction of systems that were started in state j.

C. The Limit as n → ∞

The waiting time for the oscillator to jump from one state to

the next is an exponential random variable with rate n
T

, so the

period of the oscillator is the sum of n independent and identi-

cally distributed exponential random variables, which has the

gamma distribution with shape parameter n and rate n
T

. Fig-

ure 3 is a plot of the probability density function of the period,

for various values of n.
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FIG. 3. (Color online) Probability density functions of the period of

the oscillator with n = 1, 4, 16, and 64 states.

The variance of the period is n
(

T
n

)2
= T 2

n
. Thus as the

number of states increases, the period of the system becomes

less variable. This makes it easier for a stimulus at the correct

period to entrain the oscillator, but it also makes the entrain-

ment more sensitive to any mismatch between the period of

the stimulus and the period of the oscillator. If we fix p and

let n → ∞, the result will be perfect entrainment when the

period of the stimulus is close to an integer multiple of the

period of the oscillator. (See Appendix for details.) To avoid

this degenerate case, we introduce a weaker entrainment sig-

nal, i.e. a smaller resetting probability. Thus we consider a

distinguished limit in which n → ∞ with

p =
α

n
(16)

where α is a positive real number. We use α = 20 for the

results shown below. For larger α, the result would be qual-

itatively the same but with stronger entrainment. Also, since

the variability of the period of the oscillator becomes smaller

as n → ∞, we need to make the period of the entrainment

signal closer to an integer multiple of that of the oscillator in

order for the entrainent to be effective. Thus, we set

S = (m+
β

n
)T (17)

where m is a positive integer and β is a real parameter. Later,

we shall replace the integer m by a ratio of small integers m
l

,

see Section IIIB.

To study the above distinguished limit, we first make the

taylor expansion of e−i 2π
n

k to get

(e−i 2π
n

k − 1)n = −i2πk −
2π2k2

n
+ ... (18)

(15)
===⇒P̂k(t) ∼

α
n
e−i2πk t

T e−
2π2k2

n
t
T

1− (1 − α
n
)Q

(19)

for large n, where

Q ∼ e−i2πk(m+ β

n
) e−

2π2k2

n
(m+ β

n
) (20)

= e−i2πk β

n e−
2π2k2

n
(m+ β

n
) (21)

∼ (1 − i2πk
β

n
) (1 −

2π2k2m

n
) (22)

∼ 1−
1

n
(i2πkβ + 2π2k2m) (23)

⇒1− (1−
α

n
)Q ∼

1

n
(i2πkβ + 2π2k2m+ α) (24)

Thus by Equation (19),

lim
n→∞

P̂k(t) =
αe−i2πk t

T

i2πkβ + 2π2k2m+ α
(25)

Now define ρ(x, t) by

ρ(x, t) =
∞
∑

k=−∞

αei2πk(x−
t
T
)

i2πkβ + 2π2k2m+ α
(26)

Note that ρ(x, t) is periodic in x with period 1, and periodic

in t with period T .

The sense in which ρ(x, t) serves as the limit of Pj(t) as

n → ∞ is discussed as follows. Here we consider only even

n, but the case for odd n can be argued in essentially the same

way. Also, for clarity, we make the value of n explicit as a

superscript, so the dependence on n is evident. Then we can

write Equation (6) and (7) as

P̂n
k (t) =

n−1
∑

j=0

Pn
j (t) e

−i 2π
n

jk (27)

Pn
j (t) =

1

n

n−1
∑

k=0

P̂n
k (t) e

i 2π
n

jk (28)

Note that Equation (27) defines P̂n
k (t) as periodic in k with

period n. Therefore Pn
j (t) can be rewritten as

Pn
j (t) =

1

n

n
2

Σ
T

k=−
n
2

P̂n
k (t) e

i 2π
n

jk (29)

where ΣT denotes a trapezoided sum, in other words, there is

a coefficient 1
2 in the first and last term. Now define

ρn(x, t) =

n
2

Σ
T

k=−
n
2

P̂n
k (t) e

i2πkx (30)

For each t, this is the Fourier series of a real, periodic function

of x with period 1. Note that

1

n
ρn(

j

n
, t) = Pn

j (t) (31)

This tells us how to extract Pn
j (t) from ρn(x, t). On the other

hand, taking the limit n → ∞ of ρn(x, t), we see that

lim
n→∞

ρn(x, t) = ρ(x, t) (32)



Thus we expect that for large n

Pn
j (t) ≈

1

n
ρ(

j

n
, t) (33)

Figure 4 shows the result for an 150-state oscillator, where

for each time step t, we make a histogram of the exact proba-

bility computed by discrete Fourier transform for each state j,

with the approximation function 1
n
ρ( j

n
, t) superimposed. We

can see that the two plots match well if n is sufficiently large.

III. ANALYSIS OF THE DISTINGUISHED LIMIT

In order to measure the entrainment better, we now seek an

explicit formula for ρ(x, t). Clearly, from Equation (26),

ρ(x, t) = ρ0(x−
t

T
) (34)

where

ρ0(x) =

∞
∑

k=−∞

αei2πkx

i2πkβ + 2π2k2m+ α
(35)

Notice that ρ0(x) solves the ordinary differential equation

−
m

2

d2ρ0(x)

dx2
+ β

dρ0(x)

dx
+ αρ0(x) = α

∞
∑

k=−∞

δ(x− k)

(36)

Thus we look for a continuous ρ0(x) with period 1 of the form

ρ0(x) = Aeλ1x +Beλ2x (37)

where λ1, λ2 are the two roots of the characteristic equation

−m
2 λ

2 + βλ+α = 0; and A, B are constants. We can find A
and B using the periodicity and boundary condition satisfied

by ρ0(x). Since ρ0(x) is 1-periodic, we have

ρ0(0) = ρ0(1) (38)

And if we integrate Equation (36) in a small neighborhood

around 0, we get

ρ0
′(0+)− ρ0

′(0−) = −
2α

m
(39)

⇒ ρ0
′(0)− ρ0

′(1) = λ1λ2 (40)

Combining Equations (38) and (40), we can solve for A and

B. This gives us an explicit formula for ρ0(x), which is

ρ0(x) =

eλ1x

eλ1 − 1
−

eλ2x

eλ2 − 1
1

λ1
−

1

λ2

(41)

A. Measurement of Entrainment

Note that expression (41) is invariant under interchange of

λ1 and λ2. Without loss of generality, we choose λ2 < 0 <
λ1 so that both the numerator and denominator are sums of

positive terms. As a check, it is easy to verify that

∫ 1

0

ρ0(x) dx = 1 (42)

Thus ρ0(x) is a probability density function on (0, 1). It fol-

lows that

ρmax
0 = max

x∈[0,1]
ρ0(x) ≥ 1 (43)

‖ρ0‖ =

√

∫ 1

0

ρ20(x) dx ≥ 1 (44)

with equality only if ρ0 is constant. Either of these norms,

more specifically how much they exceed 1, can be used as an

measurement of the extent to which the oscillator is entrained.

From Equation (41), we can then derive a formula for ρmax
0

or ‖ρ0‖. Here we will only discuss ρmax
0 , since ‖ρ0‖ gives us

similar results.

Because λ1 and λ2 have opposite sign, it follows from

the expression (41) that ρ0(x) is a convex function on (0, 1).
Its maximum on [0, 1] can be therefore achieved only at the

boundary points x = 0 or 1. Thus

ρmax
0 = ρ0(1) = ρ0(0) =

1

eλ1 − 1
−

1

eλ2 − 1
1

λ1
−

1

λ2

(45)

We claim that ρmax
0 is maximized, for any particular m, by

setting β to 0. To see this we again use the Fourier series,

Equation (35), in a different way.

ρmax
0 = ρ0(0) =

∞
∑

k=−∞

α

i2πkβ + 2π2k2m+ α
(46)

= 1 + 2α

∞
∑

k=1

2π2k2m+ α

(2πkβ)2 + (2π2k2m+ α)2
(47)

It is obvious from this formula that for any fixed m, the max-

imum happens when β = 0.

B. Generalization to the Case in Which S

T
≈

m

l
, Where m

and l Are Small Integers

It is important to note that up to now, we have only con-

sidered the case in which m is a positive integer. This corre-

sponds, for m > 1, to a subharmonic stimulus, since the pe-

riod of the stimulus is an integer multiple of the natural period

of the oscillator. More generally, we could consider the case

in which the period of the stimulus is approximately rationally

related to the natural period of the oscillator by replacing m
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FIG. 4. (Color online) Comparison of the solution by discrete Fourier transform and the approximate expression given in Equation (33) at

times t = 0, T

2
, T, and S. The oscillator has 150 states with α = 20, β = 0.1, m = 2, and T = 50s. The bars represent the exact solution Pj

obtained by discrete Fourier transform, and the curve is the plot of 1

n
ρ( j

n
, t).

with m
l

, where m and l are both positive integers, and m
l

is in

lowest terms. Thus the stimulus has period S of the form

S = (
m

l
+

β

n
)T (48)

and we discuss the same distinguished limit as before.

Now Equation (19) is still valid but with a different Q,

Q ∼ e−i2πkm
l e−i2πk β

n e−
2π2k2

n
(m

l
+ β

n
) (49)

∼ e−i2πkm
l (1 − i2πk

β

n
) (1 −

2π2k2

n

m

l
) (50)

∼ e−i2πkm
l (1 −

1

n
(i2πkβ + 2π2k2

m

l
)) (51)

for large n. Thus we get

1− (1−
α

n
)Q

∼1− e−i2πkm
l +

1

n
e−i2πkm

l (i2πkβ + 2π2k2
m

l
+ α)

(52)

If k is an integer multiple of l, then e−i2πkm
l = 1. Everything

is the same as before except that m has been replaced by m
l

.

We have

lim
n→∞

P̂k(t) =
αe−i2πk t

T

i2πkβ + 2π2k2m
l
+ α

(53)

Otherwise, e−i2πkm
l 6= 1, and in this case it is easy to verify

that

lim
n→∞

P̂k(t) = 0 (54)

Thus we only need to consider k’s such that k = lK where K
is an integer, and then Equation (35) becomes

ρ0(x,m, l, β) =
∞
∑

K=−∞

αei2πKlx

i2πKlβ + 2π2K2l2m
l
+ α

(55)

Now let

lx = X (56)

lβ = B (57)

lm = M (58)

Then

ρ0(x,m, l, β) =

∞
∑

K=−∞

αei2πKX

i2πKB + 2π2K2M + α
(59)

= ρ0(X,M, 1, B) (60)

= ρ0(lx, lm, 1, lβ) (61)

and we are back to the previous case. Now we have gener-

alized our result to the case of any rational m
l

. To visualize

the results, we plot ρmax
0 versus β, for various values of m

l
in

Figure 5. It is clear that the maximum always occurs at β = 0,

and the entrainment is the strongest when S = T .

IV. CONCLUSIONS

As we have shown by analysis and simulation, familiar phe-

nomena of entrainment occur even in the somewhat unfamil-

iar setting of a discrete-state stochastic oscillator under the
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influence of a stochastic entraining stimulus. In particular,

entrainment is strongest when the natural period of the oscil-

lator matches the period of the entraining stimulus, but en-

trainment can also occur when the ratio of these periods is

approximately equal to a ratio of small integers.

What is significant here is that these results are obtained di-

rectly from the stochastic model, in a suitable distinguished

limit. The noise in our system is intrinsic to the system itself,

and we model it that way. There is also noise in the entraining

signal, and it, too is modeled directly as given. At no point in

our analysis or simulation do we consider noise as a separate

stochastic process interacting with an otherwise deterministic

system. We believe that this point of view, with its emphasis

on intrinsic noise, will become increasingly important in the

mathematical modeling of biological systems in which fluctu-

ations play an important role.
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Appendix

Let p = p0 be fixed and S = (m + β
n
)T , where m ∈ Z

+,

β ∈ R. By Equations (15) and (18), for large n

P̂k(t) ∼
p0 e

−i2πk t
T e−

2π2k2

n
t
T

1− (1− p0)Q
(A.1)

where

Q ∼ e−i2πk(m+ β

n
) e−

2π2k2

n
(m+ β

n
) (A.2)

= e−i2πk β

n e−
2π2k2

n
(m+ β

n
) (A.3)

∼ (1− i2πk
β

n
) (1 −

2π2k2m

n
) (A.4)

∼ 1−
1

n
(i2πkβ + 2π2k2m) (A.5)

⇒1− (1− p0)Q ∼
1

n
(i2πkβ + 2π2k2m− p0) + p0

(A.6)

Thus by Equation (A.1),

lim
n→∞

P̂k(t) = e−i2πk t
T (A.7)

Following the notations of ρ(x, t) and ρ0(x) from Equations

(26) and (34), respectively, we get

ρ0(x) =

∞
∑

k=−∞

ei2πkx (A.8)

=

∞
∑

k=−∞

δ(x − k) (A.9)



Clearly, from this formula, ρmax
0 is infinity and the result will

be perfect entrainment.
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