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A shapeable material without plastic deformation

Naomi Oppenheimer1, ∗ and Thomas A. Witten1, †
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Randomly crumpled sheets have shape memory. In order to understand the basis of this form of
memory, we simulate triangular lattices of springs whose lengths are altered to create a topography
with multiple potential energy minima. We then deform these lattices into different shapes and
investigate their ability to retain the imposed shape when the energy is relaxed. The lattices are
able to retain a range of curvatures. Under moderate forcing from a state of local equilibrium, the
lattices deform by several percent but return to their retained shape when the forces are removed.
By increasing the forcing until an irreversible motion occurs, we find that the transitions between
remembered shapes show co-operativity among several springs. For fixed lattice structures, the
shape memory tends to decrease as the lattice is enlarged; we propose ways to counter this decrease
by modifying the lattice geometry. We survey the energy landscape by displacing individual nodes.
An extensive fraction of these nodes proves to be bistable; they retain their displaced position when
the energy is relaxed. Bending the lattice to a stable curved state alters the pattern of bistable
nodes. We discuss this shapeability in the context of other forms of material memory and contrast
it with the shapeability of plastic deformation. We outline the prospects for making real materials
based on these principles.

PACS numbers: 81.05.Zx, 45.80.+r, 62.20.F-, 68.90.+g

I. INTRODUCTION

If we take a piece of paper and pressure it from both
sides, it will form one large buckle. Once the pressure
is released, the paper will go back to being flat. We
now repeat the experiment, but first crumple the piece
of paper to a little ball, open, and flatten it then apply
pressure again. When we now release the pressure, the
paper will retain some curvature. Not only that, but
it can be shaped in various forms which are somewhat
stable to an applied force.
One evident source of this shapeability is the lo-

cal plasticity[1] of paper. Each fold produced by the
crumpling process has undergone a permanent structural
change in the paper’s fiber matrix. Moreover, the result-
ing ridges and vertices store memory and create an intri-
cate landscape that has many metastable configurations
[2]. Thus reshaping it into a different crumpled form
causes a crackling sound [3], [4], as the sheet snaps from
one metastable minimum to another.
In this work we generalize this effect to an elastic sheet.

The purpose is twofold, first to create a material that is
reshapeable and stable. Second to understand the ori-
gin of shapeability in a simple realization, one in which
there are only Hookean springs and thus no plastic de-
formation. Our approach is to use an array of springs
of varying rest lengths in a geometry that creates many
locally stable, interacting configurations. We use two
different models — the random lattice, having random-
ness in the springs’ rest length, and the puckered lattice

which is a regular structure, and has the same repeat-
ing unit throughout the lattice. We study properties of
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the zero-temperature ground states of our lattice. This
is separate from the well-studied co-operativity of ther-
mally fluctuating “tethered” lattices of Kantor, Kardar
and Nelson [5],[6].

Before we go on to explain each model, we define the
quality of shapeability that we intend to explore. A sha-
peable material is one that deforms under external forces,
and which retains its deformed shape when these forces
are removed. Moreover this retained shape is stable:
when further deformed by sufficiently mild forces, the
object returns to the retained shape.

The basic feature that enables shapeability in a crum-
pled sheet is metastability — the object has many dis-
crete, stable configurations, separated by energy barriers.
Metastability in materials and its connection to memory
storage is a well-explored field [7]–[11]. Here we survey
various forms of shape memory, to distinguish these from
the shape memory of a crumpled sheet. One form of
shape memory is that of a plastically deforming material
such as modeling clay. As noted above, a simple fold in a
sheet of paper is an example of plastic memory. Setting
a shape requires irreversible changes in the microscopic
structure within the material. Our aim is to identify a
further form of shapeability in crumpled paper that goes
beyond this simple plasticity.

A second type of shape memory is seen in elastic sys-
tems that can switch between two possible states. A
simple example is found in a children’s toy called the
“slap bracelet”, a straight metal strip that wraps itself
around a wrist when bending is initiated [12]. This piece
of metal has positive curvature along one direction and
negative along the perpendicular direction. If the strip
is sufficiently thin, it will have two configurations. It
is possible to snap from one to the other using external
force [13], [14]. By adding periodic, corrugated, sponta-
neous curvature to these shells, one may stabilize three
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or more global shapes [15]. Another example is seen in
shape-memory alloys [18]. These are pseudoelastic mate-
rials, able to deform plastically in response to an external
stress, and yet return to their initial shape after heating.
A third category is seen in materials with elastic defor-

mations that result in not two but many configurations.
An example is the flexible drinking straw [19], a plastic
tube with a corrugated region. When the straw is bent,
these corrugations collapse so that the bend is retained.
The total curvature is thus determined by the metastabil-
ity of the corrugations. The difference between a system
like the flexible straw and the shapeable sheet is that
the former does not require any cooperativity between
bistable points. Instead, the global shape is a simple
superposition of the effects of each corrugation.
The models that we treat below appear distinct from

the categories sketched above. On the one hand, they do
not require plasticity (like a simple fold in paper). On
the other hand, the global shape is not a simple super-
position of the shape of the building blocks (such as in
the flexible straw). Instead, many bistable points seem
to work in concert to make a changeable shape. The sys-
tem described by Waitukaitis and von Hecke et al. [9] is
similar to ours in those aspects; the difference is that the
shapeable sheet doesn’t require pre-programing an array
of possible shapes. Our system most resembles the ”me-
chanical memory metals” of Keith Seffen [16, 17]. Seffen’s
system is a metal sheet with an array of embossed, in-
vertible bumps. When one inverts the bumps, the metal
takes on several selectable states of curvature. Our sim-
pler, discrete mechanical system may shed light on Sef-
fen’s system, and appears to generalize the phenomena
he sees.
Metastability has been studied in the context of de-

signing and controlling the properties of metamaterials.
Silverberg and Cohen et al. [11] showed that flipping
bistable corners in a Miura Ori sheet can change the bulk
properties of the material. Waitukaitis and von Hecke et

al. [9] studied the energy landscape of 4-degree vertices
and discovered they have a surprisingly large number of
stable configurations (up to six), and that tiling a space
with them preserves the metastability. Periodic elas-
tomeric structures could also be tuned to control many
material properties (see for example [7], [8], [10]) such as
auxeticity, and elastic and acoustic band propagation.
In what follows we will introduce the two models to be

studied, examine what conditions are required for them
to be shapeable, explore the possible shapes and investi-
gate where the memory resides in the structure.

II. MODEL

The system is a network of nodes connected by springs
in the topology of a regular triangular two-dimensional
lattice. However, we use springs of different rest lengths
so that planar configurations are unstable. We embed
this system in three-dimensional space and then seek the

positions of the nodes that minimize the spring energy. If
the system is well constrained (i.e., has bending energy
or extra springs, see discussion in the next section) and
the springs are all of equal rest length, there is just one
stable configuration — the nodes lie in a plane. Once
one introduces a variety of lengths, it is possible to get
more than one minimum. The models explored below are
not unique; many variations are possible. The random
lattice was chosen because it resembles a crumpled sheet;
the puckered lattice was chosen because it is simpler to
understand; it also demonstrates shapeability in an or-
dered material. Though our study is motivated by the ge-
ometric properties of crumpled paper, our strut network
is more primitive. The polygonal facets of a crumpled
sheet carry constraints that are absent in our network.
For example, the vertex angles can deform in our net-
work, but they are constrained in a crumpled sheet. Our
exploratory studies consider only small lattices with few
dozen degrees of freedom, but our hope is that aspects of
our findings are relevant for large sheets as well.
Before going into detail about each model let us de-

scribe properties which apply to both of them and to
every triangular lattice of springs. Specifically, let us de-
termine when the springs provide enough constraints to
dictate specific configurations of nodes. When they do
not, what characterizes the modes of deformation that
cost no energy, known as the floppy modes?

A. Floppy modes

Our interest is in systems that hold their shape, i.e.,
rigid objects. In this section we explain why our lattice
requires modification in order to hold its shape. Neglect-
ing edge effects, a lattice of N nodes contains 3N springs.
Each spring imposes a scalar constraint on the 3N node
co-ordinates. Thus the springs are just sufficient to con-
strain the node positions [21–23] (see note in Ref. [24]).
However, in a finite lattice of N nodes cut from an infi-

nite lattice, there are fewer than 3N springs; the springs
that connected the lattice to the infinite lattice have been
removed. This number is proportional to the perimeter.
Thus any finite lattice has a number of unconstrained
internal motions that increases with its size.
In order to gauge how these floppy modes might com-

promise shapeability of our lattices, we calculated the
modes explicitly. Given an equilibrium state rmin, with
energy E(rmin) we calculate the dynamical matrix M

given by, Mij = ∂i∂jE(rmin), where ∂i is the deriva-
tive with respect to the ith of the 3N node co-ordinates.
This matrix is symmetric and has either zero or posi-
tive eigenvalues. Any eigenfunctions {u} corresponding
to the zero eigenvalues other than those corresponding to
pure translations and rotations are the floppy modes[24].
These {u0} are also the null space vectors of M, i.e., the
solutions to the equation M · u0 = 0. Here the {u0}
are the directions on the energy landscape that have no
energetic cost. Any set of displacements can be uniquely
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expressed in terms of a null vector and a non-null vector
normal to all the {u0}’s. This decomposition may be
used to measure the contribution of the floppy modes to
any given node co-ordinate ui. In particular, the norm
of the null part relative to the total norm gives an un-
ambiguous measure of the relative amount of null-space
content in that displacement. We denote this quantity,
which lies between 0 and 1, by Fi. The resulting ampli-
tudes are plotted in Fig. 1.

FIG. 1. (Color online) Visualization of the floppy modes in a
7 × 7 puckered lattice of Fig. 2C. Each box shows the three
values of floppiness corresponding to the three Cartesian dis-
placements of one node. Thus, the height of the left, rear box
(which is 0.98) shows the floppiness Fi corresponding to the
free vertical displacement of that corner node. Likewise, the
width and depth of this box are proportional to the floppi-
ness Fi for x and y horizontal displacements. Evidently dis-
placements normal to the lattice have relatively large floppy
content.

As can be seen, the floppiness lives mostly in the
perimeter; the middle is hardly affected. One might think
that taking larger lattices makes floppiness irrelevant, as
it mostly affects the edges. However, increasing the size
of the lattice decreases the energy cost of vertical dis-
placements, so that they become indistinguishable from
floppy modes. We address this issue in Sec. III.
We may eliminate floppy modes and thereby attain the

rigid structure we seek by the addition of constraints.
We do so either in the form of extra springs at the edges
(next-nearest neighbors) or in the form of bending en-
ergy, penalizing deviations from flatness, as detailed in
Sec. VI. In the work that follows we will specify which
extra constraints are used. It is of course possible to think
of other constraints. Those we used have the advantage
of being plausible in actual realizations of the sheet.

B. Random lattice

Starting from an equilateral triangular lattice (with
no extra springs or bending energy), we increment each
spring’s resting length by a random increment ranging
uniformly over ten percent interval cf. [20]. This proce-
dure does not add net Gaussian curvature (see the dis-

cussion on net angular deficit in Sec.V). The equilateral
lattice had a zero energy when flat; in the random lattice
the flat realization of the system is frustrated and energy
is positive. However it can be completely relaxed by let-
ting the springs move into the third dimension. For this
moderate randomness, unless violating some geometrical
constraint (such as a spring in a triangle being longer
than the sum of the other two), it is always possible to
relax the energy entirely. Like crumpled paper, the re-
laxed random lattice forms a surface with a highly irreg-
ular pattern suggesting shapeability (see Fig. 2A). We
investigate this shapeability below.

C. Puckered lattice

To exhibit shapeability, metastability is required; how-
ever the randomness described above is not obligatory. A
lattice can have many metastable states with a periodic
structure composed of one or more repeating hexagons.
One example is a triangular lattice with two different
spring rest-lengths as in Fig. 2B(bottom). To form it
with a simple triangular lattice we lengthen the springs
extending from one node to its six neighbors, thus form-
ing a hexagonal pyramid. We then lengthen the six
springs at the adjacent hexagons. By extending this pro-
cess to all the hexagons in the lattice, we may form the
lattice of pyramids shown in Fig. 2B(top).
As in the random lattice, a flat configuration is very

frustrated. Relieving the frustration results in puckered,
hexagonal pyramids. The node in the middle of each
pyramid is bistable; it is equally stable above and be-
low the plane of its hexagon. By exerting a sufficient
vertical force on such a node, we may “flip” it through
the horizontal plane to the other stable minimum. For a
lattice of N nodes there are about N/3 bistable nodes,
which means 2N/3 metastable configurations. However,
these flips alter the shape only locally. The result-
ing metastable configurations remain globally flat. The
missing ingredient is an energetic coupling between one
hexagon and its environment. To create the energetic in-
teraction we use springs of three different lengths. The
construction is similar to the one just described, except
that we add a small mismatch between the lengths of the
springs in the middle of each hexagon (see Fig. 2B). In
addition, in each column, the spring orientation is rotated
by 600, this adds extra frustration. The spring mismatch
dictates a shape in which each hexagon is slightly skewed
such that it is out of the plane. When flipped, the pre-
ferred orientation of the neighbors is modified.

III. SHAPES

Below are a few examples both of equilibrium shapes
created with the random lattice and with the puckered
lattice. As seen below, when deformed to match a given
“goal surface”, these objects tend to retain the deformed
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A B C

FIG. 2. (Color online) From left to right: (A) Zero-energy shape of a random lattice of springs with a rest length given by
L = a(1+ 0.1R[−0.5, 0.5]) where a is the length of a spring in the equilateral case and R[x, y] is a random uniform distribution
given values between x and y.(B) Top—symmetric case: hexagonal pyramid with equal springs in the middle. Bottom—non-
symmetric case: hexagonal pyramid with two different lengths in the middle am = 1.05a and al = 1.15a. Notice that it is no
longer symmetric. (C) Zero-energy surface of the puckered lattice with unit cells of B (bottom). Two dimensionless parameters

could be defined for these systems — 1. The ratio of height and system size, α = h/(
√
Na ∼ 0.06). 2. The ratio of the unequal

pyramid strut lengths, β = al/am ∼ 1.1. This ratio controls the nonplanarity of the hexagons.

shape when relaxed. That is, the surface defined by the
lattice lies close to the goal surface. In order to fit the
lattice optimally to the goal surface we first relax the lat-
tice and determine the area per node Ar of its projection
onto its mid-plane (this projection allows the nodes to
be closer to their relaxed density). Then we position the
nodes onto a regular triangular lattice with the same area
per node in a desired form such as a cylinder. Finally,
we move the nodes to find a local energy minimum using
standard numerical algorithms, as described in Sec. VI.
We then compare the resulting shape to the desired form.
Fig. 3 presents a few examples for the random lattice

with either bending energy or with extra springs at the
edges. Fig. 4 is the result of cylindrically shaping the
puckered lattice with extra springs. As a comparison we
also plot the result of shaping a sheet that has only two
different spring rest-lengths, and a sheet with all springs
of equal length. Notice how the last two cases completely
flatten out, losing their memory of the goal shape.
All the goal surfaces have zero curvature along the x

direction (they thus do not possess Gaussian curvature).
To characterize the deviation from the prescribed shape
we average all nodes along the x direction, and look at
the resulting curve in two dimensions. We then measure
Zi, the distance from node i to the corresponding point
on the initial surface, allowing rigid body translations
and rotations such that the total sum

∑

i Zi is minimal.
We define the error, η, by

η =
∑

i

Z2
i /

∑

i

Z2
i0, (1)

where Zi0, is the same measure but using the distance be-
tween the initial relaxed “flat” sheet that had zero global
curvature and the goal surface.
For a given lattice size the more curvature the desired

shape has, the less accurate the shaping is. This is ap-
parent by comparing the different rows of Fig. 3. Ta-
ble I presents error values for different lattice sizes. One
might expect that in order to get a better fit, all that is

needed is to take a larger lattice, but the fit is, in fact,
worse (see discussion section for more detail). There is
a competition between the number of metastable states
available, and the energetic barriers between them. For
a small system there are not enough metastable states
to imitate the desired shape; for a large lattice, there
are many metastable states but the energetic barrier be-
tween them is so small that they are not stable. Table 1
suggests (but doesn’t prove) that among the measured
sheets, for a random lattice the preferred lattice is 8 × 8
and for the puckered lattice it is 7×7. We therefore chose
to work mainly with those system sizes.

Random Lattice
Lattice size 4 6 8 10 12

η 0.56 0.36 0.10 0.13 0.30

Puckered Lattice
Lattice size 4 7 10 13

η 1.00 0.08 0.45 0.30

TABLE I. Effect of lattice size on the average error measure,
η, in fitting to a cylinder of subtending angle of 3π/2 for
a random lattices with extra springs at the edges (average
over four realizations), and for a puckered lattice with extra
springs. The lattices are made as in Fig. 3 and Fig. 4.

To check how reproducible is the result in the random
case we took fifteen different random sheets of size 8× 8
and shaped them as half a cylinder. The average error
value is 〈η〉 = 0.065 with a variance of 0.002. The results
averaged over the x axis are presented in Fig. 5.

IV. HYSTERESIS AND EFFECTIVE GLOBAL

PROPERTIES

Like plastic materials, our system exhibits hysteresis —
the current shape depends on the history of the applied
forces. In magnetic materials hysteresis is demonstrated
by changing the outer magnetic field in a cyclic fashion
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FIG. 3. (Color online) Lattice configurations resulting from the shaping procedure described in the first paragraph of Sec. III,
using a random lattice of size 8 × 8. From left to right: (A) Starting from a goal configuration, all the springs are sitting
in a smooth surface but are frustrated; (B) relaxed shapes for a random lattice with bending energy; (C) relaxed shapes for
a random lattice with extra springs at the edges; (D) averaged 2D projection of the shapes as described in the text, and a
comparison to the original “flat” sheet: Dotted (blue) is the desired shape, dashed (green) is a sheet with extra springs at the
edges, dash-dotted (pink) is a sheet with bending energy, and the yellow is the original “flat” random sheet. All shapes were
translated and rotated so as to get the best fit.

A B C D

FIG. 4. Lattice configurations resulting from shaping procedure described in the in the first paragraph of Sec. III, using a 7× 7
puckered lattice. Floppy modes were eliminated with extra springs (A) The desired shape (cylinder with subtending angle of
3π/2); (B) relaxed springs in a puckered lattice with three rest lengths (am = 1.05a, al = 1.15a); (C) lattice with two rest
lengths (am = al = 1.1a); and (D) lattice with all springs of equal rest length (am = al = a).

and tracking the resulting magnetization. In a similar
fashion we changed the applied force cyclically and looked
at the average height of the resulting sheet, if there was
no memory, the increasing and decreasing forces would
trace out the same line. Since there is memory, we get
a loop. We demonstrate hysteresis by the following pro-
cedure: (a) We force the midpoint, Zmid, upward while

pinning three nodes at the edges to define a horizontal
plane (pinning one node completely, forcing one to be
in a plane, and the third to be on a line). This results
in a curved surface. See Fig. 6 for clarification. (b) We
then release the forced midpoint and minimize the en-
ergy. Next, we measure the average height of all nodes in
the lattice, Zavg. (c) Next, we again take the mid point
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FIG. 5. (Color online) Fifteen random sheets of size 8 × 8
shaped as half a cylinder. The result presented here is aver-
aged over the x direction. The error measured by Eq.1 gives
η = 0.06 ± 0.04

.

from its current position and force it upwards. We repeat
steps b and c until Zmid reaches a few lattice spacings.
(The resulting remembered shapes clearly do have Gaus-
sian curvature, unlike the target cylinders of Figs.3A and
4A). (d) Now we force the mid point downward and re-
peat up to a few lattice spacings. (e) We then repeat
points (a)-(d) four times. After the second round, varia-
tions were small. For a puckered lattice with stiff edges
we get the loop in Fig. 7. Notice that there are plateaus
in several locations. These imply that for a small incre-
ment of force there is no change in the resulting shape,
i.e., the sheet resists forcing. Each plateau is followed by
a jump to a new value. The jump indicates the crossing
of the energetic barrier, resulting in a new configuration.

F

FIG. 6. (Color online) Representation of the sheet with the
center of mass fixed and a force applied on one of the middle
nodes— left front node is completely fixed, right front node
is restricted to a line, left back node is restricted to a plane,
and the remaining one is completely free. The force applied
on the middle point is causing curvature to the sheet.

In order to test the robustness of the remembered
shapes of Fig. 4, we applied an external potential forc-

ing it to curve even more inwards. Up to fifteen percent
deformation the sheet will go back to the original curved
configuration after relaxing the force as can be seen in
Fig. 8 (the strain between the initial and final configura-
tion is only 0.008%).
In order to have a crosscheck on the numerics we com-

puted the basic properties of one of our networks. The
effective global properties of the sheet can be predicted
semi-analytically. The lateral bulk modulus K gives the
change of lateral pressure ∆P required to produce a given
small change ∆A in the area of the lattice:

K = −AdP
dA

(2)

We calculateK numerically by taking a simpler version of
the puckered lattice, a lattice that has just one hexagonal
pyramid as a repeating unit. (This sheet is less frustrated
and therefore somewhat less shapeable than the lattice
defined in Sec. II and used in Figs. 2B and 4. It has the
advantage of having just nine degrees of freedom and not
eighteen). We then uniformly stretch all edges by a small
amount (strain of up to 0.3%) using periodic boundary
conditions. By measuring the gain in spring energy Es

under this stretching, we find K = A(d2Es/dA
2) = 0.26

(where the spring lengths are as in Fig. 4, and k = 1).
To find an analytic expression in the infinite lattice

we proceed as follows — first we find the ground state
of the system. Each unit cell is completely defined with
nine degrees of freedom li, (three nodes in each unit cell,
each of which has three translations), associated with
these are nine springs constraining the cell. Since the
springs are all relaxed in the ground state, we can find
the position of the nodes by solving the nine equations for
the springs. The result is shown in Fig. 9 and is similar to
the one obtained by numerically minimizing the energy
of the periodic sheet. We may then express the energy
cost Es of small deformations of these co-ordinates ∆li
in the form Es ≃ 1/2 ∆li M̂ij ∆lj , where the matrix,

M̂ is given by M̂ ≡ ∂2E/∂li∂lj|l0 . We then compute M̂

around that ground state and express the energy due to
spring stretching in terms of Es.
Applying a small amount of pressure P requires a work

∆EP = P∆A, where ∆A is the change in area, express-
ible in terms of ∆l. The change of shape induced by
P also changes the spring energy Es, also expressible in
terms of ∆l. Defining the primitive vectors a1 and a2 of
the unit cell as shown in Fig 9, the area of the cell is evi-
dently |a1 × a2|. Thus, the work done by the pressure is
given by, ∆EP = P ∆|a1 × a2| = P ∆(l1l3). Minimizing
the total energy, due to spring stretching and the work
done by the pressure, ∂ljEtot = ∂i(Es+EP ) = 0 we find,

lj = l
0
j − [M̂−1]ji(∂iEP |l=l0), (3)

where, l0 are the values of the unperturbed lattice. Given
the periodic structure, M̂ and l0 can readily be found
numerically. We now use Eq. 3 to find the area of a
unit cell and its derivative with respect to P . From this
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FIG. 7. (Color online) Hysteresis in a random array of springs of size 8× 8 (A) unstabilized floppy structure (B) stabilized by
additional edge springs as in Fig. 15. Notice how in (A) the transitions between configurations are continuous — each increase
in the height of the midpoint, however small, results in a new surface. In (B) forcing the mid point up does not always result
in a new surface. There is an energetic barrier to transform to a new configuration. Plot shows average values. Black dots
result from forcing the mid point up, red squares from forcing it down. Some examples of the relaxed sheet at various points
along the loop are presented, color is darker at the front of the sheet.

FIG. 8. (Color online) Effect of global forcing on a shaped
sheet. A puckered 7x7 sheet with stiff edges was shaped as
an almost closed cylinder (represented by red dots in both
figures). We applied an outer potential forcing it more in-
wards (left figure), resulting in six percent deformation. Af-
ter removing the force, the sheet returns to the original shape
(right figure).

using Eq. 2, we can calculate the compressibility, 1/K =
− 1

A dA/dP to obtain

K = −1/

(

1

l1

∂l1
∂P

+
1

l3

∂l3
∂P

)

. (4)

For a = 1, am = 1.05a, al = 1.15a and k = 1, we find
K = 0.26 in agreement with the numerical energy mini-
mization calculation.
For an equilateral lattice the bulk modulus can be

found exactly to be
√
3/2 k which fits both the semi-

analytic calculation and the energy minimization one.
The bulk modulus of the puckered lattice is lower than
the equilateral one because the middle springs are only
slightly strained when a small amount of pressure is ap-
plied. The main effect is that the height of the pyramid
decreases. Similarly, the bulk modulus of a symmetric
puckered lattice (upper drawing of Fig. 2B) could also be
calculated analytically. In this case, the middle springs

of each hexagon play no role at all for the bulk modulus.
It is thus similar to the bulk modulus of a honeycomb
lattice, which is just one third the bulk modulus of an
equilateral lattice i.e.,

√
3/6 k. This, again, fits both

the semi-analytic calculation and the energy minimiza-
tion one. As a side comment, notice that this value is
slightly higher than the bulk modulus we obtain for the
non-symmetric puckered lattice. The reason is that the
basis of the hexagonal pyramids in the non-symmetric
puckered lattice are slightly out of the plane. Increas-
ing the mismatch between springs in the non-symmetric
case (i.e., taking larger β = al/am) results in more non-
planar unit cell which reduces the bulk modulus further
(a = 1, am = 1.05, al = 1.3 gives K = 0.21 for example).
A similar approach could be used to analytically calcu-
late other properties of the lattice, such as the bending
modulus. The main purpose of this section was to vali-
date our numerical procedures.

V. BISTABILITY

Where does the shape memory come from? In the ex-
amples noted in the introduction, one source of shape
memory is simple bistability: the system has two macro-
scopically different states that are local energy minima.
By exerting macroscopic forces on the system one can
cause the configuration to flip to the other minimum.
Our lattices also contain such bistable states, which are
thus a potential source of the shapeability we seek. In
this section we characterize the bistable states accessed
by displacing single nodes such as the pyramid apex of
the previous section. We find that bistability of a node is
associated with a geometric feature called angular deficit.
We then investigate the role of these states in the ob-
served shape memory of our sheets.
Any bistable node has two stable configurations with
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a2

a1

b c

FIG. 9. (Color online) Perspective view of the simplified lat-
tice used for the calculation of bulk modulus in Sec. IV. Lat-
tice vectors a1 = (l1, l2, 0),a2 = (l3, 0, 0),b = l4 a1 + l5 a2 +
(0, 0, l6), c = l7 a1 + l8 a2 + (0, 0, l9).

opposite local mean curvature. These may in principle
induce global curvature in the sheet. What nodes are
bistable? There is a correspondence between nodes of
positive angular deficit and bistability. Looking at a node
and summing the angles around it, the angular deficit is
defined as the deviation of that sum from 2π. It is a
discrete analogue of Gaussian curvature. The angles at
the apex of a hexagonal pyramid sum to less than 2π.
Thus, this node has positive angular deficit. The angles
at a saddle point sum to more than 2π and therefore such
a node has negative angular deficit. So positive angular
deficit corresponds to a node which is a local extremum,
if it is a maximum it potentially could be flipped to be a
local minimum and vice versa.
For a lattice of triangles such as ours the angular

deficits are subject to a global constraint. The sum of
angular deficits for all nodes of triangular network is un-
changed when the nodes are displaced (since the sum of
angles over nodes is the same as the sum of angles over
their triangles). This means that changing the angular
deficit at one node must change the deficits elsewhere in
the network to compensate.
Are all the nodes of positive angular deficit bistable?

No. We checked each node for bistability by the following
procedure, explained more fully in Sec. VI. Starting from
a given stable state, we flip each node as follows. We de-
termine the plane that best corresponds to the positions
of the neighbors. Then we displace the node to its mirror
image configuration relative to that plane. We call this
the initial trial state. We then search for a nearby stable
state distinct from the starting state. This search pro-
ceeds in two steps. We first fix all the nodes except the
one examined, and determine a nearby energy extremum.
If the node remains separated from its unflipped start-
ing position, we then proceed to vary all node positions
and determine a fully stable configuration. If this stable

configuration still remains distinct from the starting un-
flipped state, we deem this node to be bistable. If on the
other hand, the relaxed state reverts to the initial state,
we seek other nearby positions of the node that might
converge to distinct states. We return to the initial trial
state defined above and displace it by a random amount
up to 0.3a. We then test this displaced state for stability
as we did for the initial trial state. If the displaced con-
verges to a distinct state, the node is deemed bistable. If
not, we perform another random displacement and test
it as before. If no bistable state is found after 30 such
trials, we deem the examined node to be monostable.

This procedure is adequate for surveying bistable
states, but it is not exhaustive. Since our algorithm to
find minima proceeds in discrete jumps, it can fail to find
the local minimum corresponding to a given initial state.
Further, this method probes only configurations that can
be driven to another stable configuration by displacing a
single node. It need not probe all transitions from a given
stable state to an adjacent one.

By this procedure we find that in the puckered lat-
tice in the globally flat state all nodes of positive angular
deficit (middle of the hexagonal pyramids) are bistable.
Most of them stay bistable when cylindrically shaped but
not all. In the random lattice there was usually a cor-
respondence between angular deficit and bistability but
not always.

These findings imply that bistability is determined
partly by the sign of the angular deficit but also by its
magnitude and by the position of the neighbors. Fig. 10
is a result for one random lattice with stiff edges of size
8 × 8. A horizontal bar at a node indicates positive an-
gular deficit; a vertical bar indicates bistability. The his-
togram in Fig. 10 is a distribution of angular deficit for
252 nodes, bistable nodes are dark colored and monos-
table light colored. One can see that most nodes of pos-
itive angular deficit are bistable. In cases where it is not
so, the angular deficit is close to zero. Nodes of nega-
tive angular deficit were almost always monostable (out
of 252 cases just one instance of negative angular deficit
turned out bistable, and the deficit in this case was very
close to zero).

Shaping a sheet changes some of the nodes from
bistable to monostable and vice versa. Fig. 11 shows an
example of a sheet that started flat with bistable nodes
marked by a light circle. We then shaped it cylindrically,
as in Fig. 3. The resulting bistable nodes for the cylinder
are marked by a dark dot.

Let us see how bistability influences the global shape.
We take the puckered lattice with extra springs at the
edges and flip one of the bistable nodes. Fig. 12 shows
the original flat sheet (light gray) and how it is curved
after one node is flipped (black). Taking longer springs
in the middle of the hexagons results in larger curvature
(right figure).

The local curvature of the bistable nodes dictates pos-
sible global curvatures for the entire sheet. Fig. 13A
demonstrates how a flat puckered sheet with all hexagons
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FIG. 10. (Color online) Bistability in a random lattice with stiff edges of size 8x8. (A) Bistable nodes (horizontal lines) and
nodes of positive angular deficit (vertical lines) shown on top of the actual nodes. (B) Histogram for the distribution of angular
deficit for 252 nodes (in seven different realizations of globally flat random sheets of size 8x8: blue—positive angular deficit
and bistable, yellow—positive angular deficit and monostable. Only when the angular deficit is close to zero we get a behavior
that deviates from expectation. For large angular deficit, the proportion of monostable nodes falls to zero. We do not present
nodes of negative angular deficit since, as mentioned in the text, those were almost always monostable.

Bistable in flat Bistable in curved

FIG. 11. (Color online) Shaping the sheet changes some of the
bistable nodes. An example for an 8× 8 random lattice with
stiff edges. Bistable nodes are marked with a blue circle for
the flat sheet and with a red dot for the cylindrically curved
one.

pointing down (all having local mean downward curva-
ture) can be forced to curve such that it has global mean
downward curvature. After removing the force, it will
stay curved. On the other hand, Fig. 13B indicates that
forcing it in the opposite direction, i.e., trying to impose
upward curvature, does not work — the sheet flattens
once the force is removed.

Bistability is important, but it is not the only factor
that determines the shape. There are multiple stable
shapes for the same configuration of bistable nodes, as
shown in Fig. 13. Here an initially flat state was forced
to bend by constraining the middle line and forcing the
two edges up. The resulting configuration (A) did not un-
dergo any flips in the bistable nodes, nor did any nodes
flip when the force was removed (C). The set of bistable

nodes remained unchanged in both (A) and (C). Further,
(C) was robust to perturbations. It returned to the con-
figuration shown when fifteen percent random displace-
ments in the node positions were imposed.

To characterize the non-locality, we look at a cylin-
drically shaped puckered sheet and force it even more
inwards, same as was done in Fig. 8. This time we push
it just above the limit of elasticity, so it does not recover.
We would like to define the change between this state
and the previous one. Is the change very local? Did just
one node flip? Or did all of them move? A good way to
measure locality is to look at the Inverse Participation
Ratio (IPR), defined by:

IPR =
1

∑

i ψ
4
i

, (5)

where ψi is the change in dihedral angle between every
pair of adjacent triangles, normalized such that

∑

i ψ
2
i =

1. The IPR gives 1 if the change is localized in one spring,
and N if it is spread equally over all springs. In the
above deformation for a 7×7 lattice we get IPR=12. i.e.,
about 12 sites accounted for most of the displacement
after the removal of the force. None of the bistable nodes
have flipped, and checking to see where the largest change
occurred, we find that it happened at a saddle point.
Fig. 14 presents the initial cylinder and the relaxed one
after forcing beyond elasticity in (A) and (B) respectively.
Fig. 14C shows the amount of displacement (dot size) of
each node and the change in dihedral angles (line width)
between A and B displayed on the “flat” initial sheet.
Observe that the biggest change in angles is not around
just one node, but also not spread on the entire shape,
but rather localized around a few nodes.
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FIG. 12. (Color online) Puckered lattice with all bistable nodes pointing down (in gray), and the same lattice with one bistable
node (marked by a dot) flipped up (in black). A: sheet with spring lengths as in Fig. 2C, B: sheet with longer springs and
bigger mismatch (al = 1.4a and am = 1.2a), resulting in more curvature. Bottom figure presents density plots for the change
of local height along the sheet after flipping. The perturbed region extends along a line away from the flipped node.
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Forced Relaxed

FIG. 13. Puckered lattice used in Fig. 12A. It is either forced
to curve up (A) or down (B) as described in the text. If
the force is removed, the shape retains some curvature when
bistable nodes point outward on the curved surface (C), but
not when they point inwards (D).

VI. NUMERICS

The lattice definition above specifies the spring basic
energy E0(x1, ...xn) as a function of node positions, E0 =
1
2k

∑

[α,β](|xα − xβ | − lαβ)
2, where xα is the position

of the α node, and the sum goes over all springs (see
Fig. 15). The rest length, lαβ , depends on the model,
as explained in Sec.II. Given a numerical formula for E0

we must determine the node positions that minimize this
energy. Standard numerical methods give an iterative
prescriptions for approaching this minimum, as discussed
below.

To eliminate floppy modes we add bending energy or
extra springs. Extra springs are added to nodes at the
edges that have less than six neighbors. We connect
them to their next to nearest neighbors using a spring
constant that is smaller by a factor of 10, i.e., k/10.
The rest length of these springs is chosen such that they
are relaxed in the original configuration. Bending en-
ergy is given by Eb = C

∑

[µ,ν] 1/(1.1 + n̂µ · n̂ν), where

n̂µ is the normal to the surface of the µth triangle, and
the sum goes over neighboring triangles. This particular
form guarantees that the energy increases sharply as the
angle between triangles gets closer to π. This discour-
ages triangles from simply folding onto their neighbors.
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A
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C

FIG. 14. (Color online) (A) Puckered lattice used in Fig. 8.
It is then forced beyond its elastic limit and, when relaxed,
finds a new configuration (B). The normalized change in dihe-
dral angles between each pair of triangles (controlling bending
energy) is represented by the width of the lines in (C), the dis-
placement of a node is given by the size of the dots .

The constant C was chosen to be C = ka2/3000 such
that C ≪ ka2.

If our sheets were physical objects in the real world
they would find the closest minimum to the initial config-
urations. In this qualitative study we used the standard,
nonlocal minimization methods, since these were faster
and captured the qualitative features. Specifically, we
used the FindMinimum command in Mathematica [34].
We tested a few methods under FindMinumum — con-
jugate gradient, Newton and quasi-Newton. The results
didn’t differ qualitatively, producing the same average
error values. However, convergence times were longer
than the general procedure. We thus used the FindMin-
imum without specifying any method. These minimiza-
tion schemes do not necessarily scan the energy landscape
in a continuous fashion. The “springback test” of Fig. 8
above confirms that the shaped configuration is a robust
minimum. The numerical calculation of the bulk mod-
ulus provided additional validation of the numerics and
the input energy formulas used in the numerics.

xi xjlij

FIG. 15. (Color online) An example of a random triangular
lattice with nodes xα and xβ connected by springs of rest
length lαβ. Red lines represent extra springs at the edges.

For the calculation of bistable nodes we went over
each node in the lattice, each time fixing all nodes but
one. We used the function FindRoot in Mathematica[34]
which implements Newton’s method to find the root of
a set of equations. In this instance we used it to find
an extremum. It requires an initial guess for which we
take the mirror image of the free node plus a small ran-
dom number taken from the interval [−0.3, 0.3]a . The
mirror plane was calculated by finding a plane which is
the closest to the six neighbors of the free node. If the
extremum point is in the vicinity of the original node
(within ±0.05a) we say it is the same position and go
on to look at another initial guess. We do this for up to
30 times. If in all of those tries we didn’t find a second
stable configuration we conclude that the point is monos-
table. We then take the list of nodes that are suspected
as bistable and for each one relax the sheet globally us-
ing Mathematica’s FindMinimum. If the position of the
flipped node is different from the original one by more
than ±0.05a we say that it is truly bistable.

VII. DISCUSSION

This study was based on the notion that the shape
memory seen in crumpled paper is distinctive and robust
because of its two-dimensional connectivity. We aimed to
capture this form of shape memory by a minimal system
embodying this two-dimensional connectivity along with
the local bistability of a crumpled sheet, using a sim-
ple lattice of springs. Remarkably, this lattice showed
significant shape memory in empirical numerical stud-
ies. Indeed, the resulting shapes resembled shapes seen
when one physically shapes crumpled paper. The remem-
bered shapes were robust: even when they were deformed
significantly by external forces, they returned to their re-
membered shape when these forces were removed. In this
section we examine the origin and potential significance
of this intriguing behavior. We focus on the puckered
lattice configuration, since it is the simplest system that
shows the shapeability.

Plastic vs recoverable shapeability

Macroscopically, the shapeability of our sheet is no
different from that of a malleable piece of metal, such
as a coat-hanger wire. When either of these materials
is forced into a given shape, it retains that shape. If
it is forced moderately from the retained shape, it de-
forms elastically, returning to that shape when the force
is released. In this sense it is as shapeable as our sys-
tem. The distinctive aspect of our sheet lies in the na-
ture of the microscopic changes that allow retention of a
shape. In the malleable metal the new shape arises be-
cause of plastic deformation. Planes of atoms making up
the metal crystal slide past each other, to reach another
stable state in which there has been a net relative motion
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of the atoms. In making a macroscopic deformation, this
process is repeated so that the material displacement be-
tween two given atoms may grow to indefinite size. The
microscopic variables that describe plastic deformation
must thus cover an indefinite range. Such deformations
are not recoverable. That is, the original arrangement of
the atoms cannot be recovered by the type of external
forcing that led to plastic deformation. In our sheet, by
contrast, the microscopic variables may be taken to be
the spring lengths. All the retained shapes of the sheet
are defined by limited changes of these lengths of the or-
der of a fraction of a lattice length. Because of this, the
deformations are recoverable. One can return to the ini-
tial microscopic state by applying a suitable force. For
example, one may force the nodes into a plane to create
a unique flat reference state. By contrast, one cannot
restore a bent wire to its initial straight shape with all
the atoms in their initial positions.

Shapeability and local bistability

Any locally stable configuration of a mechanical system
implies a local minimum of its potential energy. Since our
system has multiple stable states —e.g., flat vs curved—
it must have multiple local energy minima. Moreover,
these minima are coupled to macroscopic curvature and
are selectable by imposing macroscopic curvature pro-
files. This coupling between local bistability and global
shape has been elegantly demonstrated in the embossed
metal sheets of Seffen [16, 17]. Thin metal sheets were
plastically deformed to make an array of bistable dents.
By pressing these dents into a pattern of convex and con-
cave shapes, the author created a range of global cur-
vature. These experiments give us additional reasons to
expect a connection between shapeability and local bista-
bility in our simple strut system.
Our system was designed to have many local energy

minima. First, it is constructed to be hyperstatic, so that
there are no free motions degenerate in energy. Second, it
was constructed to have an extensive set of bistable states
associated with individual nodes of the lattice. We found
empirically that simply having such bistable states was
not sufficient for shape memory. Instead, it was neces-
sary that the state of one bistable node affect the stable
positions of the other bistable nodes. Thus deforming
the network causes bistable nodes to become stable and
vice versa (Fig. 11). Likewise, a given external force may
collectively destabilize a family of bistable states due to
their interaction.
We expect any two-dimensional sheet to have such co-

operativity. In a smooth, unstretchable sheet, the Gaus-
sian curvature must vanish everywhere: one principal
curvature must vanish at every point, and the two un-
curved directions extending from any point must form a
straight line to the boundary [26]. Real sheets differ from
this ideal case. They can stretch and fold, thus weaken-
ing these constraints. Still, the requirement of remaining

as a continuous sheet imposes strong constraints on the
energy landscape. Thus the minima of interest in our
sheet are expected to be co-operative, involving multiple
nodes. For example, the remembered states of cylindrical
curvature observed in our study involve such cooperativ-
ity (Fig. 14). The curvature at a given point is shared
by several nodes.
The above picture leads us to expect a strong connec-

tion between the deformation into a remembered shape
and an associated flipping pattern of the bistable states.
We did observe some relationship between the direction
of imposed curvature and the flipping of bistable states,
as described in Fig. 12. However, the relationship was far
too weak to explain the robust retention of shapes that
we observed. Our system was able to retain strongly
curved states without any change of the bistable states
we monitored.
By deforming a shaped sheet beyond the threshold of

irreversibility, we got some indication of the nature of
the minima. When the imposed deformation force was
pushed just past the threshold, we observed a small dis-
continuous displacement. Some of this displacement re-
mains after the force is removed. This displacement has
moved the system from one energy minimum to another
nearby minimum. The shift was accomplished with no
flipping of our bistable nodes, as noted above. Instead,
the shift was a pattern of spring deformations concen-
trated along one row of nodes. This motion confirms
our expectation that the energy minima responsible for
shape memory are not local but co-operatively stored by
multiple nodes and springs.
The shapeability treated here differs from that of

Refs. [16, 17]. First, their shapes are selected by flipping
bistable nodes, whereas in our systems they are selected
by forcing. Second, our remembered shapes can be ac-
cessed without any flipping of the local bistable nodes.
The cooperativity between bistable nodes thus seems dif-
ferent from that seen in [16] and [17]. Characterizing the
coupling between local and extended structure will be
important in understanding both systems.

Scalability

Our study gives information about how the shape
memory depends on the number of nodes in the lattice.
When we simply created a larger lattice with the same
local structure, the shape memory decreased. A larger
sheet bent through a given angle relaxes nearly com-
pletely while a smaller sheet remains bent. This behavior
is natural in the continuum limit. Any mechanical sheet
when bent with a curvature sufficiently smaller than its
inverse thickness, must respond elastically, and thus re-
versibly. Conversely, shaping behavior of a sheet on the
scale L requires a non-elastic, irreversible response for
curvatures of order 1/L. This suggests that the effective
thickness should be of order L to retain shapeability i.e.
α = h/L shouldn’t be considerably smaller than 1. The
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8 x 8 sheets of our main study satisfied this criterion.
They had a root-mean-square thickness of roughly five
percent of their width. To expand the thickness in pro-
portion to L as L → ∞ cannot be achieved with simple
lattices like those studied here. Instead, one would need
to introduce structure on increasingly large wavelength
scales, with the long wavelengths supplying the needed
thickness on the largest scales. We note that crumpled
sheets have bendable elements on many length scales [27]
so that their effective thickness grows with their size.
Another potential way to modify the lattice so that

it remembers weak curvature is to reduce the distance
between the bistable node positions e.g., by reducing the
height of the pyramids in Fig. 2. Reducing this distance
must tend to reduce the amount of deformation (i.e.,
curvature) needed to produce a flip.
In view of these ways to enhance shapeability, our ob-

served reduction in shapeability with L using our con-
stant lattice geometry does not appear insurmountable.

Compound curvature

Notably lacking from our study was compound cur-
vature. Our main studies were confined to cylinder-like
shapes with curvature in only one direction. This sim-
ple curvature was sufficient to demonstrate shapeability.
Still, such shapes are very limited. In particular they
are far more limited than the general three-dimensional
shapes formable using crumpled sheets or origami shapes
such as the “water bomb” [28]. The hysteretic shapes
of Fig. 7 showed some compound curvature as well as
those of Fig. 12. We did not systematically attempt
such shapes, for the reason noted above. Any smooth
sheet with compound curvature must undergo large vari-
ations in the spatial distance between material points,
i.e., large and inhomogeneous strain. Crumpled sheets
satisfy this constraint by folding. Folding allows large dis-
tances in the material sheet to span only small distances
in space. Our lattices were not amenable to folding; thus,
we did not expect them to remember shapes with com-
pound curvature. However, generalizing our lattices to
allow folding should permit the lattices to adopt shapes
with substantial compound curvature. Another interest-
ing direction to explore is lattices that initially possess
Gaussian curvature. In case of a sphere, for example, the
number of floppy modes is fixed and doesn’t depend on
system size.

Connection to other material memories

Shapeability is a form of memory, as emphasized
above. Several other forms of material memory have
received wide attention in recent times, in addition to
those mentioned in the Introduction. Examples are the
classic spin-glass associative memory of Hopfield [30], the
sheared colloidal dispersions of Pine and Chaikin[31], and

the selectable crystallization of a “magic soup” of com-
ponents of Murugan et al [32]. The question naturally
arises how the shapeable sheets studied above are related
to other forms of memory.
Any physical system that functions as a memory asso-

ciates a (large) set of configurations {c} with a (small)
set of target configurations {g} ⊂ {c}. The association
means that for each target configuration gi there exists
a set of other configurations {c}i ⊂ {c} such that any
initial configuration C ∈ {c}i evolves into gi and remains
at gi. The number of target configurations gi can range
from one to a large number. The number of initial config-
urations {c}i leading to a given gi may also range widely,
from a single configuration—gi itself— to a large fraction
of the possible configurations. For example, an array of
N decoupled magnetic bits, has a capacity of 2N target
states, but the set of initial bit patterns {c}i correspond-
ing to a given target bit pattern gi consists of only the
single configuration {c}i = gi. Conversely, a single ideal
ferromagnet whose atomic spins are forced into a given
pattern relaxes to one of only two states: the “up” and
the “down” ground states. Here there are only two gi and
virtually all the configurations c belong to either {c}1 or
{c}2.
In several of these systems, e.g., the spin glass memory

and the magic soup, the memories are pre-determined or
instilled by a separate process. This instillment does not
play a role in the shapeability explored in this work. The
shapeability arises from generic features of the structure;
the desired shapes were not explicitly programmed into
the lattice.
An ideal shapeable material can assume a wide range of

coarse-grained geometric forms. Thus an ideal shapeable
sheet would be able to approximate any smooth profile
of compound curvature, such as a U-channel, a bowl or
a saddle shape. The process of selecting a target state
consists of forcing the sheet into a shape similar to that of
the target state. The memory consists of the retention of
this form under perturbations. The set of deformations
that return to the target state are the {c}i for this shape
gi. The material can retain a large range of possible
shapes; thus the range of {c}i selecting a given gi is a
small fraction of this total range. Since any given region
may in principle be shaped independently, the number
of possible memories is potentially proportional to the
number of configurations of the system and exponential
in the number of degrees of freedom. The capacity of the
spin-glass memory, by contrast, is simply proportional to
the number of degrees of freedom[30]

Physical realizations

The utility of the sheets studied here depends on physi-
cal realizations. The simulations presented above provide
encouragement that networks of real nodes and springs
will show shape memory, though these simulations give
only a qualitative representation of a real network. In
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a real network bending elasticity is needed in order to
prevent unconstrained modes of motion, but our simu-
lated bending elasticity was not especially realistic. A
wide range of physical implementations would be consis-
tent with the qualitative properties of our simulation. In
particular, the network could be molded or cast as a sin-
gle piece of plastic or metal. Our simulations made little
attempt to optimize the geometry of the structure. Thus
there is great scope for improved shapeability.

CONCLUSION

Deforming two-dimensional elastic manifolds into three
dimensions typically induces a reinforcing network of
ridges and vertices [33]. In this study we have inves-
tigated how this co-operative response might influence
a manifold containing local energy minima. We specu-
lated that the induced network might couple the local
energy minima so as to create remembered shapes. Our
exploratory lattice models made to test this mechanism
indeed showed a modest but unambiguous shapeabil-
ity. Thus they demonstrate that extensive shapeability is
achievable without plastic deformation and without de-

signing the material to create specific shapes. They thus
suggest a new strategy for creating deformable, recon-
figurable objects. Further, this mechanism may account
for the extensive shapeability seen in everyday crumpled
sheets of paper or plastic.
To understand how the shape memories are stored, one

must understand the constraints that define a given en-
ergy minimum and that dictate the transitions between
minima. We have only begun to explore these minima. It
appears feasible that lattices like those studied here can
be developed into a generic form of shapeable material.
Our work towards both of these goals is in progress.
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In general each spring imposes a linear constraint equa-
tion on the 3N Cartesian node co-ordinates. If the equa-
tions for all the springs are independent, then the 3N
constraint equations have a unique solution. Then any
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