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ABSTRACT 

The spatially-resolved diffusive dynamic cross correlations of a pair of colloids in dense 

quasi-2D monolayers of identical particles is studied experimentally and theoretically at 

early times where motion is Fickian. In very dense systems where strong oscillatory 

equilibrium packing correlations are present, we find an exponential decay of the 

dynamic cross correlations on small and intermediate length scales. At large separations 

where structure becomes random, an apparent power law decay with an exponent of 

approximately -2.2 is observed. For a moderately dense suspension where local structural 

correlations are essentially absent, this same apparent power law decay is observed over 

all probed interparticle separations. A microscopic non-hydrodynamic theory is 

constructed for the dynamic cross correlations which is based on interparticle frictional 

effects and effective structural forces. Hydrodynamics enters only via setting the very 

short time single particle self-diffusion constant. No adjustable parameter quantitative 

predictions of the theory for the dynamic cross correlations are in very good agreement 

with experiment over all length scales. The origin of the long-range apparent power law 

is the influence of the constraint of fixed interparticle separation on the amplitude of the 

mean square force exerted on the two tagged particles by the surrounding fluid. The 

theory is extended to study high packing fraction 3D hard sphere fluids. The same pattern 

of an oscillatory exponential form of the dynamic cross correlation function is predicted 

in the structural regime, but the long-range tail decays faster than in monolayers with an 

exponent of -3. 
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I.  INTRODUCTION 
 
  It was an enormous insight in the 19th century when Brownian motion was 

discovered in colloidal suspensions [1]. The implication that elementary units are 

persistently mobile is fundamental to our modern understanding of many material 

properties, particularly in soft matter [2]. To date, the space-time correlation of the 

Brownian motion of two particles can be used to extract the rheological properties of soft 

materials and biological media, an approach called two-point microrheology [3-6]. When 

dilute large tracer particles are suspended in a material, their long-range hydrodynamic 

interaction requires their Brownian motion to be correlated [7-11], and from its 

measurement the material mechanical properties can be deduced. Extensive effort has 

been given to understanding how an interface may change the correlation between the 

hydrodynamic diffusion of a pair of dilute tracer colloids [7, 8]. 

 For non-dilute suspensions, the two particle correlated motion cannot be a priori 

assumed to be solely controlled over all length and time scales by solvent-mediated 

hydrodynamic interactions. Multiple fundamental questions arise including the relative 

and absolute importance of (i) possible exponential suppression (“screening”) [12-20] of 

hydrodynamic forces on “molecular” length scales, (ii) non-hydrodynamic two-particle 

dynamic correlations (which must exist) due to effective interparticle forces and fluid 

packing correlations [21-31], and (iii) fluid-density-dependent renormalization (modified 

prefactor, also called “screening”[15-16, 32]) of the very long range hydrodynamic 

interactions on scales where the fluid is a structural continuum. A high level, poorly 

understood, question is the relative importance of solvent-mediated hydrodynamic versus 

non-hydrodynamic mechanisms for inducing space-time displacement correlations in 
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chemically and structurally distinct suspensions as a function of colloid density, length 

scale and (effective) spatial dimensionality. This problem was recently studied 

theoretically for two large colloids suspended in unentangled and entangled polymer 

liquids [27].    

In this article we perform an integrated experimental and non-hydrodynamic 

statistical mechanical theory study of the correlated two particle displacements of 

repulsive (charged stabilized) colloidal suspensions that have sedimented to form an 

effectively 2-dimensional fluid at a planar solid surface. Experimentally, the spatial 

dependence of dynamic displacement correlations is measured without using probes 

(tracers) over a wide range of length scales. Given the technical challenges associated 

with the measurements, we focus on the short-time regime for which (nearly) Fickian 

dynamics applies. Our experimental system has some similarities to that employed in 

recent studies of a single monolayer of a colloidal suspension tightly confined between 

two solid surfaces or at the interface between two bulk liquid phases [7-11]. However, 

our system is effectively a supported monolayer. This is potentially a major difference 

compared to prior studies from the point of view of the nature of hydrodynamic effects 

which are sensitive to boundary conditions in quasi-2D systems [11].  

 Figure 1 defines the relevant variables for our study. The two particles of interest 

are initially at positions  
!rα . After an elapsed time t , they displace by  Δ

!rα (t) ≡
!rα (t)−

!rα . 

Alternatively, their positions can be expressed in terms of center-of-mass (CM), 

 
!
R(t) ≡ !r1(t)+

!r2 (t)( ) / 2 , and relative,  
!r (t) ≡ !r2 (t)−

!r1(t) , coordinates. The dynamic 

displacement cross correlation tensor of the tagged particles is then defined as: 
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C
!"
12 (r0,t) = Δ"r1(t)⊗Δ"r2 (t) r0

  (1) 

where⊗  denotes a tensorial outer product, and the restricted ensemble average ... r0 is 

performed at fixed interparticle separation, r0 , at time t. For isotropic and homogeneous 

systems,  C
!"
12 decays to zero at very large interparticle separations, and has only two 

independent elements: (i) the radial component along the separation vector, and (ii) the 

transverse component, defined as: 

 Crr (r0,t) = Δr1,r (t)Δr2,r (t) r0
 (2a) 

 Ctt (r0,t) = Δr1,t (t)Δr2,t (t) r0
, (2b) 

Here, 
 Δrα , r (t) = Δ!rα (t) ⋅

!r0  is the displacement vector projected along the interparticle 

separation direction and Δrα , t (t)  is the projection onto one of the (equivalent) directions 

transverse to  
!r0 . The off-diagonal correlations between different directions vanish.  

 From a strictly hydrodynamic perspective, radial and transverse displacement 

correlations are expected to be comparable. On the other hand, when particles that 

interact via a central pair potential of non-hydrodynamic origin, one expects radial 

correlations to dominate over transverse correlations. This is easy to see for two isolated 

particles since motion in any direction other than r̂0  is uncorrelated (no force). At finite 

particle densities, non-zero non-hydrodynamic transverse dynamic correlations will arise 

due to nonrandom packing, but the radial correlations are still expected to dominate. This 

expectation is confirmed in our experiments (see section II), and for the remainder of this 

paper the focus is entirely on the radial correlations Crr  of Eq. (2a).  
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 Experimentally, we find distinctive differences between the displacement 

correlations at moderate and high 2D packing fraction. The former shows, to a very good 

approximation, an apparent power law dependence of Crr (r0 ) over all separations 

measured, while the latter exhibits exponential decaying correlations on the local 

structural scale which then cross over to the same apparent power law form at large 

interparticle separations. To understand our observations, we employ a first principles, 

force-level, non-hydrodynamic statistical mechanical theory. Hydrodynamics enters only 

via the short time single particle diffusivity. Using experimental input for the required 

equilibrium pair correlation function, g(r), without any adjustable parameters the non-

hydrodynamic theory agrees quantitatively with the measurements. The theory is then 

extended to make predictions for 3D hard sphere fluids for which experiments do not yet 

exist.  

 Section II describes our experimental approach and measurements of the single 

particle mean square displacement (MSD). For context, a brief summary of relevant prior 

hydrodynamic theoretical work and experimental studies is presented in section III, 

followed by the formulation of the general aspects of our non-hydrodynamic statistical 

mechanical approach for two-particle dynamics. Analytic results are derived for the 

displacement correlations in limiting regimes for quasi-2D fluids in section IV. Section V 

presents our experimental results for displacement correlations, and quantitatively 

compares them to our theoretical predictions. The theory is applied to study 3D hard 

sphere fluids in section VI. The paper concludes in section VII with a brief discussion. 

Appendices A and B provide technical theoretical details for the one and two particle 

problems, respectively.  
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II.  EXPERIMENTAL APPROACH  

Silica particles of diameter   σ = 2 µm  (Shinshikyu, polydisperity index <0.001) 

were suspended in Milli-Q quality deionized water and stabilized by electrostatic 

repulsion. The solution was completely sealed between two glass cover slips (Gold Seal, 

thickness #1, 40 x 22 mm) with a spacer of height 120 µm. The particles naturally 

sedimented onto the bottom cover slip, forming a quasi-2D system where points of 

contact and centers of mass are coplanar; detailed analysis reveals extremely small 

vertical particle fluctuations. The particles were then observed under a bright field 

microscope. Two fluid area fractions are studied, η2 = 0.188, 0.503 . At higher area 

fraction (0.584), the particles crystallize. We note that, in contrast to work by others on 

quasi-2D suspensions [8-11], our system has only one solid interface. This would seem to 

be an important difference with regards to the potential influence of hydrodynamic 

interactions on dynamic displacement correlations. 

The positions of particles are tracked with a circle-finding algorithm in Matlab 

and then linked into trajectories with unique particle IDs. Here, the potential dynamical 

uncertainty due to colloid motion can be neglected since the exposure time is much less 

than the time between frames. The static error due to inherent uncertainty in the tracking 

algorithm is on the order of 50 nm, roughly 3% of the particle diameter.  

To measure g(r) , the distances between all pairs of particles, rαβ , were 

calculated from the experiments. The particle pairs were binned with an appropriate bin 

width (~ 0.1 µm) and the distribution of all values of rαβ  was divided by the kernel for a 
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Poisson point process to eliminate edge effects [33]. Due to tracking errors and some 

unavoidable sample impurity, unphysical values can occur (separations smaller than the 

particle diameter). Pairs with such values of rαβ  are a small minority and are eliminated 

in all subsequent analysis. 

The measured dynamic displacements    Δ
!rα (t)  from all the uniquely labeled 

trajectories are squared and averaged to calculate the single particle mean square 

displacement MSD(t) = Δrα
2 (t) . By inspecting the MSD (Figure 2) one sees that at 

short times the particles exhibit Fickian diffusion [2]: 

 MSD (t) = 4D(1)t   (3) 

where Eq. (3) defines the quasi-2D single particle diffusion constant D(1) . At high liquid-

like area fractions and long enough times, this changes as viscoelastic caging effects 

emerge. Regarding the relative diffusivity, we focus on short times, as shown by the 

black circles in Fig. 2. For area fraction η2 = 0.188 , the Fickian behavior holds at all 

three measurement times of Crr and the self-diffusivity is D(1) = 0.090 µm2 / s . At 

η2 = 0.503 , Fickian motion with D(1) = 0.065 µm2 / s  roughly holds for all measurement 

times of Crr except at t = 10 s  when caging has begun.     

For all particle pairs that can be tracked to an elapsed time t, we define two related 

quantities: (i) the average separation vector 
   
!rαβ (t) ≡ 1

2
{!rβ (t)+ !rβ}− 1

2
{!rα (t)+ !rα}, and (ii) 

the product of projected displacements 
  
Δrα , r (t)Δrβ , r (t) . The pairs are first distributed 

among discrete bins according to 
   
r0 =
!rαβ (t)  as in the calculation of   g(r) , then all pairs 
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within the bin centered at 𝑟!  are averaged to give Crr (r0,t) = Δr1,r (t)Δr2,r (t) r0
. This 

allows us to directly access the dynamic correlations in dense suspensions without using 

invasive tracer particles. In general, Crr (r0 ,t) decreases as separation and time lag grow, 

and the measurement becomes unreliable after roughly 2-3 decades of decay in 

amplitude. Bins are spaced logarithmically with most being wider than the particle 

diameter so that sufficient statistics can be collected. Hence, spatial features on the scale 

of particle diameter and smaller in   Crr (r0 ,t)  cannot be captured.  

We find that the ratio of the transverse to the radial displacement correlation function,

0

0

( , )
( , )

tt

rr

C
C

r t
r t

, is typically small (< 0.1), becoming increasingly so as the interparticle 

separation and time lag increase. Given our measurement noise level, this renders a 

reliable analysis of 0( , )tt r tC  prohibitively difficult, and here we focus entirely on 

  Crr (r0 ,t) . Finally, we note that unlike the conventional single-particle MSD 

measurements that depend only on time lag t, correlated diffusion has an extra spatial 

dependence and thus requires orders of magnitude more data to compute the averages 

presented in this article.  

 

III.  THEORY 

We first briefly summarize recent hydrodynamic theory work and the 

corresponding experiments for colloid pair dynamics. A general non-hydrodynamic 

theory framework is then developed which is applicable to homogeneous fluids (no 

confining boundaries or interfaces) in any spatial dimension at short times.   
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A. Many Particle Hydrodynamics and Colloidal Experiments.  

 The classic hydrodynamics problem concerns the diffusive motion of one or two 

large particles (diameter σ) suspended in a small molecule liquid [1-3]. For pair 

dynamics, the focus is generally on their correlated motion at large separations, 

r>>σ,  where a continuum model is most appropriate. In dilute bulk 3D fluids, the 

displacement correlation function is very long range with a spatial dependence of [3]: 

Crr (r0 ,t)
t

∝
1

ηsr0
, r0 >> σ

       (4)
 

where at very short times (or in the dilute 2-particle limit) ηs  is the solvent viscosity, and 

at long times it is the low frequency suspension viscosity.  

Near an interface this behavior qualitatively changes. Combined experimental and 

theoretical work for two colloids (infinite dilution limit) suspended at an elevation H 

above a solid surface found that in the (asymptotic) limiting regime σ << H << r0  the 

displacement correlation decay much faster than in bulk 3D fluids as [7]: 

Crr (r0 ,t)
t

∝ r0
−3 ,σ << H << r0

       (5) 

Extensive studies [9-11] have been performed for quasi-2D dense suspensions 

(area fractions ranging from 0.254 to 0.547) composed of a single monolayer confined 

between two solid surfaces. At large interparticle separations, an apparently universal 

behavior for all packing fractions studied was found [10]: 

Crr (r0 ,t)
t

∝ r0
−2 ,r0 >> σ

         (6)
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This power law decay is stronger than in 3D, but weaker than for the dilute problem near 

a single surface. On smaller length scales, oscillatory displacement correlations were 

measured that correlate with the equilibrium suspension structure [10]. A hydrodynamic 

theoretical analysis was performed that is in overall good agreement with the 

measurements, albeit with the introduction of two fit parameters to quantify amplitudes in 

the far and near field [10]. In this analysis, structural correlations, g(r), enter only via 

their modification of the hydrodynamic mechanism for inducing displacement 

correlations. Specifically, the following additive form was derived [10]: 

Crr (r0,t)
t w2 = λ σ

r0

⎛
⎝⎜

⎞
⎠⎟

2

+Cη2
σ
r0

⎛
⎝⎜

⎞
⎠⎟

2

g(r)−1( )
       (7)

 

where w is the film thickness, and C and λ  are adjustable numerical prefactors. How the 

latter are influenced by suspension volume fraction and suspension viscosity is not a 

priori obvious. A surprising result is that the amplitude of the leading long range 

contribution was measured to be (nearly) colloid concentration independent, and a 

hydrodynamics-based argument was advanced to explain this observation [10].  

We note that the a priori validity of Eq. (7) at small interparticle separations is 

unclear given its continuum hydrodynamic basis. Moreover, the question of possible 

exponential screening of near field hydrodynamic interactions [12-21] was not 

considered. Such exponential screening on “molecular” length scales due to multiple 

scattering effects is well established in 3D polymer solutions [14,15], and also for particle 

suspensions in rigid porous media [19,20]. However, it remains debated whether 

exponential screening exists in colloidal suspensions where all particles are mobile. 

Arguments for [12] and against [13,14] such screening have been advanced, as has the 
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concept of partial screening [17], and also the idea that screening depends on 

nonuniversal features such as the range of electrostatic repulsions in colloidal fluids [18]. 

The issue of exponential screening in dense quasi-2D suspensions seems even more 

poorly understood. However, we emphasize that uncertainties about how to analyze 

hydrodynamics in quasi-2D suspensions are not relevant in a practical sense in this paper 

since we consider only a non-hydrodynamic mechanism for inducing dynamic 

displacement correlations.  Of course, separating the consequences on correlated two 

particle dynamics of hydrodynamic interactions and direct interparticle forces in dense 

suspensions is notoriously problematical. Moreover, for quasi-2D systems the relative 

importance is likely nonuniversal given the sensitivity of hydrodynamic effects to sample 

configuration and hence boundary conditions [11]. We note that, as a matter of principle, 

the theory developed below could be unambiguously tested using Brownian dynamics 

simulations which remove many-particle hydrodynamic effects.  

B. Non-Hydrodynamic Approach: Generalized Langevin Equations 

 To analyze displacement cross correlations from a non-hydrodynamic perspective 

requires a statistical dynamical theory for the stochastic equations of motion of two 

tagged particles as a function of their separation in a dense fluid. Hydrodynamics will 

enter solely by employing the elementary single particle Stokes-Einstein diffusivity to set 

the time scale for all further colloidal motion. The demonstrated agreement below 

between theory and experiment without fit parameters provides support for this starting 

point of our theoretical analysis.  
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 The basis for the non-hydrodynamic theory is two coupled generalized Langevin 

equations (GLEs), which have been previously derived using Mori-Zwanzig methods for 

spherical particles [22-25, 31]: 

 
 
ζ 0
d !rα (t)
dt

= − 1
β
∂ ln g(!r )

∂!rα
+ dτ Kαγ (

!r , t −τ )
d !rγ (τ )
dτγ =1,2

∑ +
!
ξα (t)+

!
f Qα (t)0

t

∫  . (8) 

where β = 1/ kBT  is the inverse thermal energy, (α,γ )  denote the tagged particle 

indices, Latin indices (i, j) are adopted to denote Cartesian components of vectors, and  

the interparticle separation is  
!r ≡ !r2 −

!r1 .  

 There are three main contributions in Eq. (8). (i) The drag force quantified by the 

very short time friction constant ζ 0 , which is balanced by the random white noise force 

 ξ
!
α . For colloidal suspensions, ζ 0  is the Stokes-Einstein value. (ii) The first term on the 

right hand side of Eq. (8) involves the equilibrium potential-of-mean-force (PMF), 

 W = −kBT ln g(!r ) . It captures the reversible (non-dissipative) component of interparticle 

forces due to the direct pair potential and the fluid-mediated component determined by 

nonrandom structural correlations. (iii) Viscoelastic effects associated with the space-

time correlation of the forces exerted on the two tagged particles by the surrounding 

colloids enter via the non-local in time memory term, Kαγ . For appropriate time 

regime(s), it can be treated in a Markovian manner as a dissipative frictional drag force. 

The time autocorrelation of the slowly relaxing “random”  f
!"

α
Q
(t)  equals Kαβ which 

depends on the instantaneous separation of the two tagged particles. From the fluctuation-

dissipation theorem one has [31]:  
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 ξα ,i (t)ξβ , j = 2 kBT δ (t)δαβ δ ijζ 0   (9a) 

 fα ,i
Q (t) fβ , j = kBT

d
δ ijKαβ (t) , (9b) 

where d is spatial dimension, and the cross correlation between  
!
ξ  and  

!
f  vanishes.   

 Equation (8) can be simplified by transforming to center-of-mass (CM) and 

relative coordinates, yielding the (in general coupled) equations of motion: 

  
 
ζ 0
d
!
R(t)
dt

= dτ KR(
!r , t −τ ) d

!
R(τ )
dτ

+
!
Ξ(t)+

!
FQ (t)

0

t

∫   (10a) 

 
 
ζ 0
d !r (t)
dt

= − 1
β
∂ ln g 2r(t)+ r0( )

∂r
+ dτ Kr (

!r , t −τ ) d
!r (τ )
dτ

+
!
ξ (t)+

!
f Q (t)

0

t

∫ . (10b) 

where KR = K11 + K12  and Kr = K11 − K12  are the CM and relative memory functions, 

respectively. Additionally, 
 

!
Ξ ≡

!
ξ1 +
!
ξ2( ) / 2   and  

!
ξ ≡
!
ξ2 −
!
ξ1  denote the corresponding 

white noise random forces for the center of mass and relative variables, while   
!
F  and  

!
f  

denote the slowly relaxing random forces with analogous definitions in terms of  
!
f1   and 

 
!
f2 . The cross correlations of Eq. (2) can then be written as: 

 Δr1,r (t)Δr2,r (t) r0
= ΔRr (t)ΔRr (t) r0

− 1
4

Δrr (t)Δrr (t) r0
 . (11) 

Statistical mechanical approximations are necessary to compute the memory functions 

and thus solve Eqs. (8)-(11) for the single particle and relative dynamic correlations.  

C. Two Particle Mode Coupling Theory  

 To calculate the memory function we employ a simple mode coupling theory 

(MCT) [25-31] that has been successfully utilized for different problems recently [25-27] 
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but the derivation of which has only been sketched. The latter is now given in Appendix 

B and is summarized below.  

Assuming that the relevant slow dynamical variable involves only density 

fluctuations, the force on a tagged particle is projected onto the slow bilinear density 

modes, which in Fourier space are ρα (k)ρc (−k) . Here, 
 
ρα

!
k( ) = e− i!k ⋅!rα  is the Fourier 

transform of the single particle density associated with either tagged particle, and ρc (k) is 

the Fourier transformed collective density of the surrounding particles. Unlike single 

particle (naïve) MCT (see Appendix A), here a matrix projection is employed since two 

particles are of interest. A standard Gaussian factorization of four point correlations into a 

product of two point functions is employed to close the theory. Detailed analysis (see 

Appendix B) yields the center of mass ( R , +) and relative ( r , -) memory functions: 

 
 

K
R,r
(t) = ρd

β d
dd
!
k

(2π )d
k2h2 (k)
S(k)

1
1±ω12

(d )(k)∫ Γ s (k,t)Γc(k,t) .  (12) 

where the +(-) sign applies for R(r). h(k)  is the non-random pair distribution function in 

Fourier space, S(k) = 1+ ρd h(k)  is the static structure factor, and Γ s  (Γc ) is the single 

particle (collective) dynamic density-density correlation function normalized to unity at 

t = 0 . The quantity ω12
(d ) (k)  captures the constraint on the two tagged particles that their 

separation in space is fixed when determining the displacement correlation function.  

 To make further progress we invoke two simplifications motivated by the specific 

experimental conditions of interest:  (i) the tagged particles are effectively at a fixed 

separation during the measurement of cross-correlation, and (ii) only short time dynamics 

are investigated such that many-body caging and non-Markovian effects are absent. 
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These simplifications have several consequences. First, the fixed separation ensemble is 

invoked to calculate the constraint function 
 
ω12
(d ) = e− i

!
k ⋅ !r2−

!r1( )
r0

, which is averaged over 

the solid angle in the proper dimension d . An elementary calculation yields: 

 ω12
(2)(k) = J0 (kr0 )   (13a) 

 ω12
(3)(k) = j0 (kr0 ) = sin(kr0 ) / kr0  , (13b) 

 where J0  is the cylindrical Bessel function, and j0  is the spherical Bessel function. 

Conditions (i) and (ii) also have implications for computing the dynamical density-

density correlation functions (or propagators), Γα (k,t) . The fixed separation constraint 

implies that dynamical de-correlation of the forces on the two-tagged particles is solely 

due to relaxation of the surrounding fluid; hence we set Γ s ≈1 . A standard short time 

diffusive form of the collective dynamic density-density fluctuation structure factor Γc  is 

adopted, since the measurements are taken before the onset of viscoelastic effects (Fig. 

2). Thus, in a time regime where displacements are Fickian one has [2, 34,35]:  

 Γc(k,t) = exp − k
2D0t
S(k)

⎡

⎣
⎢

⎤

⎦
⎥  . (14) 

where, D0 = kBT /ζ 0  is the single particle short time diffusion constant. 

 Since the particles are effectively fixed during the measurement of Crr(r0), the 

potential of mean force (PMF) is a constant and can be dropped in Eq. (10). Adopting the 

Fickian assumption in Eq. (10) allows us to define the renormalized center-of-mass 

friction constant, ζ rr
(R) ≡ ζ 0 + dt KR(t)0

∞

∫ . The center-of-mass correlations are then given 
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by ΔRr (t)( )2
r0
= t (kBT /ζ rr

(R) ) , and similarly for the relative coordinate. Using these 

solutions of Eq. (10) in Eq. (11) yields: 

 Drr
non−HD = kBT

1
ζrr
(R) −

1
ζrr
(r )

⎛
⎝⎜

⎞
⎠⎟

,  (15)  

where Drr
non−HD (r0 )  is the separation-dependent non-hydrodynamic relative diffusion 

constant, Δr1, r (t)Δr2, r (t) r0
≡Drr

non−HD (r0 )t . Note that the cross correlations must be 

smaller than their diagonal analog, 
 Δ
!r1(t) ⋅ Δ

!r2 (t) ≤ Δr1
2 (t) , which implies the rigorous 

bound Drr
non−HD ≤ 4D(1) .  

  Combining Eqs. (12) and (10) with the definition of the friction constants above 

Eq. (15), and performing the time integral, yields:  

 
 

ζ rr

(R)
(r )

ζ 0
= 1+ ρd

d
dd
!
k

(2π )d∫
h2 (kσ )

1±ω12
(d )(kr0 )

 , (16) 

Equations (13), (15) and (16) form the foundation of the non-hydrodynamic theory. It is a 

general starting point to analyze the short time dynamic displacement correlations of 

quasi-2D or 3D systems of spherical particles interacting through arbitrary pair potentials 

at any fluid density in the absence of many-particle hydrodynamics. Note that our 

treatment of dynamic displacement correlations in quasi-2D systems is not sensitive to 

system boundary conditions, in contrast to the hydrodynamics-mediated mechanism. 

 

IV. THEORY IMPLEMENTATION AND ANALYTIC RESULTS FOR QUASI-2D 

SUSPENSIONS  
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A. Model for Structural Input 

 To implement the dynamical theory requires the equilibrium pair structure. While 

two-dimensional integral equation theory for hard disks could potentially be employed 

[2], this likely is not quantitatively appropriate for our experimental colloidal suspension 

which is neither literally 2D nor literally a hard core system. We instead utilize the 

measured equilibrium pair correlation function shown in Figure 3 for two area fractions, 

η2 = ρ2πσ
2 / 4 , of  0.188 and 0.503. The solid curves are the experimental results and the 

dotted curves are analytic fits to them. For η2 = 0.503 , the following model is employed: 

 g(r) =
0 r <σ

1+ Ae−8(r−σ )/λ + Be−(r−σ )/ξstruc( ) sin 2π
λ

r −σ( )⎡
⎣⎢

⎤
⎦⎥

r ≥σ

⎧

⎨
⎪

⎩
⎪

 . (17) 

Eq. (17) has four parts: (i) a hard core constraint where g(r) = 0 , (ii) oscillations with a 

wavelength on the order of the particle size, λ = 1.1σ , (iii) an exponential envelope with 

decay length ξstruc = 2.05σ  and amplitude B = 1 , and (iv) another exponential with 

amplitude A = 9  and a shorter decay length to capture the contact peak region. For 

η2 = 0.188 , no distinct oscillations exist in the experimental distribution function, and 

Eq. (17) is not appropriate. Instead we model g(r)  as a piecewise continuous function: 

for r <σ  a hard core is employed, for σ ≤ r ≤ 2.0σ  an interpolation form is used, and 

for r > 2.0σ  the structure is taken to be random, i.e., g(r) = 1 .  Figure 3 shows that the 

two analytic models capture reasonably well the measured pair correlation functions.  

B. Analytic Limits  
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 Before presenting a full numerical treatment of the relative diffusion, three 

analytic limits are investigated: (i) zero separation r0 → 0 , (ii) large separations r0 >>σ , 

and (iii) intermediate separations r0 ≈σ + ξstruc .  

The first limit is easily taken since the constraint function for zero separation is 

ω12 (0) = 1 . Using this in Eq. (16), the CM friction becomes equal to the single particle 

friction ζ (R) = ζ (1)  (see Appendix A), and the relative friction diverges, ζ (r ) →∞ . From 

Eq. (15), this implies that the cross-correlation reduces to the single particle diffusivity 

Drr → D(1) . Since the cross correlations decay with interparticle separation, the necessary 

physical limit that Drr ≤ 4D(1)  is guaranteed to hold.  

 To work out the limits (ii) and (iii), it is instructive to first non-dimensionalize the 

integral in Eq. (16) using  q
!
= k
!
r0 . Performing the solid angle integral then yields: 

 
 

ζ rr

(R)
(r )

ζ 0
= 1+ 4ηd (d −1)

(2π )d
σ
r0

⎛
⎝⎜

⎞
⎠⎟

d

dqqd−1
0

∞

∫
!h2 (qσ / r0 )
1±ω12 (q)

  (18) 

where ηd = ρdπσ
d / 2d  is the d-dimensional packing fraction, and  !h(k) = h(k) /σ

d . Now 

the limits can be explicitly taken. For the r0 >>σ  large separation limit, the integral in 

Eq. (18) is dominated by its q→ 0 , long wavelength limit. To leading order, the 

equilibrium pair structure in Fourier space is constant, 

 
!h(qσ / r0 ) ≈ !h(0) = π (S(0)−1) / 4η2 , where S(0) ≡ S(q = 0) is the dimensionless 

isothermal compressibility [2]. Also in this limit, the dominant contribution to the 

dynamic cross correlations is due to ω12
(2)(q) ≈1− q

2

4
+ϑ(q4 ) . For the center of mass and 

relative frictions one thus finds:  
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ζ rr
(R)

ζ 0
= 1+ η2

π 2
σ
r0

⎛
⎝⎜

⎞
⎠⎟

2

!h2 (0) dq
0

1

∫
q
2

  (19a) 

 
 

ζ rr
(r )

ζ 0
= 1+ η2

π 2
σ
r0

⎛
⎝⎜

⎞
⎠⎟

2

!h2 (0) dq
0

1

∫
4
q

 . (19b) 

In Eq. (19) the upper limit of the integrals has been replaced by unity to be consistent 

with the small wavevector expansion. The CM integral is easily evaluated. For the 

relative coordinate friction, in 2D a low wavevector cutoff r0 ≤ rmax  is necessary for 

convergence and reflects the finite size system size. Performing the integrals yields: 

 
 

ζ rr
(R)

ζ 0
≈1+ η2

4π 2
σ
r0

⎛
⎝⎜

⎞
⎠⎟

2

!h2 (0)   (20a) 

 
 

ζ rr
(r )

ζ 0
≈1+ 4η2

π 2
!h2 (0) σ

r0

⎛
⎝⎜

⎞
⎠⎟

2

ln rmax
r0

⎛
⎝⎜

⎞
⎠⎟

 . (20b) 

The logarithmic factor in Eq. (20b) is a “marginal” feature in the sense that it is peculiar 

to 2D, vanishing in higher dimensionality. 

 Combining the friction constants in Eq. (20) with Eq. (15) leads to a long distance 

non-hydrodynamic cross correlation that to leading order in σ / r0 is: 

 
 
Drr

non−HD ≈ D0
4η2
π 2
!h2 (0) σ

r0

⎛
⎝⎜

⎞
⎠⎟

2

ln rmax
r0

⎛
⎝⎜

⎞
⎠⎟
− 1
16

⎡

⎣
⎢

⎤

⎦
⎥  , (21) 

which is valid if r0 << rmax . Note that the slowly decaying power law contribution with an 

exponent of -2. Interestingly, this is the same power law form derived from a 

hydrodynamic analysis for quasi-2D systems confined by two solid surfaces [9,10]. 

However, it is important to emphasize that the prefactor in Eq. (7) differs from its 
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hydrodynamic analog [10]. The logarithmic factor in Eqs. (20b) and (21) arises simply 

from dimensional analysis in conjunction with the small wave vector limit of the 

constraint which without loss of generality is ω12 ≈1+ Bq
2 . Physically, the constraint 

modifies the amplitude of fluid-mediated force correlations between the two particles as a 

function of their separation. The logarithmic contribution reduces, not enhances, the 

friction with increasing r0 . 

 Quantitative implementation of the theory requires a value for rmax . The 

experimental system is a circular cell with radius   R = 1.5 cm , hence the cutoff is roughly 

rmax /σ ≈ 7,500 . For the experimentally relevant regime of σ << r0 << rmax , numerical 

calculations reveal that Eq. (21) reduces roughly to an apparent power law with the form: 

 
Drr

non−HD

D0

≈
S(0)−1( )2
4η2

r0
−2.2   (22) 

This apparent scaling form depends neither on fluid structure nor area fraction.  However, 

its magnitude (amplitude) does depend on the area fraction both directly, and indirectly 

via the dimensionless isothermal compressibility S(0) . One can gain intuition concerning 

this variation from the 2D hard disk equation of state [36]. The amplitude is plotted in the 

inset of Fig. 3 for area fractions relevant to experiments, 0.15 ≤ η2 ≤ 0.6 . One sees a 

weak non-monotonic variation of only ~ ±10% . Such a variation very likely is in the 

noise of experimental measurement of the long range tail of the displacement correlation 

function.  

 The final (intermediate) regime is when interparticle separations are beyond the 

(short) density correlation length,  r0 !σ + ξstruc , but structural correlations are still 
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relevant. Here, Eq. (18) is dominated by the large wave-vector limit, q→∞ , and ω12 (q)  

is small. Hence the integrals can be Taylor expanded to give: 

 
 

ζ rr

(R)
(r )

ζ 0
≈1+ η2

π 2
σ
r0

⎛
⎝⎜

⎞
⎠⎟

2

dqq
0

∞

∫ !h2 (qσ / r0 ) 1∓ω12 (q)[ ]   (23) 

If ω12 (q) ≡ 0 , Eq. (23) reduces to the single particle friction constant (see Appendix A): 

 
ζ (1) /ζ 0 = 1+ η2σ

2 /π 2r0
2( ) dqq

0

∞

∫ !h2 (qσ / r0 )         (24) 

 The final contribution associated with ω12 ≠ 0  is the 2-particle correction to the cross-

correlation: 

 
 
δζ rr /ζ 0 =η2σ

2 /π 2r0
2 dqq
0

∞

∫ !h2 (qσ / r0 )ω12 (q) .         (25) 

Using these definitions, the CM friction can be written as ζ rr
R ≈ζ (1) −δζ rr , and the relative 

friction as ζ rr
r = ζ (1) +δζ rr . Substitution into Eq. (15) and algebraic simplification yields: 

 Drr
non−HD ≈ D0

2δζ rr /ζ 0
(ζ (1) /ζ 0 )

2 − (δζ rr /ζ 0 )
2  , (26) 

To first order in the small quantity δζ rr /δζ 0  one obtains: 

 Drr
non−HD ≈ 2D(1)

2 /D0( ) δζ rr /ζ 0( ) .          (27) 

We note that the structural correlations always enter as the square of h(q) in the above 

analysis, in qualitative contrast to the hydrodynamic result of Eq. (7). The reason is the 

friction constant renormalization arises from force-force time correlations, not structural 

modification of solvent-mediated hydrodynamic interactions. 

To proceed requires a structural model. To maintain analyticity, the expression in 

Eq. (17) is simplified by ignoring the hard core constraint and oscillations, thereby 
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yielding g(r) ≈1+ Be−(r−σ )/ξ . We show in the next section that the results derived using 

this simplification are consistent with our full numerical calculations. Performing the 2D 

Fourier transform h(k) = −2π dr
0

∞

∫ r h(r)J0 (kr)  leads to the wavevector space structure:  

 h(k) = −2π Beσ /ξ ξ 2

(1+ k2ξ 2 )3/2
 . (28) 

Using Eq. (28) in Eq. (26), the resulting integral for δζ rr  can be analytically evaluated, 

yielding a relative correlation:  

 Drr
non−HD =

D(1)
2

D0

B2η2 e
2σ /ξ r0

2

σ 2 K2 (r0 /ξ )   (29) 

where K2 (x)  is the modified Bessel function. For separations larger than the decay 

length  r!ξstruc , Eq. (29) scales roughly as an exponential: 

 Drr
non−HD

D0

~
D(1)

D0

⎛
⎝⎜

⎞
⎠⎟

2
σ
ξ

⎛
⎝⎜

⎞
⎠⎟

2

η2 e
2σ /ξ e−r0 /ξ   (30) 

Based on the numerical calculations presented in the next section, we find that this 

scaling holds for separations  ξstruc ! r0 ! 8ξstruc . The scaling in Eq. (30) will increasingly 

dominate the full numerical result at higher area fractions where the structural (density 

correlation) decay length is larger. Additionally, since the hard core constraint and the 

oscillations of g(r) have been ignored in deriving Eq. (30), the result only applies to the 

envelope of the numerical results. Curiously, the exponential form of Eq. (30) with a 

dynamic decay length equal to the structural correlation length agrees with the 

hydrodynamic result in Eq. (7). This would seem to be another accidental correspondence 

between the hydrodynamic and non-hydrodynamic mechanisms for quasi-2D systems.  
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V. EXPERIMENTAL RESULTS AND COMPARISON TO THEORY  

We now apply the theory to make no adjustable parameter predictions for the 

displacement correlations in quasi-2D and quantitatively compare them to our 

experimental data. To do so, h(k)  is numerically obtained from the models in Sec. IV.A. 

Inserting this h(k)  and the constraint condition of Eq. (13a) into Eq. (16), and 

performing the integral numerically, yields the CM and relative friction constants. From 

this, Drr  follows from Eq. (15). These numerical results differ from the analytic results in 

Sec.IV.B the derivation of which depended on technical simplifications.  

 Figures 4 and 5 show the experimental data and numerical theoretical results for 

packing fractions η2 = 0.188  and η2 = 0.503 , respectively. The data (points) and 

theoretical results (curves) for the cross diffusivity, Drr = Crr (t) / t , normalized by the 

single particle diffusivity, D(1) , are plotted as a function of the tagged particles separation 

r0 . In the theory, the cross diffusivity changes sign due to the oscillations associated with 

the pair structure; we plot its absolute value, | Drr | . Note the experimental data at 

different times collapse quite well for both area fractions, with the exception of data for 

η2 = 0.503  at the longest time of t = 10 s . The former behavior provides experimental 

support for the Fickian renormalized friction idea employed in the theory at the area 

fractions and time scales explored experimentally.   

 For η2 = 0.188 , the main frame in Fig. 4 shows the correlations in a log-log 

representation. Within experimental uncertainty, the observed correlations decay as a 

power law as Drr ~ r0
−2.2  (dotted line) over the entire range of separations studied (up to 
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40 microns). The theoretical calculation (solid line) follows an essentially identical 

apparent power law scaling as expected from the analytic analysis in Sec. IV.B. The latter 

suggests this scaling should hold only for separations beyond the range of the structural 

correlations. However, at this low area fraction the structural correlations are very weak 

(Fig. 3). The theory and experiment quantitatively agree without adjustable parameters.  

  The inset of Fig. 4 shows theoretical results for the low area fraction system 

compared to an even simpler calculation which assumes a literal random structure outside 

the hard core diameter ( g(r ≥σ ) = 1 ) (red dashed line). The close agreement buttresses 

our conclusion that short range oscillatory structural correlations are of nearly negligible 

importance, and further justifies the power law scaling (Eq. (22)) over all measured 

separations. However, recall that hard core interparticle repulsions do set the amplitude of 

our effective power law prediction in Eq.(22) via the dimensionless compressibility or 

long wavelength density fluctuation amplitude, S(0). 

 Figure 5 shows results for the high area fraction system. One sees two distinct 

regimes of behavior in the dynamic cross-correlations. At small and intermediate 

separations ( σ ! r0 !15σ ≈ 8ξstruc ), the cross-correlation decays roughly exponentially 

Drr ~ e
−r/ξrr  (main, blue dashed curve). For the experimental data, ξrr = 3.0 ± 0.1( )σ , 

close to the structural decay length ξstruc = 2.05σ .  For large separations where structural 

correlations randomize, the scaling becomes a power law (inset) as for the lower area 

fraction suspension and with the same apparent exponent. This limit is a bit difficult to 

see in the experimental data because of the increased statistical uncertainty at large 

separations. But within this uncertainty, the tail amplitude for the two experimental 
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samples is essentially identical, consistent with the non-hydrodynamic theory as 

discussed below Eq. (22). Thus, the two regimes observed in the correlated displacement 

function data agree with the analytic theoretical analysis.  We do note that at the longest 

time of t = 10 s  the Drr data do not collapse at large separations, likely as a consequence 

of the onset of caging effects as discussed previously (Fig. 2).  

 The solid curves in Fig. 5 show the full numerical predictions and there is good 

agreement with the experimental results with the caveat that caging is observed at  

t = 10 s . For  σ ! r0 !18σ , exponential decay is seen, while for  r0 !18σ  the same 

power law behavior is seen as found at the lower area fraction, and with similar 

amplitude. In the small separation exponential regime, the theoretical results exhibit the 

expected oscillations with a wavelength of order the particle diameter due to short-range 

packing correlations. The experiments exhibit little or no evidence of oscillations, mainly, 

we suspect, owing to the discrete data binning. This leads to an averaging over the 

oscillations and the measurements determine only the envelope of the dynamic 

correlations. The available statistical dataset does not allow us to reliably parse the data 

into smaller bin sizes. Focusing on the envelope, one concludes that the theory is 

consistent with experiment. 

 Finally, note the non-systematic locations and amplitudes of apparent minima of 

the theoretical results in Fig.5. These arise from the predicted oscillatory form of Drr (r0 )  

. Since only the magnitude of Drr  is plotted, these minima indicate sign changes due to 

the effect of oscillatory packing correlations on pair diffusion. We assign no practical 

importance or physical interpretation to the precise magnitudes of these low amplitude 



 

 

27 

features, especially given their inevitable sensitivity to the discrete nature of the 

numerical calculations performed to construct the curves.    

 

VI.  THEORETICAL PREDICTIONS FOR 3D HARD SPHERE FLUIDS 

We are not aware of any experiments on 3D dynamic cross correlations in 

colloidal suspensions; indeed, to obtain such data would be a formidable technical 

challenge. But the theory is easily applied in 3D to make predictions that are hopefully 

testable in the future by experiment and/or simulation. Here we consider  suspensions and 

(overdamped) one-component fluids in the absence of long-range hydrodynamic 

interactions. Unlike the analysis of the 2D suspension, experimental data for the required 

g(r) over a wide range of volume fractionsη3 = ρ3πσ
3 / 6 is not readily available. We 

consider the hard sphere fluid, and employ the Ornstein-Zernike equation with Percus-

Yevick closure [2] to compute h(k) .        

A. Analytic Limits 

 We first consider the two analytic limits. For large separations r0 >>σ , Eq. (18) 

can be analyzed in the small wavevector limit in an analogous manner to Section IV.B. In 

3D, one has ω12
(3)(q) ≈1− q

2

6
+ϑ(q4 )  and the equilibrium structure in Fourier space, h(q), 

is taken to be its q = 0  limit value. The friction constants follow as:  
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In contrast to 2D, there is no logarithmic correction in 3D. Performing the integrals in Eq. 

(31), the dynamic cross correlation function is: 

 Drr
non−HD

D0

= 11
2π 3

(S(0)−1)2

η3
σ
r0

⎛
⎝⎜

⎞
⎠⎟

3

  (32) 

Thus, in the large separation limit the non-hydrodynamic correlations scale as a power 

law with exponent of -3, corresponding to a faster decay than in quasi-2D. But similar to 

the latter, its amplitude depends on the fluid dimensionless isothermal compressibility 

and packing fraction.  

 For intermediate separations, analysis analogous to Section IV.B. is performed by 

taking the q→∞  limit. The friction integrals in Eq. (18) are again expanded for small 

ω12 . With the 3D equivalents for ζ (1)  and δζ rr , Eq. (26) remains unchanged and the first 

order correction integral must be calculated. In 3D, the pair distribution function exhibits 

the usual oscillations and outside of the correlation length ( r > ξstruc  ) has a Yukawa 

envelope, h(r) ≈ Bσ e
−r/ξstruc

r
, as seen in Figure 6. The structural correlation length 

monotonically grows from ξstruc = 1.1σ  for η3 = 0.40 , to 2.7σ  for η3 = 0.56 .  

 Performing the 3D Fourier transform of the above h(r) yields:  

 h(k) = 4π Bσξstruc
2

1+ k2ξstruc
2  . (33) 

The resulting integral for δζ rr  can be analytically evaluated, yielding:  

 Drr
non−HD =

D(1)
2

D0

8B2η3
ξstruc
σ

e−r0 /ξstruc   (34) 
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Thus, the non-hydrodynamic cross correlations again scale exponentially with separation 

at intermediate interparticle separations, Drr
non−HD ∝ e−r0 /ξstruc . It is interesting, and a bit 

surprising, that both the (quasi) 2D and 3D dynamic correlations for hard repulsive 

particles at intermediate separations have exponential envelopes.  

B. Model Calculations  

 Numerical analysis of the 3D dynamic cross correlations was performed for many 

fluid packing fractions; here we show representative dense fluid results for 

η3 = 0.40, 0.48, 0.56 , where the latter value is in the “glassy dynamics” regime.  

Figure 7 shows calculations in log-linear (main) and log-log formats (inset). As 

predicted by the analytic analysis, there are two regimes of behavior. At intermediate 

separations, the displacement correlations exhibit particle diameter scale oscillations with 

an exponential envelope. Within the numerical uncertainty, there is complete agreement 

between the dynamic decay length ξrr  and its structural analog ξstruc , in accord with the 

analytic analysis in Sec. VI.A and Eq. (34). At large separations, the relative diffusivity 

crosses over to power law behavior with Drr ~ r0
−3 . For the packing fractions studied this 

crossover occurs when r ≈10 ξstruc . 

 Increasing the colloid packing fraction has two main effects. First and most 

prominently, the intermediate separation regime dominated by structural correlations 

extends to larger separations. This results from stronger equilibrium pair correlations and 

is quantitatively captured by the structural decay length ξstruc . Varying the packing 

fraction also modestly affects the overall amplitude of the correlations as normalized by 

the single particle bare diffusion constant---lower volume fractions have slightly larger 
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amplitude dynamic displacement correlations in the adopted non-dimensionalized 

representation.   

 Finally, one might wonder about the practical relevance of our large separation 

non-hydrodynamic power law scaling result, Drr ~ r0
−3 . In the true asymptotic limit of 

r0 →∞ , it must become irrelevant because 3D hydrodynamics necessarily dominates 

given the much slower decay of correlations per Eq. (4), irregardless of any prefactor 

renormalization or screening issue. However, looking towards future comparisons with 

experiments and simulations, it becomes a delicate matter to predict at what length scale 

hydrodynamics does dominate. Our non-hydrodynamic power law may be relevant in an 

intermediate crossover regime of moderately large interparticle separations.  

 

VII.  DISCUSSION  

An integrated experimental and theoretical study of the dynamic cross 

correlations of two tagged colloids as a function of separation and elapsed time in dense, 

quasi-2D layers has been performed. The measurements were done in a noninvasive 

manner without probe particles, and they cover a wide range of interparticle separations. 

The focus was on the short time regime where the large statistical datasets needed for the 

dynamic displacement correlation analysis can be obtained and the colloid dynamics is 

(largely) Fickian. Two regimes of behavior were observed. At small/intermediate 

separations, non-trivial structural correlations lead to an exponential decay of the 

dynamic correlations for the high area fraction sample, but not in the lower density 

suspension where nonrandom packing effects are so weak that the pair structure is 

essentially random. At separations sufficiently large that structure becomes randomized, 
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apparent power law decay is observed, Drr ∝ r0
−2.2  , with a nearly identical amplitude for 

the two different area fraction samples studied.   

The experimental results were quantitatively confronted with a microscopic non-

hydrodynamic theory constructed based on two-particle GLE equations and a simple 

mode coupling approximation to treat force-force time correlations and friction. No 

adjustable parameter predictions of the theory for the dynamic cross correlations are in 

very good agreement with experiment over all length scales and for both suspension 

concentrations. The origin of the long range tail feature is due to the influence of the 

constraint of fixed interparticle separation on the force-force time correlation function 

that determines tagged particle relative and center-of-mass friction.  Its spatial form is not 

sensitive to the presence of oscillatory pair correlations beyond contact, but its amplitude 

does depend on the colloids having a local hard core exclusion constraint as manifested 

on long length scales by a fluid dimensionless compressibility less than unity, S(0)<1 in 

Eq.(22).  

The theory was also used to make testable predictions for dense 3D hard sphere 

fluids. The same exponential form of the dynamic cross correlation function is predicted 

in the structural regime. However, the long range tail decays more rapidly and without 

logarithmic corrections. As a consequence, the non-hydrodynamic mechanism for 

inducing displacement correlations is expected to fail in 3D at large separations due to a 

crossover to hydrodynamics-controlled behavior.     

Intriguing similarities between the predictions of the prior hydrodynamic analysis 

[7-11] for capped monolayers and our non-hydrodynamic approach are found for quasi-

2D suspensions. Similarities in key experimental features of the dynamic displacement 
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correlations measured here and [10] are also noted. The full implications of these 

commonalities invite further study, not only because the physical ideas underlying the 

hydrodynamic and non-hydrodynamic theories are different, but also because our 

experiments were performed on a quasi-2D suspension with only one solid interface in 

contrast to the capped thin film geometry of refs. [9-11]. For a hydrodynamics-based 

model this difference seems to be essential [11], in qualitative contrast to our non-

hydrodynamic approach for which it is not.  

A deep understanding remains to be attained for precisely why our non-

hydrodynamic theory is so successful for quasi-2D suspensions. We cannot rule out that 

its success is tied to the different boundary conditions of our samples which have one 

solid surface and a fluid overlayer, in contrast to other studies [8-11]. One might 

speculate that the key issues are quantitative. Specifically, as mentioned in section IIIA, 

the hydrodynamic decay of displacement correlations at large separations for capped 

films is Drr ∝ r0
−2 , in contrast to the stronger Drr ∝ r0

−3  decay for two colloids near only 

one solid surface. The latter situation seems closer to our experimental geometry, which 

could imply hydrodynamic effects are weaker than their non-hydrodynamic analog for 

our systems. Alternatively, in quasi-2D there may be a “near degeneracy” of how 

continuum hydrodynamics and non-hydrodynamical effects (Eq.(22)) determine the form 

of the spatial decay of displacement correlations at larger distances. In such a situation, 

the numerical amplitudes associated with the two different mechanisms could play a 

decisive role. Indeed, recall that below Eq.(22) we emphasized that the amplitude of our 

non-hydrodynamic mechanism differs from its hydrodynamic analog [9,10]. Given the 

non-hydrodynamic mechanism accounts well for the power-law-like displacement 
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correlations we observe at both packing fractions studied, such a scenario seems plausible 

for why hydrodynamic effects can be ignored for our system. This scenario is consistent 

with our theoretical findings for 3D fluids.  Here, the non-hydrodynamic mechanism 

predicts Drr ∝ r0
−3  which is shorter range than in quasi-2D, in qualitative contrast to the 

hydrodynamic mechanism which becomes longer range in 3D, Drr ∝ r0
−1 , and hence is 

dominant at large interparticle separations.  

Of course, the validity of the idea of a “near degeneracy” of mechanisms in quasi-

2D may be sensitive to sample boundary conditions. Thus, it will be interesting to 

confront the predictions of our non-hydrodynamic theory with experiments on capped 

monolayers in order to better understand the subtleties of collective motion under quasi-

2D confinement. In this spirit, normal mode analysis of our experimental data [37,38] 

may shed additional light on the role of continuum versus structural effects on relatively 

long distance displacement correlations.   

Concerning broader implications of our work, the question of mutual correlations 

between moving elements in dynamically evolving structures generalizes broadly beyond 

colloids to systems such as polymer mixtures, biopolymer filaments at finite 

concentrations, intra-cellular environments, and other soft matter systems. Of course, 

quantitative aspects will depend on the specific system.  Here, we considered only a 

sedimented quasi-2D suspension which has the practical experimental advantage of being 

able to be directly imaged.  It serves as a model test bed in which to develop a non-

hydrodynamic statistical mechanical framework and quantitatively confront it with 

measurements. The broader implications of our combined experimental-theoretical 

approach for understanding interactions between objects in close proximity are 
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potentially powerful – under such circumstances the material cannot be considered as a 

featureless continuum with correlated particle dynamics determined by conventional fluid 

mechanics. 

  In the future, we plan to go beyond the current colloidal system and study how 

entangled biopolymer filaments diffuse when they are in close proximity such that the 

thermal motion of neighboring filaments induces intermolecular correlated motion. It will 

be interesting to discover  to what extent the theoretical approach presented here might be 

need to be  substantially generalized. 

 From a purely theoretical perspective, the developed approach applies to any 

spherical particle fluid that interacts via a central pair potential at any fluid packing 

fraction in the short time diffusive regime. It also can be generalized to treat complex 

fluids composed of rigid nonspherical objects, such as the entangled rigid biopolymers 

noted above. However, more work is required to treat the intermediate time regime in 

sufficiently concentrated systems where transient particle caging and localization leads to 

non-Fickian dynamics. Finally, for theorists and experimentalists alike, there remains the 

large challenge of integrating the hydrodynamic and non-hydrodynamic mechanisms for 

dynamic displacement correlations into a unified framework and dissecting their relative 

importance for diverse soft matter systems. 

 

Acknowledgement. This work was supported by DOE-BES under Grant No. DE-FG02-

07ER46471 administered through the Frederick Seitz Materials Research Laboratory. 

S.G. acknowledges office support from the Institute for Basic Science, Project Code IBS-

R020-D1. 



 

 

35 

 

APPENDIX A. Single Particle Mean Square Displacement 

 The single particle MSD in the non-hydrodynamic Fickian regime is [2, 31]: 

 Δri
2 (t) = 2d D(1)

non−HDt . (A1) 

One can recast the diffusion constant as a friction, D(1)
non−HD = kBT /ζ (1)

non−HD , and calculate 

it from the diagonal part of the memory function [31]: 

 ζ (1)
non−HD = ζ 0 + dt K(1)(t)0

∞

∫  . (A2) 

To calculate the memory function from Eq. (9b), we employ a single particle 

(naive) mode coupling theory (NMCT) approach [25,26]. In NMCT, the forces are 

projected onto the slow bilinear density mode in Fourier space ρ1(k)ρc(−k)  of the 

single particle and collective densities ( ρ1  and ρc , respectively). A standard Gaussian 

factorization is performed on four point correlations. This yields the single particle 

memory function [28-30]: 

 
 
K(1)(t) =

ρd

d
dd
!
k

(2π )d
h2 (k)
S(k)∫ Γ s (k,t)Γc(k,t)  . (A3) 

where all factors are defined in the main text. For consistency, we adopt the same 

approximations for the dynamic correlations as employed in the two particle theory. This 

implies Γ s = 1and the collective propagator is given by Eq. (14). Using Eqs. (A2) and 

(A3) and performing the time integral leads to a single particle renormalized friction: 

 
 

ζ (1)
ζ 0

= 1+ ρd

2d
dd
!
k

(2π )d
h2 (k)∫  . (A4) 
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APPENDIX B. Details of Two Particle Mode Coupling Theory 

 The two-particle MCT approach that has been successfully employed in recent 

studies of correlated 2-particle activated hopping in dense hard sphere fluids [25,26] and 

the relative motion of two large particles in polymer melts [27]. However, a detailed 

derivation of the 2-particle memory function vertex in Eq. (12) was not given in prior 

publications, so here we provide one in the context of the present problem.   

From Eq. (9b), one has: 

 Kαβ (t) =
d
kBT

fα ,i fβ ,i
Q (t) = d

kBT
fα ,ie

iQ̂L̂t fβ ,i   (B1) 

where all factors are defined in the main text, and eiQ̂L̂t  is the projected dynamic 

evolution operator.  To approximately evaluate Eq. (B1), one first projects the real 

Newtonian forces onto the dominant slow dynamical mode of the system. The natural 

choice for 2 tagged particles in a dense fluid is a matrix projection onto the bilinear 

density modes 
 
ρα (
!
k )ρc(−

!
k ) , where 

  ρα (
!
k ) = ei

!
k ⋅
!
Rα   (B2a) 

 
 
ρc(
!
k ) = ei

!
k ⋅
!
Rγ

γ ≠1,2

N

∑  , (B2b) 

are the single tagged particle densities (α = 1,2 ), and the collective density of the fluid, 

respectively. Then, employing a Gaussian factorization of four-point correlations, the 

matrix projection operator becomes: 

 
 
P̂ = ρd

−1 d
!
k

(2π )d∫ ρα (
!
k )ρc(−

!
k )

α ,β=1

2

∑ Ωαβ
−1 (
!
k )

S(k)
ρβ (−

!
k )ρc(

!
k )  , (B3) 
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where ρd  is the d-dimensional fluid number density, S(k)  is the structure factor, and 

Ω−1
αγ  is the matrix inverse of the static correlation matrix of the tagged particle densities: 

 
 
Ωαβ (

!
k ) ≡ ρα (

!
k )ρβ (−

!
k ) = exp i

!
k ⋅
!
Rα −

!
Rβ( )⎡⎣ ⎤⎦  . (B4) 

Inserting the projection operator P̂  on each side of the dynamic evolution operator in the 

force-force correlation function of Eq. (B1) then yields: 

 

 

Kαβ =
d

ρd
2 kBT

d
!
k d!q
2π( )2d∫∫ fα ,i ρµ (

!
k )ρc(−

!
k )

µ ,ν ,γ ,σ =1

2

∑ Ωµν
−1 (
!
k )

S(k)

ρν (−
!
k )ρc(

!
k ) eiQ̂L̂tργ (

!q)ρc(−
!q)

Ωγ σ
−1 (!q)
S(q)

ρσ (−
!q)ρc(

!q) fβ ,i

 (B5) 

 The force vertex follows from a standard calculation as [28-30]: 

 
 
fα ,i ρµ (

!
k )ρc(−

!
k ) = −i ki kBTρh(k)δαµ ,  (B6) 

In essence, the real forces have been replaced by effective forces determined by the 

equilibrium pair structure.  

Further evaluation of Eq.(B6) requires additional approximations. The projected 

dynamics are replaced by the real dynamical evolution operator, eiQ̂L̂t ≈ eiL̂t . A Gaussian 

factorization approximation is again employed.  Eq. (B5) then reduces to: 

 
 
Kαβ = ρdd kBT

d
!
k

2π( )d∫ ki
2

ν ,γ =1

2

∑ h2 (k)
S2 (k)

S(
!
k ,t)Ωαν

−1 (
!
k )Ωγν (

!
k ,t)Ωγβ

−1(
!
k )  (B7) 

where S(k,t) ≡ S(k)Γc (k,t)  with Γc (k,t)  given by Eq. (14) of the main text, and 

 Ωγν (
!
k ,t)  is the time-dependent tagged particle density-density correlation function which 

is the dynamic equivalent of Eq. (B4). For the latter, we employ the following 

approximation: 
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Ωγν (
!
k ,t) ≡ ei

!
k i
!rγ (0)−

!rν (t )( ) = ei
!
k i
!rγ (0)−

!rν (0)( ) i ei
!
k i
!rν (0)−

!rν (t )( )

≈ ei
!
k i
!rγ (0)−

!rν (0)( ) ei
!
k i
!rν (0)−

!rν (t )( ) = Ωγν (k)Γ s (k,t)

≈ Ωγν (k)

.  (B8) 

The factorization on the second line decouples static two particle correlations from single 

particle motion in the spirit of a Vineyard approach [35]. The final result ignores the 

effect of tagged particle self-diffusion on memory function relaxation. This 

approximation is in the spirit of assuming that the collective dynamics of the fluid 

surrounding the tagged particles dominates force memory relaxation for dense fluids at 

short times, an idea employed in the main text and Appendix A. The arguments leading 

to these simplifications justify why we have not done a full self-consistent solution of the 

MCT equations associated with the two tagged particles, and is consistent with our focus 

on short time Fickian dynamics of the cross correlations. 

Using all the above approximations in Eq. (B7), and collapsing the resulting sums 

using the static matrix inverse identity, yields: 

 
 
Kαβ =

ρdkBT
d

d
!
k

2π( )d∫ ki
2 h2 (k)
S(k)

Γ s (
!
k ,t)Γc(

!
k ,t)Ωαβ

−1 (
!
k ) . (B9) 

To derive Eq. (8) in the main text, one then calculates the matrix inverse of Eq. (B4). 

Recall Ωαβ only depends on the separation of the two particles 
 
r = !rα −

!rβ , and hence: 

 Ωαβ (k) =
1 ω12 (k)

ω12 (k) 1

⎛

⎝
⎜

⎞

⎠
⎟   (B10) 

where ω12 (k)  is the constraint function discussed in the main text. Inverting this matrix, 

employing the definition of the center of mass and relative memory functions (defined 



 

 

39 

below Eq. (10)), and using all the above results, then yields Eq. (12). Note that the 

constraint of fixed interparticle separation enters only through the matrix inverse of Eq. 

(B10), which is mathematically analogous to the influence of bonding on force time 

correlations for a diatomic molecule [39,40].  
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Figures:  

 

 

 

 
FIGURE 1 - (Color online) Coordinates used in our analysis. Two tagged spherical 

particles (orange) within a fluid of identical particles (purple) all of diameter σ are 

initially located at positions  
!r1  and  

!r2  in the laboratory frame. Alternatively, the center-

of-mass,  
!
R , and relative coordinate,  

!r , are defined. After a time t , the tagged particles 

displace by  Δ
!rα (t) . 

   Δ
!r1(t)

   Δ
!r2(t)

   
!r2

   
!r1

  
!r

  
!
R
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FIGURE 2 - (Color online) Experimental measurements of the single particle mean 

square displacement (MSD) over long times up to 50 s (main frame) and over short times 

up to 1.5 s (inset). Results are shown for area fractions η2 = 0.188  (orange curve, crosses 

in inset) and 0.503 (purple curve, stars in inset). The thin dashed black straight lines in 

the main frame (solid lines in inset) show fits to the Fickian form where the extracted 

self- diffusion constants are D(1) = 0.090 µm2 / s  and 0.065 µm2 / s  for the lower and 

higher area fractions, respectively. The black dots indicate the times at which the two-

particle dynamic displacement correlations are measured.    
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FIGURE 3 – (Color online) Pair correlation functions, g(r) , where the separation 

distance, r , is scaled by the colloid diameter, are plotted against the normalized 

separation. Smoothed  experimental results (solid curves) are shown for two area 

fractions η2 = 0.188  (lower magnitude, blue) and η2 = 0.503  (higher magnitude, red). 

The dotted curves are the analytic model results discussed in Sec IV A. (inset) The 

prefactor of the long range correlation tail evaluated for 2D hard disks (Eq. (22)), plotted 

as a function of area fraction η2 , is nearly constant over the measured range of area 

fraction.   

 
  

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  1  2  3  4  5

g(
r)

r/σ

Experiments, η2 = 0.5030
0.188

Fit, η2 = 0.503
0.188

 0.36

 0.4

 0.44

 0.48

 0.15  0.25  0.35  0.45  0.55

Pr
ef

ac
to

r
η2η2

(S0 −1)
2

4η2



 

 

45 

 
FIGURE 4 - (Color online) For the lower area fraction η2 = 0.188  sample, the 2D 

dynamic cross correlations,  normalized by the single particle diffusivity, are plotted on 

log-log scales as a function of normalized particle initial separation. The experiments 

(points) concern various short times at which single-particle diffusion is (nearly) Fickian,  

t = 0.1, 1, 10 s ; the corresponding no adjustable parameter theoretical predictions are 

shown as the solid curve. As a guide to the eye, the dotted green line with slope -2.2 is 

also shown. (inset) Same as the main frame. The full numerical theoretical result (solid 

curve) and power law scaling (dotted line) are compared to a simplified calculation that 

assumes the structure is random beyond the particle diameter (dashed line).  
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FIGURE 5 – (Color online) 2D dynamic cross correlations (normalized by the single 

particle diffusivity) for the higher area fraction η2 = 0.503  sample  are plotted on 

semilog scales as a function of normalized particle separation. The dotted blue line is an 

exponential fit to the amplitude of the theoretical curve with decay length ξrr = 3.0σ . 

(inset) Log-log plot of the same results as in the main frame. The dotted line with slope -

2.2 expresses the power law  Drr ~ r0
−2.2 . 

 
 
 
 
 

10-4

10-3

10-2

10-1

100

101

102

 5  10  15  20  25  30

D
rr

/D
(1

)

r0/σ

Theory
Experiment, t = 0.1 s

1 s
10 s

10-4

10-3

10-2

10-1

100

 1  10

D
rr/

D
(1

)

r0/σ

10-4

10-3

10-2

10-1

100

101

102

103

 1  10

D
rr

/D
(1

)

r0/σ

Theory
Expt., t = 0.1 s

1 s
10 s

Drr

D(1)

r0 /σ



 

 

47 

 
 
FIGURE 6 - (Color online) The magnitude of the nonrandom part of the pair distribution 

function of the 3D hard sphere fluid multiplied by the dimensionless interparticle 

separation, rh(r) , plotted logarithmically against the dimensionless interparticle 

separation for packing fractions η3 = 0.56, 0.48, 0.40  from top to bottom. The maxima 

obey a Yukawa decay as expected. 

 
 

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 0  2  4  6  8  10  12  14

|r*
h(

r)|

r/σ

η3 = 0.56
0.48
0.40



 

 

48 

 
FIGURE 7 – (Color online) Predicted dynamic cross correlations in dense 3D hard 

sphere fluids, normalized by the single particle bare diffusivity, are plotted semi-

logarithmically as a function of the normalized separation of the two tagged particles. 

Results are shown for packing fractions η3 = 0.56, 0.48, 0.40 , (top to bottom). (inset) 

Same as main frame but in a log-log format. The dotted blue line shows the power law 

Drr ~ r0
−3 . 
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