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We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in
two dimensions, above the jamming packing fraction φJ . For configurations with a fixed isotropic
global stress tensor, we investigate the fluctuations of the local packing fraction φ(r) to test whether
such configurations display the hyperuniformity that has been claimed to exist exactly at φJ . For
our configurations, generated by a rapid quench protocol, we find that hyperuniformity persists only
out to a finite length scale, and that this length scale appears to remain finite as the system stress
decreases towards zero, i.e. towards the jamming transition. Our result suggests that the presence of
hyperuniformity at jamming may be sensitive to the specific protocol used to construct the jammed
configurations.
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I. INTRODUCTION

When a system of athermal (T = 0) particles with
only contact interactions is compressed, it seizes up into
a rigid disordered solid at a critical value of the packing
fraction φJ known as the jamming transition [1–3]. For
a system of monodisperse frictionless spheres at φJ , it
was observed numerically [4, 5] that density fluctuations
appear to be suppressed on long length scales, with a
structure function S(q) (density-density correlation) that
vanishes as S(q) ∼ |q| when the wavevector |q| → 0.
This is in contrast to behavior in a normal liquid where
S(q → 0) → constant. Such a system with suppressed
density fluctuations has been denoted as “hyperuniform”
[6].

However when spheres that were bidisperse or polydis-
perse in size where studied, this characteristic feature of
S(q) was no longer observed, and S(q → 0) was found
to be finite [7, 8]. It was then argued by Berthier et
al. [9], and by Zachary et al. [10, 11], that in such size-
disperse systems it is the fluctuations of the packing frac-
tion φ, rather than fluctuations of particle density, that
are suppressed at φJ (for monodisperse systems, packing
fraction fluctuations and density fluctuations become the
same at long wavelengths). The presence of such hyper-
uniformity of the packing fraction at jamming would be
important, as it would provide a purely structural means
for distinguishing particles in a disordered jammed con-
figuration from those in a liquid, and perhaps provide a
way to determine a diverging length scale as the jamming
transition is approached [12].

In this work we consider mechanically stable packings
of bidisperse, soft-core, frictionless, disks in two dimen-
sions at finite isotropic global stress above the jamming
transition φJ . Our configurations are generated by a
rapid quench protocol. We test these configurations for
hyperuniformity using both real-space and wavevector-
space methods. We find that hyperuniformity persists
only out to a finite length scale, and that this length

scale appears to remain finite as the system stress de-
creases towards zero, i.e. as one approaches the jamming
transition. Moreover, we argue that measuring fluctua-
tions at a given wavevector q gives a better test of hyper-
uniformity than measuring fluctuations over a real-space
window of length R, as the latter can be strongly effected
by the fluctuations on all length scales smaller than R,
whereas the former measures fluctuations specifically on
the length scale 2π/q.

The remainder of this paper is organized as follows.
In Sec. II we define what we mean by the local pack-
ing fraction φ(r) and discuss the wavevector-dependent
and real-space measures we will use to test for hyper-
uniformity. In Sec. III we describe the details of our
numerical model and the minimization method we use
to construct mechanically stable configurations at fixed
isotropic global stress. In Sec. IV we present our nu-
merical results. In Sec. V we discuss our results and
make comparisons with recent works on this topic. The
Appendix provides further details about the accuracy of
our numerical minimization method for constructing our
configurations.

II. LOCAL PACKING FRACTION

In this section we define the quantities we will com-
pute in order to test for hyperuniformity. Here we define
quantities as appropriate to a system of two dimensional
circular disks, so as to match our numerical simulations,
however the generalization to higher dimension or other
shaped particles is straightforward.

Consider a polydisperse collection of N disks in a sys-
tem of total volume V , satisfying Lees-Edwards bound-
ary conditions [13]. Disk i has its center located at posi-
tion ri and has volume vi (in our two dimensional system
we will use “volume” to mean area). The local particle
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density can then be written as,

n(r) =
∑

i

δ(r− ri). (1)

Defining the Fourier transform,

nq =

∫

V

d2r eiq·rn(r), (2)

the structure function (density-density correlation) is,

S(q) ≡ 1

N
〈nqn−q〉, (3)

where here, and henceforth, 〈. . . 〉 denotes an average over
independently quenched configurations. For the bidis-
perse systems we study here, we expect S(q) to approach
a constant as |q| → 0 [7–11].

The global packing fraction of the system is defined as,

φ ≡ 1

V

∑

i

vi. (4)

For the local packing fraction φ(r), two slightly different
definitions have been proposed in the literature. Zachary
et al. [10, 11] use a definition that is equivalent to,

definition I : φ(r) =
∑

i

∆i(r− ri), (5)

where the indicator function ∆i(r) is such that for a par-
ticle centered at the origin,

∆i(r) =

{
1, if r lies within the area of the particle
0, otherwise

(6)

so that
∫
V
d2r∆i(ri) = vi.

Berthier et al. [9] use a definition [14] that is equivalent
to,

definition II : φ(r) =
∑

i

viδ(r− ri). (7)

Both definitions give correctly the global packing fraction
of Eq. (4),

1

V

∫

V

d2r φ(r) =
1

V

∑

i

vi = φ. (8)

Definition I spreads the weight of each particle uniformly
over its area, while definition II treats each particle as a
point object with weight equal to its area. Definition II
views the particle positions as a point process, while def-
inition I views the particles as defining a heterogeneous
medium [15].

Defining the Fourier transform,

φq =

∫

V

d2r eiq·rφ(r), (9)

fluctuations in the packing fraction at wavevector q are
given by,

χ(q) ≡ 1

V
〈φqφ−q〉. (10)

The signature of hyperuniformity is then

χ(q) ∼ |q| as |q| → 0, (11)

whereas χ(q→ 0)→ constant if the system is not hype-
runiform.

Note, using definition II of Eq. (7) we have,

φq =
∑

i

vie
iq·ri , (12)

whereas using definition I of Eq. (5) we have,

φq =
∑

i

∆iqeiq·ri (13)

where ∆iq is the Fourier transform of ∆i(r). Since ∆iq →
vi as |q| → 0, the two definitions of Eq. (5) and (7) must
give the same χ(q) in the limit |q| → 0, hence both are
in principle good measures for hyperuniformity.

Note, for circular disks in two dimensions, ∆iq depends
only on the magnitude |q| and is given by,

∆iq = vif(|q|di/2), f(y) =
2

y2

∫ y

0

dxxJ0(x). (14)

Here di is the diameter of the particle i and J0(x) is the
Bessel function of the first kind.

We will also consider another wavevector dependent
measure of hyperuniformity, as introduced by Berthier
et al. [9], the thermal compressibility χT (q) defined by,

definition III : [nTχT (q)]−1 =
∑

s,s′

xsS
−1
ss′ (q)xs′ .

(15)
Here n = N/V is the particle density, s and s′ label
distinct species of particles of given diameter ds, xs =
Ns/N is the global concentration of species s, and S−1ss′ (q)
is the inverse of the matrix,

Sss′(q) ≡ 1

N
〈nsqns′−q〉, (16)

where nsq is the Fourier transform of the particle den-
sity of species s alone. The quantity χT (q) in Eq. (15)
is derived as the compressibility of a polydisperse liq-
uid of particles in thermal equilibrium at temperature T .
For our nonequilibrium athermal system, in which fluc-
tuations from configuration to configuration are induced
by our rapid quench protocol rather than a finite tem-
perature, the physical interpretation of χT (q) as a com-
pressibility is unclear; nevertheless the right hand side of
Eq. (15) is an interesting measure of density fluctuations,
and so we will compute it for the sake of comparison.
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We will also consider hyperuniformity as measured in
real-space by computing the fluctuations of φ(r) over a
circular window of radius R. Place a circle of radius R
at a random position within the system and denote this
region as the volume VR. We can then define the average
packing fraction on this region as,

φR ≡
1

πR2

∫

VR

d2r φ(r). (17)

The difference in φR between using definition I of Eq. (5)
and definition II of Eq. (7) for φ(r) is then as illustrated
by the sketch in Fig. 1. In definition I we count all over-
lapping volume between particles and the volume VR;
particles which are not entirely contained within VR con-
tribute only the overlapping fraction of their volume, as
illustrated. In definition II we count the entire volume of
particles whose centers lie within the volume VR; parti-
cles whose centers lie outside VR contribute nothing, even
if they overlap VR.

(a) (b) 

FIG. 1. Shaded volume represents the volume that con-
tributes to φR according to (a) the definition I of φ(r) in
Eq. (5), and (b) the definition II of φ(r) in Eq. (7).

We then compute the variance,

var(φR) ≡ 〈φ2R〉 − 〈φR〉2. (18)

One can show that var(φR) is related to χ(q) by

var(φR) =
1

(πR2)2V

∑

q6=0

χ(q)∆2
Rq, (19)

where ∆Rq is the Fourier transform of the indicator func-
tion ∆R(r) for a circular volume of radius R, and the sum
is over all q consistent with Lees-Edwards boundary con-
ditions excluding q = 0 [16].

When χ(q) → constant as |q| → 0, as in a liquid, the
above gives [10, 11] for the limiting large R behavior in
two dimensions,

for liquid : var(φR) ∼ c

R2
. (20)

For a hyperuniform system, with χ(q) ∼ |q| as |q| → 0,
the limiting largeR behavior in two dimensions is [10, 11],

for hyperuniform : var(φR) ∼ a+ b lnR

R3
. (21)

Since the |q| → 0 limiting behavior of χ(q) must be
the same for definitions I and II, we expect that the large
R limiting behavior of var(φR) must in principle also be
the same. However, unlike what we will find for χ(q), we
will find that for the system sizes and length scales we
can simulate, var(φR) vs R behaves very differently for
the two definitions of φ(r).

The relative merits of the wavevector-dependent
method χ(q) compared to the real-space method
var(φR), for detecting hyperuniformity as applied to par-
ticle images from physical experiments, has recently been
discussed in Ref. [17].

III. MODEL

Our two dimensional system of N particles is a bidis-
perse mixture of equal numbers of big and small circular,
frictionless, disks with diameters db and ds in the ratio
db/ds = 1.4 [2]. Disks i and j interact only when they
overlap, in which case they repel with a soft-core inter-
action potential,

Vij(rij) =





1
αke(1− rij/dij)α, rij < dij

0, rij ≥ dij .
(22)

Here rij is the center-to-center distance between the par-
ticles, and dij = (di + dj)/2 is the sum of their radii.
We will measure energy in units such that ke = 1, and
length in units so that the small disk diameter ds = 1.
Unless otherwise stated, our results are for the harmonic
interaction with α = 2.

The geometry of our system box is characterized by
three parameters, Lx, Ly, γ, as illustrated in Fig. 2. Lx
and Ly are the lengths of the box in the x̂ and ŷ di-
rections, while γ is the skew ratio of the box. We use
Lees-Edwards boundary conditions [13] to periodically
repeat this box throughout all space.

Lx

Ly

!Ly

FIG. 2. Geometry of our system box. Lx and Ly are the
lengths in the x̂ and ŷ directions, and γ is the skew ratio.
Lees-Edwards boundary conditions are used.

In this work we consider only packings with an
isotropic total stress tensor Σαβ ,

Σαβ = ΓNδαβ , where ΓN = pV, (23)
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p is the system pressure, and V = LxLy is the total
system volume. Here α, β denote the spatial coordinate
directions x, y.

To construct such isotropic packings, in which the
shear stress vanishes, we use a scheme in which we vary
the box parameters Lx, Ly and γ as we search for me-
chanically stable states [18]. We introduce [19] a modified

energy function Ũ that depends on the particle positions
{ri}, as well as Lx, Ly, γ,

Ũ ≡ U + ΓN (lnLx + lnLy), U ≡
∑

i<j

Vij(rij). (24)

Noting that the interaction energy U depends implic-
itly on the box parameters Lx, Ly, γ via the boundary
conditions, we get the relations,

Lx
∂U

∂Lx
= −Σxx + γΣxy,

∂U

∂γ
= −Σxy,

Ly
∂U

∂Ly
= −Σyy − γΣxy.

(25)

Starting from an initial configuration of randomly po-
sitioned particles in a square box (Lx = Ly, γ = 0) at
packing fraction φinit = 0.84, and fixing a target value
of ΓN , we then minimize Ũ with respect to both particle
positions and box parameters. Our minimization can be
considered as a rapid quench from infinite to zero tem-
perature, keeping the final total system stress fixed. The
resulting local minimum of Ũ gives a mechanically stable
configuration with force balance on each particle and a
total stress tensor that satisfies

Σxx = Σyy = ΓN , Σxy = 0. (26)

For minimization we use the Polak-Ribiere conjugate
gradient algorithm [20]. We consider the minimiza-

tion converged when we satisfy the condition (Ũi −
Ũi+50)/Ũi+50 < ε = 10−10, where Ũi is the value at the
ith step of the minimization. Tests that our procedure
gives well minimized configurations are discussed in the
Appendix. Our results at each value of ΓN are averaged
over 1000–10000 (depending on the system size) indepen-
dently generated isotropic configurations. Configurations
are generated independently at each value of ΓN .

IV. RESULTS

We simulate our system for a range of total system
stresses ΓN spanning just over two orders of magnitude.
It will be convenient to parameterize our configurations
by the intensive quantity p̃ ≡ ΓN/N , the total stress
per particle; p̃ is related to the ordinary pressure p by
p̃ = p(V/N). We have considered four different system
sizes, N = 8192, 16384, 32768 and 65536, each for equal
values of p̃ = 0.0001373 to p̃ = 0.0183105. We use large
systems in two dimensions so as to be able to probe small
wavevectors q, and so test for hyperuniformity on long
length scales.

A. Global quantities

Before considering the behavior of local packing frac-
tion fluctuations, we first consider several global proper-
ties of the system in order to establish where our sys-
tems lie with respect to the jamming transition. For our
model, a detailed finite-size-scaling analysis [21] found
that a rapid quench from random positions at fixed pack-
ing fraction φ gave a jamming fraction of φJ = 0.84177.
However, since it is established [22–26] that the jam-
ming fraction φJ of mechanically stable configurations
can depend on the specific protocol used to produce those
configurations, there is no guarantee that φJ for rapid
quenching to constant stress p̃ necessarily results in the
same exact value of φJ .

Since our minimization procedure varies the box
lengths Lx and Ly to achieve the desired global stress
ΓN , different configurations at a common fixed ΓN may
have slightly different volumes (see Appendix), and hence
different global packing fractions. In Fig. 3 we plot
the average global packing fraction 〈φ〉 vs the stress per
particle p̃, for systems with N = 8192 to 65536 parti-
cles. Panel (a) shows the results on a linear-linear scale,
where it appears that finite size effects are negligible.
It has been predicted [2] that, for our harmonic inter-
action of Eq. (22), pressure scales linearly with pack-
ing fraction. In our data, however, we see a small but
clear curvature at larger p̃. We thus fit (solid lines in
Fig. 3) our results to 〈φ〉 = φJ + a1p̃ + a2p̃

2, regard-
ing the quadratic term as a correction to scaling. This fit
gives φJ = 0.84159±0.00002, with the error representing
the variation in values obtained for the different system
sizes.

However, to examine more closely the points at the
smallest p̃, in Fig. 3b we plot 〈φ〉 − 0.8415 vs p̃ on a log-
log scale [27]. We now see a definite finite size effect in
the results for the two smallest p̃ values, and that these lie
noticeably below the fitted quadratic curve (solid line).
Our above estimate of φJ should therefore be taken with
some caution. A more accurate determination of φJ , as
well as the power-law dependence between p̃ and (φ−φJ),
should take into account these finite size effects. Such an
analysis is outside the scope of the present work.

The jamming transition of frictionless particles is well
determined by the isostatic condition [1–3], where the
number of constraints on the particles exactly equals the
number of degrees of freedom. For frictionless spherical
particles this condition requires that the average number
of contacts 〈z〉 for a given particle is equal to twice the di-
mensionality of the system; for two dimensions, ziso = 4.
Numerically, this condition is found to hold quite pre-
cisely provided one first excludes from the system “rat-
tler” particles [2]. A rattler is any particle which is not
at a strict local energy minimum, but may move with-
out cost in energy in one or more directions. To locate
the rattlers in our two dimensional system we loop re-
cursively through all our particles removing any particle
with less than three contacts; i.e., after an initial pass in



5

0.84

0.85

0.86

0.87

0.88

0.89

0.000 0.005 0.010 0.015 0.020

8192
16384
32768
65536

p~

N

(a)

10-5

10-4

10-3

10-2

10-1

10-4 10-3 10-2 10-1

8192
16384
32768
65536

(b)

p~

N

�φ
�−

0.
84

1
5

�φ
�

FIG. 3. (color online) Average global packing fraction 〈φ〉
vs stress per particle p̃, for systems with N = 8192 to 65536
particles on (a) linear-linear, and (b) log-log scales. Solid lines
are a fit to a quadratic function 〈φ〉 = φJ + a1p̃+ a2p̃

2.

which such particles are removed, we loop again through
the remaining particles and remove any that now have
less than three contacts, repeating this procedure un-
til no additional particles are removed. The total num-
ber of removed particles is then the number of rattlers.
Removing such rattlers and computing the resulting av-
erage 〈z〉 of the remaining particles, in Fig. 4 we plot
〈∆z〉 ≡ 〈z〉 − ziso, vs p̃, for system sizes N = 8192 to
65536. Panel (a) shows our results on a linear-linear
scale, while panel (b) shows a log-log scale. In this case,
as has been noted previously [28], finite size effects are
truly negligible for the range of p̃ and N considered here.
For the harmonic interaction used here, theoretical ar-
guments [29] predict 〈∆z〉 ∼ p1/2 close to the jamming
transition. Since our values of p̃ extend moderately above
jamming, (〈φ〉max−φJ)/φJ ≈ 0.05, we fit our data to the
form 〈∆z〉 = p̃x(a0+a1p̃+a2p̃

2+a2p̃
3), where the polyno-

mial factor is an empirical form to account for corrections
to scaling when not sufficiently close to jamming. We find
the value x ≈ 0.546 ± 0.001, with the error representing
the variation in values obtained for the different system
sizes. A more careful scaling analysis, going to lower
stresses p̃ closer to jamming, is desirable before conclud-
ing the exponent is truly x > 1/2. However we may note
that a recent reanalysis [30] of the data of Ref. [28] has
similarly found values of x > 1/2 in both two and three
dimensions.

As a final measure of the global properties of our sys-
tems we consider the density of states D(ω) of the dy-
namical matrix of our minimized configurations [2, 29,
31]. Expanding the interaction energy U({ri}) to sec-
ond order in small particle displacements about the en-
ergy minimized configuration defines the dynamical ma-
trix. The eigenvalues λ of that matrix, and correspond-
ing eigenvectors, determine the response of the system
to vanishingly small elastic perturbations. Following con-
vention and assuming Newtonian equations of motion for
the response to such perturbations, the eigenvalues λ are
related to the frequencies of the normal modes of vibra-
tion ω by λ = ω2. In Fig. 5 we plot the density of such fre-
quencies D(ω) vs ω on a linear-log scale, for a stress per
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FIG. 4. (color online) Average excess contact number 〈∆z〉 =
〈z〉 − ziso vs stress per particle p̃, for systems with N = 8192
to 65536 particles on (a) linear-linear, and (b) log-log scales.
Solid lines are a fit to 〈∆z〉 = p̃x(a0 + a1p̃ + a2p̃

2 + a2p̃
3),

where we find x ≈ 0.546.

particle ranging from p̃ = 0.0001373 to 0.0183105. Be-
cause of the numerical difficulty of computing the eigen-
value spectrum for large matrices, we show results only
for our smallest system size with N = 8192 particles;
curves at each p̃ are averaged over 3 independent con-
figurations. We see clearly the plateau at small ω, often
referred to as the “boson peak” [2], that shows the ex-
cess of low frequency modes characteristic of a marginally
stable solid. As p̃ decreases, the low frequency edge of
the plateau, ω∗, moves steadily to lower values and pre-
sumably vanishes as p̃ → 0 [2]. Our range of stress p̃
is thus clearly in the region where marginal stability is
characterizing the structure of the packing out to ever
increasing length scales as p̃ decreases.
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FIG. 5. (color online) Density of frequencies of small elastic
vibrations D(ω) vs ω. Results are shown for a system of N =
8192 particles for a range of stress per particle p̃ = 0.0001373
to 0.0183105. Each curve is an average over 3 independent
energy minimized configurations.
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B. Wavevector-dependent fluctuations

We now consider the fluctuations of the system at fi-
nite wavevectors q. For the system geometry of Fig. 2,
the wavevectors allowed by the Lees-Edwards boundary
conditions have the form, q = m1b1 + m2b2, where m1

and m2 are integers, and the basis vectors are b1 =
(2π/Lx)(x̂ − γŷ) and b2 = (2π/Ly)ŷ. For simplicity
we will look at wavevectors oriented in the ŷ direction,
i.e. q = mb2 = qŷ, with q = 2πm/Ly for integer m
[32]. Because each different configuration may have a
slightly different value of Ly, since Ly is a free variable
determined by the targeted value of ΓN , we average data
points at common values of m; however the variation in
Ly over different configurations, while finite, is in prac-
tice negligible for the large system sizes we consider here
(see Appendix).

In Fig. 6 we plot the structure function S(qŷ), that
measures fluctuations of particle density, vs q for a system
of N = 32768 particles for a range of stresses p̃. As
expected, we see that S(qŷ) saturates to a finite constant
as q decreases, for all p̃.

S
(q

ŷ
)

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0001373
0.0005493
0.0021973
0.0087891
0.0183105

q

p~

N = 32768

FIG. 6. (color online) Structure function S(qŷ) vs q, giv-
ing the fluctuation in the density of particles at wavevector
qŷ. Results are shown for a system with N = 32768 par-
ticles, for several different values of the stress per particle,
p̃ = 0.0001373 to 0.0183105. S(qŷ) approaches a constant
as q → 0. The error bars shown in the figure represent one
standard deviation of estimated statistical error.

In Fig. 7 we show our results for the fluctuations of the
local packing fraction, plotting χ(qŷ) vs q, where we have
used definition I of Eq. (5) for the local packing fraction
φ(r). We show results for a system of N = 32768 parti-
cles for a range of different stresses p̃. We see that as q
decreases, χ(qŷ) decreases roughly linearly in q as was ob-
served previously. However when q gets sufficiently small,
χ reaches a finite minimum at a q∗, and then increases
as q → 0, rather than vanishing as expected for a hyper-
uniform system. Note that the limiting value χ(qŷ→ 0)
is increasing as p̃ increases.

The variation of q∗ with p̃ is quite small. As p̃ de-

creases, q∗ decreases slightly, but at sufficiently small p̃,
the data at different p̃ appear to be approaching a com-
mon curve, with a common limiting value of q∗ ≈ 0.15.
We thus conclude that as p̃ decreases, and one approaches
the jamming transition, our configurations display hype-
runiformity only out to a finite length scale `∗ ≈ 2π/q∗ ≈
42. This is the main result of this work.
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FIG. 7. (color online) Fluctuation in packing fraction χ(qŷ)
vs q, using the definition I of Eq. (5) for the local packing frac-
tion φ(r). Results are shown for a system with N = 32768
particles, for several different values of the stress per particle,
p̃ = 0.0001373 to 0.0183105. As q decreases, we find that
χ(qŷ) decreases roughly linearly, but then reaches a mini-
mum below which it increases, thus implying the absence of
hyperuniformity on large length scales. As p̃ decreases, the
curves of χ(qŷ) approach a common limiting curve. The error
bars shown in the figure represent one standard deviation of
estimated statistical error.

One may question whether our observed behavior of
χ(qŷ) at small q is not some artifact of our numerical
procedure. In the Appendix we show a careful analysis
that this behavior is not an artifact of an insufficiently
converged minimization procedure. Another possibility
might be that it is a finite size effect. In Fig. 8 we
therefore plot χ(qŷ) vs q (using definition I for φ(r))
for several different system sizes, N = 8192 to 65536,
for our smallest stress p̃ = 0.0001373 and for our largest
stress p̃ = 0.0183105. Apart from the fact that in sys-
tems with larger N we can measure down to smaller q
(since q = 2πm/Ly), the measured χ(qŷ) is found to be
completely independent of the system size.

Finally we consider our two other wavevector-
dependent measures of hyperuniformity, the fluctuation
χ(q) using definition II of Eq. (7) for the local packing
fraction φ(r), and the thermal compressibility nχT (q) of
Eq. (15), used by Berthier et al. [9], which we denote as
“definition III.” In Fig. 9 we plot χ(qŷ) vs q for definitions
I, II, and III, for a system with N = 32768 particles at
our smallest and largest values of p̃. While these quan-
tities all differ somewhat at the larger values of q, we
see that definitions I and II become completely equal at
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FIG. 8. (color online) Fluctuation in packing fraction χ(qŷ)
vs q, using the definition I of Eq. (5) for the local packing frac-
tion φ(r). Results are shown for several different system sizes,
N = 8192 to 65536, for our smallest and largest values of the
stress per particle, p̃ = 0.0001373 and 0.0183105. The error
bars shown in the figure represent one standard deviation of
estimated statistical error.

smaller q, in particular about the minimum q∗, as should
be expected from the discussion following Eq. (13). Def-
inition III for nχT is completely equal to definitions I
and II at small q about the minimum q∗ at our lowest
p̃ = 0.0001373. For the largest p̃ = 0.0183105 we find
a small deviation between nχT and χ that persists to
low q at and below q∗; however the qualitative behav-
ior remains the same. We thus conclude that all three
approaches lead to the same conclusion: that hyperuni-
formity extends only out to a finite length scale for our
mechanically stable packings above the jamming transi-
tion, and that this length remains finite as the jamming
transition is approached.

C. Real space fluctuations

In this section we consider the real space fluctuations of
the local packing fraction, defined over a circular window
of radius R, by computing the variance of φR as defined
in Eq. (17). For each configuration we use several dif-
ferent, non-overlapping, circular windows at each given
R. When the diameter 2R is roughly equal to half the
length of the system L/2, we take only a single window
per configuration.

In Fig. 10 we plot var(φR) vs R, comparing results
from using definition I of Eq. (5) for the local packing
fraction φ(r) with that of definition II of Eq. (7). We
show results for our smallest stress p̃ = 0.00011373 and
our largest p̃ = 0.0183105, for a system with N = 32768
particles. Although the corresponding χ(qŷ) for these
two definitions were shown in Fig. 9 to be essentially
identical at small q, we see a rather dramatic difference
in the behaviors of the corresponding var(φR) for the en-
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FIG. 9. (color online) Comparison of the different wavevector-
dependent measures of hyperuniformity: “definition I” and
“definition II” refer to the fluctuation of local packing fraction
χ(q) with φ(r) determined from the definitions of Eq. (5)
and Eq. (7) respectively, while “definition III” refers to the
quantity nTχT (q) defined in Eq. (15). Results are shown
for a system with N = 32768 particles, for our smallest and
largest values of the stress per particle, p̃ = 0.0001373 and
0.0183105. The error bars shown in the figure represent one
standard deviation of estimated statistical error.

tire range of R we study. As expected from Fig. 9, the
fluctuations for definition I are smaller than for definition
II. However the two definitions also appear to give dif-
ferent power-law dependencies for the decay of var(φR)
with R. Definition II gives roughly a 1/R3 decay, while
definition I seems to be closer to a 1/R2 decay at large
length scales. We will see below that the big difference
in magnitude of var(φR) comparing definition I and defi-
nition II, as well as the apparent difference in power-law
decay, can be attributed to the contributions to var(φR)
from moderate to large |q| fluctuations (i.e. small length
scale fluctuations), and that these higher |q| fluctuations
are much larger for definition II.

To examine this decay more closely, we consider
R2var(φR), which according to Eqs. (20) and (21) should
approach a constant for a liquid-like system, and (a +
b lnR)/R for a hyperuniform system. In Fig. 11 we show
R2var(φR) vs R using definition I, for our smallest and
largest stresses, p̃ = 0.0001373 and p̃ = 0.0183105, for
several different system sizes from N = 8192 to 65536.
At small R we see that R2var(φR) decays as R increases.
A power-law fit to the small R data in panel (a) gives
a decay ∼ R−0.4, while in panel (b) we find ∼ R−0.3; it
is not clear that these exponent values have any funda-
mental significance. However as R increases, this decay
is cutoff at a length R∗ where R2var(φR) reaches a min-
imum. Comparing panels (a) and (b) we see that R∗

decreases only slightly as p̃ increases over the two orders
of magnitude. At the lowest stress, R∗ ≈ 18, correspond-
ing to a window of diameter 2R∗ = 36; this is roughly
consistent with the value of `∗ = 2π/q∗ ≈ 42 obtained
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FIG. 10. (color online) Comparison of the fluctuation in local
packing fraction, var(φR) vs R, using definition I of Eq. (5)
and definition II of Eq. (7) for the local packing fraction φ(r).
Results are shown for a system with N = 32768 particles,
for our smallest and largest values of the stress per particle,
p̃ = 0.0001373 and 0.0183105. Thick solid lines represent the
dependancies 1/R2 and 1/R3, as indicated.

from the minimum of χ(qŷ) in Fig. 7.
For R > R∗ we see that R2var(φR) increases, rather

than saturating to a constant as might be expected. This
is the real space manifestation of the increase in χ(qŷ) as
q decreases below q∗. Whether R2var(φR) will continue
to increase, or saturate to a constant, as R increases fur-
ther (i.e. whether χ(qŷ) continues to increase or satu-
rates to a constant as q → 0) remains unclear. The fi-
nite size dependence seen at large R is another reflection
of the increase in χ(qŷ) as q decreases below q∗. From
Eq. (19) we have that R2var(φR) is related to the sum of
χ(q) over all allowed wavevectors. As N increases, the
smallest allowed q decreases (qmin ∼ 1/L), and we get ad-
ditional contributions to this sum, resulting in the finite
size effect at large R. That this effect is more noticeable
at the higher stress p̃ (compare Fig. 11b with 11a) is a
consequence of the fact that the increase in χ(q) at small
|q| becomes steeper at larger p̃ (see Fig. 8). If χ(q) even-
tually saturates to a constant as |q| → 0, these additional
contributions as N increases will become a negligible part
of the sum, and the finite-size-effect will similarly become
negligible.

In Fig. 12 we similarly plot R2var(φR) vs R, but now
using definition II of Eq. (7) for the local packing fraction.
Again we show results for several different system sizes,
N = 8192 to 65536 for our smallest stress p̃ = 0.0001373,
and largest stress p̃ = 0.0183105. The results are dra-
matically different from what is seen in Fig. 11. Here we
see a much weaker dependence on the stress p̃, only a
small finite size effect at the largest R, and a clear R−1

decay over much of the range of data (a power-law fit
to the data gives more precisely ∼ R−0.95). Thus, while
definition I gives no suggestion of hyperuniform behavior,
definition II looks convincingly hyperuniform out to rel-
atively large length scales R. The dramatic difference in
var(φR) between the two definitions of the local packing
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FIG. 11. (color online) R2var(φR) vs window radius R for
systems with N = 8192 to 65536 particles, at stress (a) p̃ =
0.0001373 and (b) p̃ = 0.0183105. The power law decay at
small R is indicated. Definition I of Eq. (5) for the local
packing fraction φ(r) is used.

fraction φ(r) is quite puzzling given the complete agree-
ment of the corresponding χ(q) for the two definitions at
small |q|, as seen in Fig. 9. We can explain the reason
for this difference in behavior as follows.
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FIG. 12. (color online) R2var(φR) vs window radius R for
systems with N = 8192 to 65536 particles, at stress (a) p̃ =
0.0001373 and (b) p̃ = 0.0183105. The power law decay at
small R is indicated. Definition II of Eq. (7) for the local
packing fraction φ(r) is used.

From Eqs. (14) and (19) we can write the relation be-
tween var(φR) and χ(q) as,

var(φR) =
1

V

∑

q 6=0

χ(q)f2(|q|R), (27)

with f(y) as defined in Eq. (14). Assuming that χ(q)
depends only on |q| due to the average isotropy of the
system [32], we can integrate over the direction of q to
get for our two dimensional system,

var(φR) =
1

Ly

∑

q 6=0

χ(qŷ)qf2(qR) (28)

with q = 2πn/Ly. In Fig. 13 we plot f2(y) vs y on a
log-log scale. We see that for large y, it oscillates with a
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1/y3 envelope. For an infinite system, if χ(q → 0) is a
finite constant, then at sufficiently large R a dimensional
analysis implies that var(φR) must scale as 1/R2. How-
ever for finite R, and in finite systems where the sum
on q is discrete, the behavior of var(φR) can depend in
detail on the behavior of χ(q) at large q; if the sum in
Eq. (28) is dominated by the large q terms, then we may
find var(φR) ∼ 1/R3 because of the 1/(qR)3 dependence
of f2(qR) and not because of any hyperuniformity of the
system.
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∼ 1/y3

FIG. 13. (color online) Plot of f2(y) vs y, with the function
f(y) as defined in Eq. (14). The envelope of the oscillations
at large y decays as 1/y3.

The behavior of var(φR) on observed length scales R
can thus be determined by the behavior of χ(q) at large
wavevectors q with |q| > π/R. In Fig. 14 we plot χ(qŷ)
for both definition I and definition II, as well as the struc-
ture function S(qŷ), for a much wider range of wavevec-
tors, 0 < q < 10, than in previous plots. We show results
for N = 32768 at our lowest stress p̃ = 0.0001373. As
before, we see that χ(qŷ) for the two definitions agree
perfectly at small q, but then separate when q & 1.
Moreover, χ(qŷ) for definition II becomes roughly equal
to S(qŷ), and over two orders of magnitude larger than
that for definition I, when q & 5. Thus the contribu-
tion to var(φR) from χ(qŷ) at large q should be expected
to be more significant for definition II as compared to
definition I.

To check this, we compute var(φR) by explicitly sum-
ming the series in Eq. (28), using the data for χ(qŷ)
from Fig. 14. Our results for R2var(φR) vs R are shown
in Fig. 15 for N = 32768 at p̃ = 0.0001373. We com-
pare these results to the direct computation of var(φR)
as shown in Figs. 11a and 12a. For definition I we find ex-
cellent agreement between the series and the direct com-
putation when we sum the series up to q = 10. For defi-
nition II we find that we must sum even more terms, up
to q = 50, in order to get reasonable agreement. We thus
see again that the large q (i.e. small length scale) fluctu-
ations are larger, and so contribute more to var(φR), for
definition II than for definition I. Our results in Fig. 15
show that the computation of var(φR) in Fig. 10 is indeed
consistent with our computation of χ(qŷ) in Fig. 9, and
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FIG. 14. (color online) Packing fraction fluctuation χ(qŷ) as
computed using definition I of Eq. (5), and definition II of
Eq. (7), as well as the structure function S(qŷ), for a wide
range of wavevectors up to q = 10. Results are shown for
a system of N = 32768 particles at our lowest stress p̃ =
0.0001373.

that the reason for the dramatic difference in var(φR),
comparing definition I with definition II, is the influence
of fluctuations at moderately large q, which persist even
to large R. We conclude that χ(q), rather than var(φR),
is the better measure to use to check for hyperuniformity
in our two dimensional system.

10-4

10-3

10-2

10-1

1 10 100

definition I - direct 
definition I - from !(q) 

definition II - direct 
definition II - from !(q) 

R

N = 32768 p = 0.0001373~

R
2
va

r(
φ

R
)

FIG. 15. (color online) R2var(φR) vs R, comparing the data
of Figs. 11a and 12a (direct computation) with the result from
summing χ(qŷ) over q in Eq. (28), for both definition I and
definition II of the local packing fraction φ(r). Results are
for a system with N = 32768 particles at our smallest stress
p̃ = 0.0001373.

V. DISCUSSION AND CONCLUSIONS

In this work we have considered the fluctuations of den-
sity and packing fraction in mechanically stable packings
of bidisperse frictionless particles at finite stress. A dis-
tinguishing feature of our work is that we simulate at
fixed isotropic global stress, rather than at fixed packing
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fraction. We investigate states above the jamming tran-
sition, in contrast to earlier works [9–11] that considered
the case of packings exactly at the jamming φJ .

A. Comparison to previous works

Berthier et al. [9] considered both an experimental
two dimensional system of N = 8000 bidisperse particles,
and a numerical three dimensional system of N = 64000
soft-core particles of varying size dispersities. This cor-
responds to system lengths of roughly 90 and 40 parti-
cle diameters in the experimental and numerical systems
respectively. The experimental system was jammed un-
der slow compression. The numerical configurations were
created starting from jammed states above φJ , and then
slowly decompressing until the system unjammed, fol-
lowed by a slower recompression until the system jammed
again, as measured by a finite energy per particle of
order 10−11. In both experimental and numerical sys-
tems, a χT (q) is observed that appears to linearly de-
crease towards zero. However, in both cases the mea-
sured χT (q) only extends down to roughly qd ≈ 0.15,
where d is the average diameter of the particles, and the
data is quite scattered below qd ≈ 0.5. These results thus
give evidence for hyperuniformity out to length scales
`/d ∼ 2π/0.5 ≈ 12, but not necessarily on longer length
scales.

Zachary et al. [10, 11] considered a much larger nu-
merical system in two dimensions, with up to N = 106

particles (and so system length of roughly 1000 particle
diameters). They used a bidisperse system with particles
of different shapes, with size ratio 1.4 and a concentration
of small particles xs = 0.75, and large particles xb = 0.25.
They used the Lubachevsky-Stillinger algorithm [33] to
generate their jammed states. This is an event-driven
molecular dynamics for elastic hard-core particles, where
particles are inflated at a prescribed rate from an ini-
tial thermally equilibrated dilute state so as to rapidly
quench the hard-core gas into a thermal glassy state.
The particle inflation continues until the system seizes
up into a strictly jammed state that they denote as max-
imally random jammed (MRJ). They measure both χ(q)
and var(φR) (using definition I) in the MRJ state, and
for circular particles find strong evidence from var(φR)
for hyperuniformity out to length scales 2R/d ∼ 80.

More recently, other works have reconsidered hyper-
uniformity in systems of monodisperse spheres in three
dimensions, and have considered behavior approaching,
rather than strictly at, φJ . Recall, for monodisperse sys-
tems, hyperuniformity is indicated by the behavior of the
structure function, S(q) ∼ |q| as |q| → 0. Hopkins et al.
[12], using the same protocol as Zachary et al. [10, 11] for
a system with N = 106 particles (system length roughly
100 particle diameters), measure S(q) at various φ ap-
proaching φJ from below. They find S(q) ≈ aq+ b, with
b → 0 as φ → φJ , and from this extract a length scale
ξ ∼ 1/b1/3 that diverges as jamming is approached and

the system becomes hyperuniform.
Ikeda and Berthier [34] study N = 512000 monodis-

perse soft-core particles in three dimensions. Starting
from a random configuration of particles in a fixed cubic
box at packing fraction φ = 0.8, well above φJ ≈ 0.646,
they use the FIRE algorithm [35] to minimize the interac-
tion energy and obtain a mechanically stable state. They
then decrease the particle density in small steps, energy
minimizing at each step, to obtain configurations span-
ning a range of packing fractions from φ = 0.8 to just
above the jamming φJ . Their results are averaged over
8 independent starting configurations. Computing S(q)
they find, for all but their largest value of φ = 0.8, that
data at the different φ essentially overlap and are linear
in q, as expected for a hyperuniform system, over an ex-
tended range of 0.4 < q < 7. However at their smallest q,
they find S(q) saturates to a finite value ∼ 10−3, similar
in magnitude to what we have found in the present work
for χ(q); they, however, see a plateau in S(q) at small
q rather than the minimum that we find in χ(q). Ikeda
and Berthier thus conclude that hyperuniformity is only
weakly dependent on packing fraction φ, but persists out
to only a finite length scale ≈ 15d. Ikeda and Berthier
further find that this behavior is stable to the addition
of small finite thermal fluctuations.

The above results, combined with our own, suggest
that mechanically stable jammed packings above φJ do
not display hyperuniform fluctuations of the packing frac-
tion out to arbitrarily large length scales, but are hyper-
uniform only out to a finite `∗(φ) that is weakly depen-
dent on φ and does not appear to diverge as φ→ φJ from
above. However the results of Zachary et al. [10, 11] and
Hopkins et al. [12] suggest that hyperuniformity may ex-
ist in hard-core particle systems, when compressed to φJ
from below. It may therefore be that the presence or ab-
sence of hyperuniformity out to arbitrarily large length
scales depends on the specific protocol used to construct
the jammed state at φJ . We also cannot rule out the pos-
sibility that hyperuniformity may still exist in jammed
packings above φJ , but restricted to a region closer to
φJ than we have been able to explore in this work.

B. Alternative ensembles

To check how sensitive our results for φ > φJ are to the
particular system we have used above, we have consid-
ered two other ensembles. The first is to use a Hertzian
interaction, with α = 5/2 in Eq. (22), in place of the har-
monic interaction. All other details of the system remain
the same. In Fig. 16 we plot χ(qŷ), computed accord-
ing to definition I of Eq. (5), vs q for the four lowest
p̃ that we used for the harmonic interaction. We use a
system size with N = 32768 particles. For the Hertzian
interaction, pressure is expected [2] to scale with packing
fraction according to p̃ ∼ (φ − φJ)3/2, hence the 〈φ〉 for
the Hertzian system (shown as the inset to Fig. 16) is
larger than that of the harmonic system at equal values
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FIG. 16. (color online) Fluctuation in packing fraction χ(qŷ)
vs q, using the definition I of Eq. (5) for the local packing
fraction φ(r), for the case of a Hertzian interaction (α = 5/2
in Eq. (22)). Results are shown for several different values
of the stress per particle p̃, for a system with N = 32768
particles. The inset shows the average packing fraction 〈φ〉 as
a function of p̃.

of p̃. The Hertzian interaction further differs from the
hamonic in that for the Hertzian system the bulk mod-
ulus vanishes continuously as φ→ φJ from above, while
for the harmonic system the bulk modulus approaches a
finite constant as φ → φJ from above, and then jumps
discontinuously to zero below φJ [2]. Nevertheless, we
find that χ(qŷ) for the Hertzian system is qualitatively
the same as for the harmonic case, with a well defined
minimum that does not appear to be moving to smaller
q as p̃ decreases.

The second is to consider the harmonic interaction,
but to obtain our configurations by quenching at fixed
φ within a fixed square box. Such constant φ ensembles
have usually been used in earlier works [9–12, 34]. Un-
like the constant stress ensemble, where configurations all
have the same p̃ and so can be viewed as all at the same
distance from the jamming transition p̃ = 0, the constant
φ ensemble has a fluctuating p̃ and so different configura-
tions i are at different distances from their configuration
specific jamming transition φJi [2, 22]. The constant φ
ensemble in a fixed box also allows there to be a finite
residual shear stress in the quenched configuration [18].
In Fig. 17 we plot χ(qŷ), computed according to defini-
tion I of Eq. (5), vs q for the case φ = 0.8422 close to
φJ ≈ 0.84159. We use a system size with N = 32768
particles. Again we see qualitatively the same behavior
as before.

Note, the fixed value of φ = 0.8422 in Fig. 17 was
chosen as it is equal to the 〈φ〉 for a system with p̃ =
0.0002747 in the fixed stress ensemble (our next to lowest
value of p̃). However in the fixed φ = 0.8422 ensemble, we
find that the average stress per particle is 〈p̃〉 = 0.000180,
lower than the corresponding value in the fixed stress en-
semble. This suggests that the jamming density φJ of the
constant φ ensemble is slightly larger than the jamming
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FIG. 17. (color online) Fluctuation in packing fraction χ(qŷ)
vs q, using the definition I of Eq. (5) for the local packing
fraction φ(r), for the case of the harmonic interaction in an
ensemble at fixed global packing fraction φ = 0.8422. Results
are shown for a system with N = 32768 particles.

density of the constant stress ensemble. That is consis-
tent with our estimate of φJ ≈ 0.84159 for the constant
stress ensemble from Fig. 3, as compared with the esti-
mate of φJ ≈ 0.84177 for the constant φ ensemble from
Ref. [21]. We also note that the width of the distribu-
tion of p̃ found in this fixed φ ensemble is rather large,√
〈p̃2〉 − 〈p̃〉2/p̃ = 0.40, while the corresponding width

of the distribution of the residual deviatoric stress per
particle σ̃ is rather small,

√
〈σ̃2〉/p̃ = 0.00053.

C. Rattlers and polydispersity

It has been suggested [4, 34] that rattlers may play a
role in the breaking of hyperuniformity on large length
scales. Rattlers result when a particle has an insufficient
number of contacts to constrain its motion in all direc-
tions. Determining the number of rattlers according to
the method described in Sec. IV A, in Fig. 18 we plot
the fraction of particles that are rattlers 〈Nrattlers〉/N vs
the stress per particle p̃. For the harmonic interaction,
we plot results for systems with N = 8192 to 65536 par-
ticles. For the Hertzian interaction, we plot results for
N = 32768 only. We see that 〈Nrattlers〉/N is indepen-
dent of the system size N , and decreases with increasing
p̃. For the harmonic interaction, 〈Nrattlers〉/N changes
by an order of magnitude over the range of p̃ we study.
If rattlers were responsible for the breaking of hyperuni-
formity, we might expect that the length `∗ to which
hyperuniformity extends should increase as the density
of rattlers decreases, i.e. as p̃ increases. However our
results in Fig. 7 show exactly the opposite trend; the q∗

that locates the minimum of χ(qŷ) increases slightly with
increasing p̃, and so `∗ = 2π/q∗ decreases with increasing
p̃. Our results thus provide no obvious relation between
rattlers and the breaking of hyperuniformity.

Another possibility that might lead to the breaking of
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FIG. 18. (color online) Fraction of the particles that are rat-
tlers, 〈Nrattlers〉/N vs stress per particle p̃ = ΓN/N . For
the harmonic interaction we show results for systems with
N = 8192 to 65536 particles; the points for different N in
the figure overlap each other. For the Hertzian interaction we
show results for N = 32768.

hyperuniformity is suggested [36] by the work of Dreyfus
et al. [17]. Their work is primarily concerned with the
detection of hyperuniformity in experimental systems,
where particles are polydisperse, and the exact size of
individual particles is not a priori known but must be
determined by optical measurements. Errors in the de-
termination of the exact particle sizes were found to re-
sult in an apparent breaking of hyperuniformity at small
wavevectors (large length scales). As an extreme example
of this effect, one can consider the error introduced if, in
a bidisperse or polydisperse system, one approximated all
particles as having the same average size. In that approx-
imation, the packing fraction fluctuation χ(q) just be-
comes proportional to the structure function S(q), which
clearly does not show hyperuniformity at small q, as seen
in Fig. 6.

In our bidisperse particle simulations, we of course
know the position and size of each and every particle
exactly. Nevertheless, an effective polydispersity may be
viewed to arise from the following effect. Both our defi-
nitions I and II count each particle with a weight equal
to the area of the particle in isolation. However in our
jammed packings, particles in contact necessarily have
some amount of overlap. Our definitions I and II there-
fore count this overlap area twice, once for each particle.
One might imagine that a more “correct” definition of the
local packing fraction should count this overlap area only
once, dividing it proportionally between the two contact-
ing particles. For example, as sketched in the inset to
Fig. 19, particle i should have a weight equal to only
the shaded area, rather than the full area of the corre-
sponding circle. If vi = π(di/2)2 is the area of the circle
of particle i, then the weight with which particle i en-
ters the local packing fraction should instead be taken as
ṽi ≡ vi−

∑′
j δvij , with δvij the area subtracted due to the

overlap with particle j. The weights ṽi are therefore poly-
disperse, depending on the varying overlaps in the sys-

tem. If one computes χ(q) using the bidisperse weights
vi rather than the more correct polydisperse weights ṽi,
it could lead to a breaking of hyperuniformity that is only
apparent, i.e. a consequence of using incorrect weights.

However, if δij ≡ (di+dj)/2− rij is the overlap length

of the contact, then δvij/vi ∝ (δij/di)
3/2 ∝ p3/2, where

the last result follows since the pressure p ∼ 〈δij〉 for the
harmonic interaction potential. Thus this effect should
vary with the pressure and vanish continuously as p→ 0,
as one approaches the jamming transition. To test this
notion, we have therefore computed χ(qŷ) according to
definition II of Eq. (7), but using the weights ṽi as de-
scribed above, computed exactly for each particle ac-
cording to its own specific overlaps. We use definition
II since it is easier to implement than definition I, in the
case where each particle has a unique, nonsymmetric (i.e.
circle minus overlaps), shape. However we expect from
Fig. 9 that χ(qŷ) will be identical for definitions I and II
at the small q of interest. In Fig. 19 we plot the resulting
χ(qŷ) for our largest system with N = 65536 particles,
at both our smallest and largest values of p̃. We compare
the χ(qŷ) obtained from using the original weights vi (de-
noted as “counting overlaps twice”) with that using the
new weights ṽi (denoted as “counting overlaps once”).

At the largest p̃ = 0.0183105, we see a clear shift be-
tween the results from the different sets of weights, how-
ever the qualitative behavior remains the same, with a
clear minimum at the same q∗, and χ increasing as q
decreases below q∗. At our smallest p̃ = 0.0001373, how-
ever, the results from the two sets of weights are essen-
tially equal. Thus taking overlaps into account does not
result in a restoration of hyperuniformity on large length
scales, and the insensitivity of our results to the differ-
ent choices of weights at our smallest p̃ is yet another
indication that our smallest pressures are, by all relevant
measures, quite close to jamming.

Finally, it is interesting to note that the experiments
on PINIPAM microgel particles, reported on in Dreyfus
et al. [17], may actually correspond more closely to our
conclusions than to the claim in favor of hyperuniformity.
As these authors note, the small q behavior of χ(q) for
PINIPAM, shown in the inset to their Fig. 9b, does not
suggest hyperuniformity; indeed it is qualitatively sim-
ilar to what we see in our Fig. 7. However the q∗ at
which χ(q) has its minimum is so much larger in the ex-
periments of Dreyfus et al. than what we find here, that
in their case it may well be an artifact of system size,
such as Dreyfus et al. claim. However, if we consider the
real space decay of var(φR) with R, our results in Fig. 11
for definition I (corresponding to the usage in Dreyfus et
al.) show that the initial decay, before the minimum is
reached, is var(φR) ∼ R−λ, with λ ≈ 2.4 for our smaller
p̃, and λ ≈ 2.3 for our larger p̃. This is not far from the
value λ ≈ 2.2 reported in Dreyfus et al. for a similar
range of R, using their j-PSR reconstruction as shown
in their Fig. 9a. Yet in our case, our λ > 2 does not
demonstrate that the system is hyperuniform; we see hy-
peruniformity is broken only by looking at larger length
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FIG. 19. (color online) Packing fraction fluctuation χ(qŷ) vs
q, using definition II of Eq. (7) for a system of N = 65536 par-
ticles, at two different values of the stress per particle p̃. We
compare results where the weight of each particle is taken as
the circular area of the isolated particle (denoted as “count-
ing overlaps twice”), vs where the weight of each particle is
taken as the non-overlapping part of that circular area, as
illustrated by the shaded region for particle i in the inset (de-
noted as “counting overlaps once”). A small difference is seen
between these two sets of weights at the larger value of p̃, but
not at the smaller value.

scales. This comparison thus suggests that the PINIPAM
experiments may actually be above the jamming φJ , and
are not inconsistent with the absence of hyperuniformity
on long length scales.
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APPENDIX

In this appendix we provide some further details about
the minimization procedure of Sec. III that we use to
obtain our mechanically stable configurations at fixed
isotropic stress.

Since our minimization procedure is carried out at
fixed total system stress Σαβ , the system box parameters
Lx, Ly and γ (see Fig. 2) will vary from specific mini-
mized configuration to configuration. In Fig. 20 we show
the extent of these variations for the different system sizes
N = 8192, 16384, 32768 and 65536. In Fig. 20a we show
the relative fluctuations in box lengths,

√
var(Lx)/〈Lx〉

and
√

var(Ly)/〈Ly〉 vs the stress per particle p̃ = ΓN/N .
Solid symbols are for Lx while open symbols are for Ly.
Since the system is on average isotropic, we expect the
fluctuations in Lx and Ly to be equal, and we indeed find
that to be so. The fluctuations are also found to scale
as 1/

√
N , as would naively be expected. In Fig. 20b we

show the fluctuations in the dimensionless skew parame-
ter,

√
var(γ) vs p̃. The size of the fluctuations in γ are

slightly larger but comparable to the fluctuations in the
box lengths. Again we find that the fluctuations scale as
1/
√
N . We also note that, as expected, the average skew

〈γ〉 = 0 within the estimated statistical error, as shown
in Fig. 21.
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FIG. 20. (color online) (a) Relative fluctuations in the sys-
tem box lengths Lx and Ly vs stress per particle p̃, for system
sizes N = 8192 to 65536. Solid symbols show the fluctuations
in Lx, while open symbols show Ly. (b) Fluctuations in the
dimensionless box skew parameter γ vs p̃. See Fig. 2 for the
definition of parameters Lx, Ly, γ. In both cases the fluctu-

ations scale as 1/
√
N .

�γ
�

-0.0004

0.0000

0.0004

10!4 10!3 10!2

N = 8192
N = 16384

N = 32768
N = 65536

p~

FIG. 21. (color online) Average box skew 〈γ〉 vs stress per
particle p̃, for system sizes N = 8192 to 65536. Error bars
represent one standard deviation of estimated statistical error,
showing that 〈γ〉 = 0 within the estimated errors.

Our minimization procedure necessarily produces the
desired isotropic stress configurations only to a certain
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numerical accuracy. We now provide details of the degree
of that accuracy.

We first look at how well our procedure produces a
packing with the desired isotropic global stress tensor,
Σαβ = ΓNδαβ . We compute the global stress tensor Σαβ
for our minimized configurations using the usual formula
[2] for a static frictionless system,

Σαβ = −
∑

i<j

rijαFijβ , (29)

where rij ≡ rj − ri is the center-to-center displacement
from particle i to particle j, Fij = −∂Vij/∂ri is the con-
tact force on i due to j, and the sum is over all distinct
pairs of particles in contact. We then define three mea-
sures of the deviation of our minimized stress from the
isotropic target value,

δ1 ≡

√
〈[ 12 (Σxx + Σyy)− ΓN ]2〉

ΓN
(30)

δ2 ≡
√
〈[Σxx − Σyy]2〉

ΓN
(31)

δ3 ≡

√
〈Σ2

xy〉
ΓN

. (32)

δ1 measures the relative spread in the trace of Σαβ about
the target value ΓN ; δ2 measures the relative spread in
anisotropy of the diagonal elements of Σαβ ; and δ3 mea-
sures the relative spread in the off-diagonal elements of
Σαβ . In Fig. 22 we show our results for δ1, δ2 and δ3 vs
p̃ = ΓN/N , for systems sizes N = 8192 to 65536. We see
that δ1 is less than 0.01%, while δ2 and δ3 are less than
0.004%, indicating a high accuracy in the desired stress
tensor. In all cases the accuracy improves as the stress
per particle p̃ increases, and as the number of particles
N increases.

10-7

10-6

10-5

10-4

10-3

10-4 10-3 10-2

8192
16384
32768
65536

! 1

p~

N

(a)

10-7

10-6

10-5

10-4

10-4 10-3 10-2

8192
16384
32768
65536

! 3 N

(c)

p~
10-7

10-6

10-5

10-4

10-4 10-3 10-2

8192
16384
32768
65536

! 2 N

(b)

p~

FIG. 22. (color online) Accuracy parameters (a) δ1, (b) δ2,
and (c) δ3 of Eqs. (30), (31) and (32), that measure the
relative deviations of the stress tensor Σαβ from the target
isotropic ΓNδαβ , vs stress per particle p̃ = ΓN/N , for system
sizes N = 8102 to 65536.

Next we look at how well our procedure produces a me-
chanically stable packing in which the net force on each
particle vanishes. The net force Fi on particle i is just
the sum over its contact forces, Fi =

∑
j Fij . In Fig. 23

we plot the average magnitude of the net force, nor-
malized by the average magnitude of the contact force,
〈|Fi|〉/〈|Fij |〉, vs the stress per particle p̃ = ΓN/N , for
system sizes N = 8102 to 65536. We see that the resid-
ual net force on a particle at the end of our minimization
procedure is less than 0.05% of the average contact force.
This decreases as either p̃ or N increases.
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FIG. 23. (color online) Average magnitude of the residual net
force on a particle Fi, normalized by the average magnitude of
the contact force Fij , at the termination of our minimization
procedure. Results are plotted vs the stress per particle p̃ =
ΓN/N for systems sizes N = 8192 to 65536.

Fig. 23 showed the average net residual force on parti-
cles. In Fig. 24 we show the distribution of such forces,
P(|Fi|/〈|Fij |〉) vs |Fi|/〈|Fij |〉, for different system sizes
N = 8102 to 65536, at our (a) smallest p̃ = 0.0001373 and
(b) largest p̃ = 0.0183105. We see that the large force tail
grows as N increases, but shrinks as p̃ increases. For our
largest system, N = 65536, at our lowest stress per parti-
cle, p̃ = 0.0001373, there exist a very few particles whose
net force is comparable to the average contact force.
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FIG. 24. (color online) Distribution P(|Fi|/〈|Fij |〉) of the
residual net force on particles |Fi|, normalized by the aver-
age magnitude of the contact force |Fij |, vs |Fi|/〈|Fij |〉, for
different system sizes N = 8102 to 65536, at our (a) smallest
p̃ = 0.0001373 and (b) largest p̃ = 0.0183105.

The average residual force 〈|Fi|〉, and the large force
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tail of the distribution, is controlled by the accuracy
parameter ε that determines when we stop our mini-
mization procedure, (Ũi − Ũi+50)/Ũi+50 < ε. In the
body of this work, and in the above results, we have
used ε = 10−10. In Fig. 25 we show the distribution
P(|Fi|/〈|Fij |〉) for several different values of the accu-
racy parameter 10−10 ≤ ε ≤ 10−5, for our biggest sys-
tem N = 65536 at our lowest stress p̃ = 0.0001373. We
see that as ε decreases, the average net force and the
large force tail decrease. Thus, as would be expected,
decreasing ε improves the accuracy of force balance on
the particles in our minimized configurations.

We have attempted to improve upon the accuracy of
force balance by adding a separate step of minimization
in which, after the above criterion on Ũ is met, we then
hold the box parameters Lx, Ly and γ constant while
adjusting the particle positions to minimize the interac-
tion energy, (Ui − Ui+50)/Ui+50 < 10−10. The resulting
distribution of net residual forces on particles is shown
in Fig. 25 labeled as “10−10∗”. We find a significant re-
duction in the net force, with the average 〈|Fi|〉/〈|Fij |〉
decreasing roughly by a factor of 100. However we also
find that the accuracy of the system to have the desired
target global stress decreases, with the parameters δi of
Eqs. (30-32) increasing roughly by a factor 10. We have

not tried to optimize the sequence of minimizing Ũ and
U as we have found our results for χ(q) to be insensitive
to this additional step of minimization (see below), and
so we have not used it for the results presented elsewhere
in this paper.
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FIG. 25. (color online) Distribution P(|Fi|/〈|Fij |〉) of the
residual net force on particles |Fi|, normalized by the average
magnitude of the contact force |Fij |, vs |Fi|/〈|Fij |〉, for dif-
ferent values of the accuracy parameter ε that terminates our
minimization of Ũ . Results are for a system of size N = 65536
at p̃ = 0.0001373. Data labeled “10−10∗” are results for a
minimization of Ũ to accuracy ε = 10−10, followed by an
additional minimization of interaction energy U to accuracy
10−10 while holding the box parameters constant.

Finally, to determine whether the accuracy parameter
ε = 10−10 used in this work is sufficient for our needs,

we now check the sensitivity of χ(qŷ) to the value of
ε. In Fig. 26 we plot χ(qŷ) vs q (using definition I of
Eq. (5) for φ(r)) for different values of ε = 10−5 to 10−10,
for a system with N = 65536 particles (we consider our
largest system since that has the force distribution with
the largest tail at large |Fi|). We show results for our
smallest and largest values of the stress per particle p̃ =
ΓN/N . We see that if ε is too large, the results at small q
are clearly dependent on ε. But as ε decreases, our results
converge to a fixed ε-independent curve. For the smallest
p̃ = 0.0001373 this happens for ε ≤ 10−9, while for our
largest p̃ = 0.0183105 we have convergence for ε ≤ 10−8.
For the lowest p̃ in panel (a) we also show results for
the case where ε = 10−10 and we add the second step of
minimization described above, in which we fix the box
parameters and only move particle positions to minimize
U . This data is labeled as “10−10∗” in the figure. We see
that this additional step of minimization does not result
in any noticeable change in χ(qŷ). We thus conclude
that using ε = 10−10 with a single step minimization of
Ũ gives sufficient accuracy for our needs.



16

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

10!5

10!6

10!7

10!8

10!9

10!10

10-10*

q

definition I

p = 0.0001373~

N = 65536
"

(a)
χ
(q

ŷ
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FIG. 26. (color online) Fluctuation in packing fraction χ(qŷ)
vs q, using definition I of Eq. (5) for the local packing fraction
φ(r). Results are shown for system size N = 65536, for (a) our
smallest value of the stress per particle, p̃ = 0.0001373, and
(b) our largest value p̃ = 0.0183105. We compare the values of
χ(qŷ) obtained when using different values of the parameter
ε that determines the stopping criterion for our minimization
of Ũ . Data labeled “10−10∗” in panel (a) are results for a

minimization of Ũ to accuracy ε = 10−10, followed by an
additional minimization of interaction energy U to accuracy
10−10 while holding the box parameters constant.
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