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The assembly of monomeric constituents into molecular superstructures through sequential-arrival
processes has been simulated and theoretically characterized. When the energetic interactions allow
for complete overlap of the particles, the model is equivalent to that of the sequential absorption of
soft particles on a surface. In the present work, we consider more general cases by including arbitrary
aggregating geometries and varying prescriptions of the connectivity network. The resulting theory
accounts for the evolution and final-state configurations through a system of equations governing
structural generation. We find that particle geometries differ significantly from those in equilibrium.
In particular, variations of structural rigidity and morphology tune particle energetics, and result
in significant variation in the nonequilibrium distributions of the assembly in comparison to the
corresponding equilibrium case.
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Self-organization and assembly of primitive building-
blocks into superstructures drives the development of
novel products that find use in diverse technological and
biological applications [1]. Polymerization [2–4], nucle-
ation [5–7], and micellization [8, 9] are typical routes
by which molecular subunits assemble into a structured
state. The control of such processes allows for the devel-
opment of molecular machinery with desired structural
and dynamical properties [10, 11]. In the self-assembly
of soft materials [12–14], exotic phase behavior, such as
quasicrystalline states [15–17] and cluster crystals [18–
25], are observed. Thus, the geometries, and correspond-
ing energetic connectivity networks, of the resulting as-
semblies can be harnessed for use in tailored materials
with unique properties.
In equilibrium systems, the assembled geometries can

be complex [26–29], however, the underlying theory is
very mature and contingent only on equilibrium thermo-
dynamic arguments. In contrast, the theory for nonequi-
librium systems is significantly less advanced [30]. Here,
we develop theory for the structure and dynamics of an
assembly process in which small motifs are placed sequen-
tially to build larger structures. This insertion mecha-
nism generates assemblies that differ from those gener-
ated by systems at thermodynamic equilibrium [31–33],
and we describe this process through a set of govern-
ing equations with specified rates. The generality of this
model allows it to be characteristic of many kinds of ar-
rival phenomena. For example, it can describe adsorp-
tion on a substrate [34–36] or in a static framework [37],
and therein be used to optimize the routes for a targeted
structure because of the differences between sequential
and equilibrium assembly processes.
In the arrival-initiated assembly process, we consider

the sequential insertion of N particles to K initially
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empty binding sites. When a new particle arrives at the
binding sites, there are three possible outcomes: (1) the
particle binds to an unoccupied site, (2) the particle binds
to an occupied site, or (3) it does not bind to the chosen
site and is available for binding to another site in the next
step. All these cases may be specified through the bind-
ing probability, pn, where n is the occupation number
of the site (that is, the number of particles that already
occupy the site). If the particle is rejected, the attempt
of adding a new particle to the set of binding sites is re-
peated until it is accepted by a binding site. Any kind of
motion of bound particles —position exchange, diffusion,
etc.— is not allowed. The correlations between different
sites are also neglected.
The parameter Φ = N/K describes the average num-

ber of particles in a site. If N < K, Φ corresponds to
the occupied site fraction (SF) for sites that are at most
singly occupied (for which pn = 0 for n > 0) arising from
the so-called “hard sphere” interaction. For higher occu-
pancy, the actual occupied SF is defined as φ = K ′/K,
where K ′ is the number of occupied sites. We also intro-
duce partial site fractions φn for the sites occupied by n
particles. By construction, φ = φ1+φ2+...+φN = 1−φ0,
where φ is the probability that a randomly chosen site is
occupied by at least one particle.
The probability Pn that a new particle will ultimately

be accepted into a site already holding n particles is pro-
portional to the product of the probability φn that the
new particle lands on one of the sites with the occupation
number n, and the probability pn that it is accepted by
this site—that is

Pn = Qφnpn . (1)

where Q is the constant of proportionality. The coeffi-
cient Q is calculated readily from the fact that

∑

Pn = 1:

Q =

(

N
∑

n=0

φnpn

)−1

. (2)
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The “occupation” probabilities Pn from Eq. (1) depend
on the ratios pi/pj rather than on the “site acceptance”
probabilities pi themselves. Thus, pi’s can be replaced by
rates or relative occupation numbers if they are known.
The average density Φ(m) = m/K is a function of the

number m of added particles and has a maximal value
(= N/K). Each accepted (added) particle leads to a
small increase in Φ by ∆Φ = 1/K. In the same time, the
partial SFs can increase or decrease by the same amount,
but with different probabilities. Namely, the SF of empty
sites φ0 will be decreased by ∆Φ with the probability P0

upon adding one more particle, whereas φN can only be
increased by the same amount with the probability PN−1.
Givenm particles have already been added to the system,
the master equations for the average SFs read

φ0(m+ 1) = φ0(m)− P0(m)∆Φ

. . .

φj+1(m+ 1) = φj+1(m) + Pj(m)∆Φ− Pj+1(m)∆Φ

. . .

φN (m+ 1) = φN (m) + PN−1(m)∆Φ .
(3)

It is notable that for large values of Φ the system does
not necessarily reach equilibrium or a steady state. This
is possible, though, at some specific pi values when, for
example, they depend on the configuration and tend to
zero as Φ → ∞. In the current work we focus on nonequi-
librium distributions and do not address such cases.
In the thermodynamic limit, the numbers of sites and

particles are very large, and m is directly connected to
the achieved site occupation Φ = m/K. From this it
follows that System (3) can be rewritten as

dφ0(Φ) = −P0(Φ)dΦ (4a)

. . .

dφj+1(Φ) = (Pj(Φ)− Pj+1(Φ)) dΦ (4b)

. . .

dφN (Φ) = PN−1(Φ)dΦ . (4c)

Substitution of Pn from Eq. (1) into System (4) gives

dφ0 = −Qφ0p0dΦ

. . .

dφj+1 = Q (φjpj − φj+1pj+1) dΦ

. . .

dφN = QφN−1pN−1dΦ .

(5)

The corresponding differential equations are:

dφ1

dφ0
= s1

φ1

φ0
− 1 (6a)

dφ2

dφ0
=

s2φ2 − s1φ1

φ0
(6b)

. . .

where sn ≡ pn/p0. With the initial conditions φ0 = 1,
φ1 = φ2 = . . . = 0 at m = 0 these equations allow one to

obtain the partial occupied quantities φn for n > 0 for
a given φ0. Thus, when the relative probabilities pi/p0
remain constant during the assembly process, Eq. (6a)
has the following solution:

φ1 = (φs1
0 − φ0)/(1− s1) . (7)

Substitution into the second equation (6b) under the
same conditions has the solution,

φ2 =
s1

(1− s1)(1− s2)

(

φ0 −
1− s2
s1 − s2

φs1
0 +

1− s1
s1 − s2

φs2
0

)

.

(8)
In the “hard sphere” regime, when p1 = 0, particles can-
not occupy the same site, so that the fractions of the total
number of sites covered by one and two particles reduce
to φ1 = 1− φ0 and φ2 = 0, respectively.
The general solution of System (6) is of the form

φn =
n
∑

k=1

a
(n)
k φsk

0 + b(n)φ0 , (9)

where the coefficients a
(n)
k and b(n) are obtained after

substituting Eq. (9) into Eqs. (6):

a
(n)
k =

1

sn

sk
1− sk

n
∏

i=1,i6=k

si
si − sk

,

b(n) =
1

sn

n
∏

i=1

−si
1− si

.

(10)

For highest occupancy term φN , the coefficients a
(N)
k and

b(N) must be evaluated in the limit pN = 0 as it is not
possible for the N +1-th particle to bind to the site with
highest occupancy. Note that φN can also be found after
calculating the occupancies of lower orders as φN = 1 −
φ0 − φ1 − . . .− φN−1.
If there is no preferential binding —i.e., pi is the same

constant for all i set arbitrarily to 1 as only the ratios
pi/pj play a role), then Q = 1 and the solution for the
occupied SF of the first equation in System (5) is φ =
1 − φ0 = 1 − exp(−Φ). It corresponds exactly to the
Poisson limit [38, 39] wherein Eqs. (7) and (8) reduce to

φ1
p1→p0

−−−−→ −φ0 lnφ0 = Φexp(−Φ) ,

φ2
p1→p0

−−−−→
p2→p0

φ0

2
ln2 φ0 =

Φ2

2
exp(−Φ) .

(11)

This Poisson distribution is also recovered for all terms,
φn = Φn exp(−Φ)/n! , directly from System (5) as si →
1 ∀ i. This is a known solution for clustering by ir-
reversible filling [40, 41] at equal filling rates. Another
limiting case occurs when each site can accept only one
particle, (that is p0 = 1 and pi = 0 for i > 0). Therein
the solution of System (4) is φ0 = 1− Φ and φ1 = Φ.
Although System (5) cannot be solved easily for arbi-

trary values of {pi}, analytic solutions are available in
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FIG. 1. (color online) The probability of site occupation φ as a function of δ at various density values Φ for three interaction
networks: (a) complete K, (b) tethered T , and (c) ring R. The circular markers (blue), dashed curves (orange), and solid
curves (red) correspond to the simulation, the first-order approximation in Eq. (14), and the second-order approximation in
Eq. (16), respectively. The lower solid curves (cyan) in the top panels correspond to the equilibrium values of φ as measured
from simulation. Inset in each panel are graphs of corresponding networks for n = {3, 4, 5} particles. The bottom panels (d)-(f)
in each column display the probability φn for observing n particles in a site as a function of δ for the corresponding network
(shown above), as measured from simulation.

several nontrivial cases. For example, if high order occu-
pancies appear with small probabilities, one can neglect
partial SFs with order larger than, say, m, and assume
that φ0 + φ1 + . . .+ φm ≈ 1. The smallest nontrivial set
corresponds to m = 1 wherein φ0 + φ1 ≈ 1. Combining
Eq. (4a) with Eqs.(1) and (2) gives

dΦ = −dφ0 (φ0 + s1(1− φ0)) /φ0 , (12)

which is solved to yield

Φ = (1− s1)(1 − φ0)− s1 lnφ0 . (13)

It then follows that

φ = 1−
s1

1− s1
W

[

1− s1
s1

exp

(

1− s1 − Φ

s1

)]

, (14)

where W is the product logarithm [42]. For the second
order approximation (m = 2, φ0+φ1 +φ2 ≈ 1), Eq. (4a)
reads

dΦ = −dφ0
φ0 + s1φ1 + s2(1− φ0 − φ1)

φ0
, (15)

where φ1 is taken from Eq. (7). The solution to this
equation is

Φ =

(

1 + s1
s2 − 1

1− s1

)

(1 − φ0)

+
s1 − s2

s1(1− s1)
(1− φs1

0 )− s2 lnφ0 .

(16)

Equations (13) and (16) are valid for any arrival-initiated
assembly process evolving through System (3), and con-
stitute a central analytical result of this work. They
relate the probability of site occupation φ = 1 − φ0 to
density Φ, site occupation numbers φn [via Eqs. (7)-(9),
and site binding probabilities {pn}. Higher-order approx-
imations for φ can be obtained by solving differential
equations like the ones above for a given m, although
for brevity we refrain from producing these expressions
here. Below, we show that the first- and second- order
approximations adequately describe site occupation and
structural growth at densities large enough to observe
assembly behavior.

Thus far we have placed no constraints on the en-
ergetics with respect to {arriving particle}-{site} and
{arriving particle}-{bound particle} interactions. The
makeup of these energies are represented through the
probability ratios si. We consider here three energetic in-
teraction networks: complete K, tethered T , and ring R.
For simplicity, we ignore particle-site interactions in all
three cases—that is, we set p0 = 1. In the complete inter-
action network K, incident particles interact with every
particle already bound to that site. Taking the energy be-
tween particles to be ǫ, the energy levels ofK are {E1 = 0,
E2 = ǫ, E3 = 3ǫ, E4 = 6ǫ, . . ., Ek = ǫk(k− 1)/2}. Multi-
ple occupancy lattice structures, cluster crystals, and ag-
gregation of soft matter [19, 43, 44] are systems that have
complete interaction networks. In the tethered network,
an arriving particle interacts only with the site’s top layer
generating energy levels {E1 = 0, E2 = ǫ, E3 = 2ǫ, . . .,
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Ek = (k − 1)ǫ}. Polymerization and surface-initiated
assembly of linear motifs are paradigmatic examples of
tethered energetics [45–48]. In the ring network, the en-
ergy levels are {E1 = 0, E2 = ǫ, E3 = 3ǫ, E4 = 4ǫ,
. . ., Ek = kǫ : k > 2} corresponding to the assembly
of systems such as ring polymers [49, 50]. Representa-
tive graphs showing single-site interaction networks for
the K, T , and R cases are shown at the bottom left cor-
ner of Figs. 1a, 1b and 1c, respecively. Other complex
connectivity graphs can arise from alternative symme-
tries within the generated clusters,[51, 52] but can be
accounted through analogous considerations in the φn

terms through the pn parameters.

The acceptance probabilities {pn} for the three se-
lected connectivity networks is a function of the param-
eter δ = exp (−ǫ⋆) where ǫ⋆ = ǫ/kBT is the strength
of the interaction. Specifically, pn = δn in the com-
plete case K, pn = δ for T , and {p1 = δ, p2 = δ2,
pn = δ : n > 2} for system R. The limiting values
of δ correspond to completely repulsive incident inter-
actions or low-temperature (δ = 0), and soft incident
interactions or high-temperature (δ = 0). As shown in
Fig. 1, Eq. (16) is in excellent agreement with the results
obtained by sampling the sequentially generated struc-
tures through Monte Carlo (MC) simulations across all
ranges of density and interaction strengths, and for all
interaction networks. Note that in the tethered case the
first- and second-order approximations are equivalent as
s1 = s2 = δ. At each step of the sequentially gener-
ated case, for example, a site is first chosen at random.
An incident particle binds to it according to the accep-
tance probability {pn} which depends on the parameter
δ. Note that the specific nature of these probabilities will
depend on the chosen energetic connectivity network. If
the particle is rejected by the chosen site, a new site is
selected (with all sites equally likely) and the acceptance-
rejection loop is repeated. If the particle is accepted by
the site, the acceptance-rejection algorithm is initiated
for the next particle in sequence. Further details about
the simuations may be found in Ref. 33.

The canonical equilibrium site occupation probability
can be obtained through a sum over the Boltzmann-
weighted probabilities fore each energetic state [33]. To
measure this probability, Metropolis MC sampling [53]
was performed on each interaction network over varying
values of Φ and δ. In these simulations, after an ini-
tial relaxation phase, state sampling was initiated and
the Boltzmann-weighted ensemble average of these spa-
tial states is the measured numerical result for φ. As
shown in Fig. 1, values of φ generated by the equilibrium
ensemble deviate significantly (and are less than) from
those generated through a sequential arrival procedure.
This observed lowering in the site occupation probability
results from the clustered states that are formed through
sequential assembly when a system is allowed to relax
to an equilibrium state. This behavior is conjectured to
persist across all energetic interaction networks, as the re-
laxation to equilibrium inherently relaxes the energetics

(a)

(b)

FIG. 2. (color online) (a) The probability of site occupation
φ and (b) growth dφ/dΦ as a function of density Φ for various
values of δ. The energetics correspond to the complete inter-
action case K. The inset shows the growth rate on a log scale.
The solid curves are the results measured from simulation and
the dashed curves are the results given by Eq. (16).

encountered in the arrival process. The overall change in
the energetics is not entirely determined by the clustering
energy E which may be positive or negative depending
on the sign of ǫ, as it must also include the (unrelaxed)
entropy term S. Thus, although in our case E increases,
the free energy E − TS can decrease through the equi-
librium relaxation.

The generated nonequilibrium distributions are highly
dependent on the interaction network and the pairwise
interaction strength δ (see Fig. 1). For all three selected
connectivity networks, the values of φn are in agreement
in the Poisson distributed (δ = 1) limit, as every particle
is completely decorrelated. In the complete case K, for
small-δ values, the distribution is dominated by a sin-
gle high-order φn showing that aggregate size is strongly
uniform. For tethered interactions, across all values of
δ, approximately constant behavior is observed and thus
the assembly distribution is Poisson-like. This result is
in agreement with behavior observed in the assembly of
polymer-grafted nanoparticles [48]. For systems R, the
dimers prevail at small δ showing that formation of ring
structures is more energetically consuming, whereas at
δ > 0.8 the overall structure resembles that of the teth-
ered case T .

Figure 2 shows the growth of φ with respect to varia-
tion in Φ. In the Poisson limit, a characteristic exponen-
tial (linear behavior in the semi-log inset) is observed in
accordance with Eq. (11). A distinct turnover (sigmoidal
behavior) in the occupancy gradient is observed below
the Poisson distributed limit. At small δ values, initially
sparse organization is observed due to multiple rejections
from occupied sites. After the turnover point, where the
derivative dφ/dΦ at δ < 1 crosses that at δ = 1, layers are
formed and the binding preference of an incident particle
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shifts from unoccupied to occupied sites. This is cor-
related with the approach of the occupation probability
toward the asymptotic value φ = 1, which corresponds to
complete covered binding sites. It is interesting to note
that at large values of Φ the derivative dφ/dΦ approaches
exponential behavior. The latter can be directly obtained
from Eq. (16) evaluated at small φ0 (a large density of
adsorbed particles leads to a small number of vacancies):

dφ

dΦ
= −

dφ0

dΦ
∼ exp(−Φ/s2) . (17)

In summary, we have developed a theoretical formula-
tion for the structures generated through an arrival pro-
cess in which monomeric objects sequentially assemble.
We find that the distribution in the size of tethered linear
aggregates with varying interaction strength is approxi-
mately Poissonian, whereas it takes more complex forms
for other connectivity networks. Such characterization
allows for the design of novel materials quenched from

intrinsically nonequilibrium distributions of site occupa-
tion through the control of the interaction network and
strength.

During the review process we became aware of a con-
currently published study by Osberg et al. [54] in which
a one-dimensional model was introduced to consider the
absorption/desorption kinetics of soft particles. Like us,
they found significant effects due to the introduction of
soft-particle interactions. The model presented here also
includes the possibility of surface adsorption (in two-
dimensions) and more general dimensionality depending
on the topology of the connectivity network. Observation
of the phenomena predicted in these studies would pro-
vide impetus for additional theoretical and experimental
inquiry into the role that softness plays in adsorption.

This work has been partially supported by the National
Science Foundation (NSF) through Grant No. NSF-CHE-
1112067.
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